肿瘤克隆起源之争与甲状腺乳头状癌研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
甲状腺癌(thyroid carcinoma)是内分泌系统最常见的恶性肿瘤,约占人类新发恶性肿瘤的1%。近年来,甲状腺癌的发病率呈逐年上升的趋势,最新的Cancer Statistics,2009数据显示,美国甲状腺癌数以每年6.2%速度递增,首次超过卵巢癌发病率成为女性第七大常见恶性肿瘤。
     甲状腺癌的发生发展过程中包含一系列高发的分子遗传学事件,如甲状腺滤泡状癌中的RAS基因突变、与甲状腺乳头状癌和部分甲状腺腺瘤相关的RET/PTC基因重排、以及在甲状腺未分化癌中常见的p53基因突变等。BRAF基因突变是近年来在甲状腺癌研究领域最突出的进展之一,其主要的突变方式是发生在15号外显子的BRAFV600E突变,在甲状腺乳头状癌中的平均发生率为44%。研究表明,BRAFV600E突变是甲状腺癌发生早期的分子遗传学事件,与肿瘤腺外浸润、淋巴结转移、TNM分期晚等都有显著的统计学关联,在临床上有很大的研究价值和运用前景。国内研究仅停留在较小样本的临床病理特征比较上,尚无大样本研究队列(超过200例)和长时间临床随访来研究BRAFV600E突变在中国人群中甲状腺癌的发生情况及预后价值。
     甲状腺乳头状癌(Papillary thyroid carcinoma, PTC)是甲状腺癌最常见的病理类型,其临床特征之一是病灶多发,文献报道的发生率从18%-87%不等,多灶性甲状腺乳头状癌通常被认为与淋巴结转移、远处转移及初次治疗后局部复发率高有密切关联。双侧甲状腺乳头状癌(同时性或异时性),作为一种特殊类型的多灶癌,其克隆起源尚未被报道过,该类型的临床病理特征也未被重点研究过。
     第一部分BRAF基因突变在我国甲状腺癌人群中的研究
     目的:研究BRAF基因突变在我国甲状腺癌人群的发生情况,并进一步探索其在预测疾病复发和生存中的价值。
     方法:建立我院十年甲状腺癌数据库(含甲状腺癌1006例),进行中位时间6年的电话随访和信访(最短2.5年,最长13.5年)。入组BRAF基因研究队列含甲状腺癌220例(乳头状癌208例、滤泡状癌8例、髓样癌1例、未分化癌3例),良性甲状腺病变46例。在比较并优化石蜡组织基因组DNA抽提方法的基础上,以直接测序法检测BRAF基因15号外显子的突变情况(BRAFV600E突变)。
     结果:BRAFV600E突变集中发生在甲状腺乳头状癌中,突变率55.3%(115/208);在甲状腺癌的其他病理类型及良性甲状腺病变组织中均未检测到该突变。统计学分析发现BRAFV600E突变与发病年龄密切相关(P=0.004);长期随访结果显示该突变与疾病总生存率接近统计学差异(P=0.068)。
     结论:BRAFV600E突变在我国甲状腺癌人群同样集中在甲状腺乳头状癌,且有相对较高的发生率;另外该突变可能与甲状腺乳头状癌的预后不良相关。
     第二部分双侧甲状腺乳头状癌的克隆起源研究
     目的:研究甲状腺乳头状癌同时性双侧病灶及异时性复发病灶之间的克隆起源。
     方法:入组25对双侧甲状腺乳头状癌病灶(22对同时性的双侧病灶和3对异时性的复发病灶)以及15个转移淋巴结。以手工显微微切割肿瘤组织,从石蜡组织抽提基因组DNA;运用PCR和直接测序法检测成对病灶之间的BRAF基因状态;联合更为准确的X染色体失活分析技术判断肿瘤克隆起源。
     结果:21对病例的62个病灶获得合格的DNA样品,18对病灶(18/21,85.7%)的BRAF基因状态完全一致,其中BRAF基因突变组12对、BRAF基因野生型组6对。18例女性病例中的11对病灶适合作X染色体失活分析,9对双侧病灶(9/11,81.1%)的X染色体失活形式相同。BRAF基因突变比较和X染色体失活分析在判断肿瘤克隆起源结果上一致性好(Chi-Square, two-sided P= 0.026; Spearman's rank correlation test, r= 0.671)。
     结论:基于甲状腺癌发生相关的BRAF基因突变比较与胚胎时期就已确立的X染色体失活技术的联合,本研究首次证实甲状腺乳头状癌双侧病灶(同时性和异时性)系同一克隆起源,肿瘤腺内播散可能是双侧甲状腺癌发生的重要原因。这一发现为临床进一步认识甲状腺癌的生物学行为和合理治疗甲状腺癌(甲状腺全切)提供重要依据。
     第三部分新型BRAF基因插入突变的初步研究
     目的:在双侧甲状腺癌克隆起源研究中,我们通过测序筛查发现了一例极为罕见的插入型BRAF基因突变——BRAFV599Ins突变,该突变仅在一例意大利人群的甲状腺癌病人中被报道过。本部分研究拟初步探索该插入型突变可能获得的生物学功能。
     方法:回顾性检测该患者所有病灶的BRAF基因突变情况,以TA克隆确认该突变类型。构建该罕见插入型BRAF基因突变(BRAFV599Ins突变)以及常见的BRAFV600E突变和BRAF基因野生型真核表达载体,转染HEK293细胞48小时后,检测BRAF蛋白及下游ERK信号通路的表达水平,流式细胞仪检测细胞周期变化,WST-8法(CCK-8)检测细胞增殖情况。
     结果:TA克隆并测序验证BRAFV599Ins突变为1795位碱基前插入GTT三个碱基。瞬时转染293细胞后,BRAFV599Ins突变和BRAFV600E突变都明显激活下游ERK信号通路,细胞周期计数显示S期比例增高,细胞增殖实验也提示增殖活性增强。
     结论:新型BRAF基因插入突变具有与BRAFV600E突变类似的功能,属于功能获得型突变。
Thyroid cancer is the most common endocrine neoplasm which accounts for roughly 1% of all new malignant disease. With the incidence increasing by 6.2% per year, thyroid cancer is currently the seventh most common malignancy diagnosed in women in U.S. population.
     Previous studies have shown that thyroid cancer displays several highly prevalent genetic alterations, like RAS mutations in follicular thyroid carcinoma; rearrangements of the RET in papillary thyroid carcinoma and thyroid adenoma; and P53 mutations in anaplastic thyroid carcinoma. Among these alterations, mutations in BRAF gene are the most common. The point mutation in exon 15 of BRAF gene has been found to result in a valine to glutamine conversion at codon 600 (BRAFV600E mutation) with an average prevalence of 45% in papillary thyroid cancer. It has been reported that the BRAFV600E mutation is associated with one or more conventional high-risk clinicopathological characteristics of PTC, like lymph node metastasis, extrathyroidal invasion, and advanced disease stages. Until now, there is few study with a relative larger sample size to investigate the prevalence and possible prognostic value of BRAFV600E mutation in Chinese population.
     Papillary thyroid carcinoma (PTC) is the most common histotype of thyroid cancer. PTC is often multifocal, with a reported frequency varying widely from 18 to 87 percent. Multifocality in PTC is associated with an increased risk of lymph node metastases and regional recurrence. However, as a specific subtype of multifocal PTCs, bilateral papillary thyroid carcinoma has not been widely investigated. In addition, in patients with local or distant recurrence after lobectomy, a tumor is found in more than 60% of the time in the resected contralateral lobe. The clonality of tumors appearing simultaneously in both lobes or recurring in the contralateral lobe remains unknown.
     Part one. BRAF mutation in Chinese population of thyroid cancer
     Purpose:To determine the incidence and define the possible role of BRAFV600E mutation in Chinese population of thyroid cancer.
     Methods:We established a computer-based database comprising 1006 thyroid cancer patients and clinically followed them up with a mean time of six years (range from 2.5 years to 13.5 years). Two hundreds and twenty patients were enrolled from this database containing 208 papillary thyroid cancers,8 follicular thyroid cancers,1 medullary thyroid cancers and 3 anaplastic thyroid cancers. Also, a control group of 46 cases of benign thyroid tumors were studied. After compared the distinct methods of extracting genomic DNA from formalin-fixed paraffin-embedded tissues (FFPET), we screened the BRAF gene by DNA sequencing.
     Results:One hundred and fifteen PTCs were positive for the BRAFV600E mutation (55.3%,115/208). We confirmed previous reports that BRAFv600E mutation did not occur in benign disorders. This mutation was associated with older age (P= 0.004) and poorer prognosis (close to statistic difference, P= 0.068).
     Conclusions:BRAFV600E mutation was also common in Chinese population of thyroid cancer and might be an indicator of poorer prognosis.
     Part two. Clonal analysis of bilateral papillary thyroid carcinomas
     Purpose:To address the issue of clonal origin of tumors appearing simultaneously in both lobes or recurring in the contralateral lobe.
     Methods:we examined twenty-five pairs of bilateral papillary thyroid carcinomas (synchronous or metachronous) and 15 matched metastatic lymph nodes. BRAF gene mutation analysis combined with X-chromosome inactivation was used to evaluate these tumors' clonal origins. Genomic DNA was prepared from paraffin-embedded tissues after microdissection.
     Results:In total,62 tumors yielded DNA of adequate quality. Eighteen out of 21 informative cases (18/21,85.7%) showed concordant BRAF status in tumors from both thyroid lobes, be either BRAF mutation-positive (12 patients) or BRAF mutation-negative (6 patients). Metastatic lymph nodes in 12 patients (12/15,80%) had a complete concordance of BRAF state with their primaries. Of the 18 studied female patients, eleven were suitable for X-chromosome inactivation assay. Nine cases (9/11, 81.1%) showed the same pattern of inactivation in bilateral tumors. A close correlation was found between BRAF mutation and X-chromosome inactivation analysis.
     Conclusions:our data provide evidence that bilateral, recurrent and metastatic papillary thyroid carcinomas often arise from a single clone, and that intrathyroidal metastasis may play an important role in the development of bilateral tumors, as well as in the recurrence of this malignancy.
     Part three. Molecular characterization of novel BRAFV599Ins mutation
     Purpose:In the study of Part two, we report a rare BRAF gene mutation in a bilateral PTC, namely a 1795GTT insertion, resulting in BRAFV599Ins, and here we describe its biochemical characterization.
     Methods:We studied the MAPK cascade in HEK293 cells transiently transfected with the various BRAF constructs. Then MTT assay and flow cytometry were done to test the cell viability and the possible change of cell cycle.
     Results:Phosphorylation of ERK was virtually low in vector-transfected cells, while the MAPK cascade was significantly more active in cells expressing BRAFV600E or BRAFV5991ns than in cells expressing BRAFWT. Cells transfected with BRAFV600E or BRAFV599Ins obviously promoted cell growth and had a higher rate of S phase. Conclusions:This study demonstrated that BRAFV599Ins mutation, as BRAFV600E, is a "gain of function" mutation
引文
[1]Hundahl SA, Fleming ID, Fremgen AM, et al. A National Cancer Data Base Report on 53,856 Cases of Thyroid Carcinoma Treated in the U.S.,1985-1995 Cancer.1998;83:2638-48.
    [2]Hay ID, Thompson GB, Grant CS, et al. Papillary thyroid carcinoma managed at the Mayo Clinic during six decades (1940-1999):temporal trends in initial therapy and long-term outcome in 2444 consecutively treated patients. World J Surg.2002;26:879-85.
    [3]Sherman SI. Thyroid carcinoma. Lancet 2003;361:501-11.
    [4]Michels JJ, Jacques M, Henry-Arnar M, et al. Prevalence and prognostic significance of tall cell variant of papillary thyroid carcinoma. Hum Pathol 2007; 38:212-219.
    [5]Vasko V, Ferrand M, Di Cristofaro J, et al. Specific pattern of RAS oncogene mutations in follicular thyroid tumors. J Clin Endocrinol Metab 2003; 88:2745-52.
    [6]Nikiforov YE. RET/PTC rearrangement in thyroid tumors. Endocr Pathol 2002; 13:3-16.
    [7]Fagin JA, Matsuo K, Karmakar A, et al. High prevalence of mutations of the p53 gene in poorly differentiated human thyroid carcinomas. J Clin Invest 1993; 91:179-84.
    [8]Davies H, Bignell GR, Cox C, et al. Mutations of the BRAF gene in human cancer. Nature 2002;417:949-54.
    [9]Sithanandam G, Druck T, Cannizzaro LA, et al. B-raf and a B-raf pseudogene are located on 7q in man. Oncogene 1992;7:795-9.
    [10]Garnett MJ, Marais R. Guilty as charged:B-RAF is a human oncogene. Cancer Cell 2004;6:313-9.
    [11]Xing M. BRAF mutation in thyroid cancer. Endocr Relat Cancer 2005; 12:245-62.
    [12]Lupi C, Giannini R, Ugolini C, et al. Association of BRAF V600E mutation with poor clinicopathological outcomes in 500 consecutive cases of papillary thyroid carcinoma. J Clin Endocrinol Metab 2007;92:4085-90.
    [13]Kebebew E, Weng J, Bauer J, et al. The prevalence and prognostic value of BRAF mutation in thyroid cancer. Ann Surg 2007;246:466-70.
    [14]Riesco-Eizaguirre G, Gutierrez-Martinez P, Garcia-Cabezas MA, et al. The oncogene BRAF V600E is associated with a high risk of recurrence and less differentiated papillary thyroid carcinoma due to the impairment of Na+/I-targeting to the membrane. Endocr Relat Cancer 2006; 13:257-69.
    [15]Knauf JA, Ma X, Smith EP, et al. Targeted expression of BRAFV600E in thyroid cells of transgenic mice results in papillary thyroid cancers that undergo dedifferentiation. Cancer Res 2005;65:4238-45.
    [16]Salvatore G, De Falco V, Salerno P, et al. BRAF is a therapeutic target in aggressive thyroid carcinoma. Clin Cancer Res 2006;12:1623-9.
    [17]Gupta-Abramson V, Troxel AB, Nellore A, et al. Phase II trial of sorafenib in advanced thyroid cancer. J Clin Oncol 2008;26:4714-47.
    [18]Kloos RT, Ringel MD, Knopp MV, et al. Phase II trial of sorafenib in metastatic thyroid cancer. J Clin Oncol 2009;27:1675-84.
    [19]Wang Y, Ji M, Wang W, et al. Association of the T1799A BRAF mutation with tumor extrathyroidal invasion, higher peripheral platelet counts, and over-expression of platelet-derived growth factor-B in papillary thyroid cancer. Endocr Relat Cancer 2008;15:183-90.
    [20]Zhu XL, Zhou XY, Zhu XZ. BRAFV599E mutation and RET/PTC rearrangements in papillary thyroid carcinoma. Zhong hua Bing Li Xue Za Zhi 2005;34:270-4.
    [21]Wang YL, Wang JC, Wu Y, et al. Incidentally simultaneous occurrence of RET/PTC, H4-PTEN and BRAF mutation in papillary thyroid carcinoma. Cancer Lett 2008;263:44-52.
    [22]D.P. Jackson, F.A. Lewis, G.R. Taylor, et al. Tissue extraction of DNA and RNA and analysis by the polymerase chain reaction. J. Clin. Pathol 1990;43:499-504.
    [23]Greer CE, Lund JK, Manos MM. PCR amplification from paraffin-embedded tissues:recommendations on fixatives for long-term storage and prospective studies. PCR Methods Appl 1991;1:46-50.
    [24]Greene FL, Page DL, Fleming ID, et al, eds. American Joint Committee on Cancer Staging Manual.6th ed. Philadelphia:Springer,2002;77-87:
    [25]Sapio MR, Posca D, Troncone G, et al. Detection of BRAF mutation in thyroid papillary carcinomas by mutant allele-specific PCR amplification (MASA). Eur J Endocrinol 2006;154:341-8.
    [26]Mazzaferri EL, Jhiang SM. Long-term impact of initial surgical and medical therapy on papillary and follicular thyroid cancer. Am J Med 1994;97:418-28.
    [27]Mazzaferri EL. Management of a solitary thyroid nodule. N Engl J Med 1993;328:553-9.
    [28]Cady B, Rossi R. An expanded view of risk-group definition in differentiated thyroid carcinoma. Surgery 1988;104:947-53.
    [29]Hay ID, Grant CS, Taylor WF, et al. Ipsilateral lobectomy versus bilateral lobar resection in papillary thyroid carcinoma:a retrospective analysis of surgical outcome using a novel prognostic scoring system. Surgery 1987; 102:1088-95.
    [30]Hay ID, Bergstralh EJ, Goellner JR, et al. Predicting outcome in papillary thyroid carcinoma:development of a reliable prognostic scoring system in a cohort of 1 779 patients surgically treated at one institution during 1940 through 1989. Surgery 1993;114:1050-7.
    [31]Solomon MJ, Varshavsky A. Formaldehyde-mediated DNA-protein crosslinking: a probe for in vivo chromatin structures. PNAS 1985;82:6470-4.
    [32]Ben-Ezra J, Johnson DA, Rossi J, et al. Effect of fixation on the amplification of nucleic acids from paraffin-embedded material by the polymerase chain reaction. J Histochem Cytochem 1991;39:351-4.
    [33]Srinivasan M, Sedmak D, Jewell S. Effect of fixatives and tissue processing on the content and integrity of nucleic acids. Am J Pathol 2002;161:1961-71.
    [34]Metz B, Kersten GF, Hoogerhout P, et al. Identification of formaldehyde-induced modifications in proteins. Reactions with model peptides. J Biol Chem 2004;279:6235-43.
    [35]S.E. Goelz, S.R. Hamilton, B. Vogelstein. Purification of DNA from formaldeyde fixed and paraffin-embedded tissues, Biochem. Biophys. Res. Commun 1985;130118-126.
    [36]J. Isola, S. DeVries, L. Chu, et al. Analysis of changes in DNA sequence copy number by comparative genomic hybridization in archival paraffin embedded tumor samples. Am. J. Pathol 1994; 145:1301-8.
    [37]Banerjee SK, Makdisi WF, Weston AP, et al. Microwave-based DNA extraction from paraffin-embedded tissue for PCR amplification. Bio Techniques 1995;18:768-73.
    [38]Howe JR, Klimstra DS, Cordon-Cardo C. DNA extraction from paraffin-embedded tissues using a salting-out procedure:a reliable method for PCR amplification of archival material. Histol Histopathol 1997;12:595-601.
    [39]Rivero ER, Neves AC, Silva-Valenzuela MG, et al. Simple salting-out method for DNA extraction from formalin-fixed, paraffin-embedded tissues. Pathol Res Pract 2006;202:523-9.
    [40]Saiki RK, Gelfand DH, Stoffel S, et al. Primer-directed enzymatic amplification of DNA with a thermo stable DNA polymerase. Science 1988;239:487-99.
    [41]Nikiforova MN, Kimura ET, Gandhi M, et al. BRAF mutations in thyroid tumors are restricted to papillary carcinomas and anaplastic or poorly differentiated carcinomas arising from papillary carcinomas. Journal of Clinical Endocrinology and Metabolism 2003;88:5399-404.
    [42]Xing M. BRAF mutation in thyroid cancer. Endocr Relat Cancer 2005; 12:245-62.
    [43]Segev DL, Clark DP, Zeiger MA, et al. Beyond the suspicious thyroid fine needle aspirate. A review. Acta Cytol 2003;47:709-22.
    [44]Sclabas GM, Staerkel GA, Shapiro SE, et al. Fine-needle aspiration of the thyroid and correlation with histopathology in a contemporary series of 240 patients. Am J Surg 2003; 186:702-9.
    [45]Cohen Y, Rosenbaum E, Clark DP. Mutational analysis of BRAF in fine needle aspiration biopsies of the thyroid:a potential application for the preoperative assessment of thyroid nodules. Clinical Cancer Research 2004;10:2761-5.
    [46]Xing M, Tufano RP, Tufaro AP. Detection of BRAF mutation on fine needle aspiration biopsy specimens:a new diagnostic tool for papillary thyroid cancer. Journal of Clinical Endocrinology and Metabolism 2004;89:2867-72.
    [47]Nikiforova MN, Ciampi R, Salvatore G Low prevalence of BRAF mutations in radiation induced thyroid tumors in contrast to sporadic papillary carcinomas. Cancer Lett 2004;209:1-6.
    [48]Kim KH, Kang DW, Kim SH. Mutations of the BRAF gene in papillary thyroid carcinoma in a Korean population. Yonsei Medical Journal 2004;45:818-21.
    [49]Xu X, Quiros RM, Gattuso P. High prevalence of BRAF gene mutation in papillary thyroid carcinomas and thyroid tumor cell lines. Cancer Research 2003; 63:4561-7.
    [50]Puxeddu E, Moretti S, Elisei R, et al. BRAF(V599E) mutation is the leading genetic event in adult sporadic papillary thyroid carcinomas. Journal of Clinical Endocrinology and Metabolism 2004;89:2414-20.
    [51]Kebebew E, Weng J, Bauer J, et al. The prevalence and prognostic value of BRAF mutation in thyroid cancer. Ann Surg 2007;246:466-70.
    [52]Xing M, Westra WH, Tufano RP, et al. BRAF mutation predicts a poorer clinical prognosis for papillary thyroid cancer. J Clin Endocrinol Metab 2005;90:6373-9.
    [53]Elisei R, Ugolini C, Viola D, et al. BRAF(V600E) mutation and outcome of patients with papillary thyroid carcinoma:a 15-year median follow-up study. J Clin Endocrinol Metab 2008;93:3943-9.
    [54]Durante C, Puxeddu E, Ferretti E. BRAF mutations in papillary thyroid carcinomas inhibit genes involved in iodine metabolism. J Clin Endocrinol Metab 2007;92:2840-3.
    [55]Romei C, Ciampi R, Faviana P. BRAFV600E mutation, but not RET/PTC rearrangements, is correlated with a lower expression of both thyroperoxidase and sodium iodide symporter genes in papillary thyroid cancer. Endocr Relat Cancer 2008; 15:511-20.
    [56]Riesco-Eizaguirre G, Gutierrez-Martinez P, Garcia-Cabezas MA. The oncogene BRAF V600E is associated with a high risk of recurrence and less differentiated papillary thyroid carcinoma due to the impairment of Na+/I-targeting to the membrane. Endocr Relat Cancer 2006; 13:257-69.
    [57]Franceschi S, Boyle P, Maisonneuve P, et al. The epidemiology of thyroid carcinoma. Crit Rev Oncog 1993;4:25-52.
    [58]DeGroot LJ, Kaplan EL, McCormick M, et al. Natural history, treatment, and course of papillary thyroid carcinoma. J Clin Endocrinol Metab 1990;71:414-24.
    [59]Gerfo PL, Chabot J, Gazetas P. The intraoperative incidence of detectable bilateral and multicentric disease in papillary cancer of the thyroid. Surgery 1990; 108:958-62.
    [60]Pasieka JL, Thompson NW, McLeod MK, et al. The incidence of bilateral well-differentiated thyroid cancer found at completion thyroidectomy. World J Surg 1992;16:711-6.
    [61]Pacini F, Elisei R, Capezzone M, et al. Contralateral papillary thyroid cancer is frequent at completion thyroidectomy with no difference in low-and high-risk patients. Thyroid 2001;11:877-81.
    [62]Katoh R, Sasaki J, Kurihara H, et al. Multiple thyroid involvement (intraglandular metastasis) in papillary thyroid carcinoma. A clinicopathologic study of 105 consecutive patients. Cancer 1992;70:1585-90.
    [63]Park YJ, Kim YA, Lee YJ, et al. Papillary microcarcimoma in comparison with larger papillary thyroid carcinoma in BRAF(V600E) mutation, clinicopathological features, and immunohistochemical findings. Head Neck 2010;32:38-45.
    [64]Kim SK, Song KH, Lim SD, et al. Clinical and pathological features and the BRAF(V600E) mutation in patients with papillary thyroid carcinoma with and without concurrent Hashimoto thyroiditis. Thyroid 2009; 19:137-41.
    [65]Giannini R, Ugolini C, Lupi C, et al. The heterogeneous distribution of BRAF mutation supports the independent clonal origin of distinct tumor foci in multifocal papillary thyroid carcinoma. J Clin Endocrinol Metab 2007; 92:3511-6.
    [66]Xing M. BRAF mutation in papillary thyroid cancer:pathogenic role, molecular bases, and clinical implications. Endocr Rev 2007;28:742-62.
    [1]Franceschi S, Boyle P, Maisonneuve P, et al. The epidemiology of thyroid carcinoma. Crit Rev Oncog 1993;4:25-52.
    [2]Tsang RW, Brierley JD, Simpson WJ, et al. The effects of surgery, radioiodine, and external radiation therapy on the clinical outcome of patients with differentiated thyroid carcinoma. Cancer 1998;82:375-88.
    [3]Bilimoria KY, Bentrem DJ, Ko CY, et al. Extent of surgery affects survival for papillary thyroid cancer. Ann Surg 2007;246:375-81.
    [4]Pasieka JL, Thompson NW, McLeod MK, et al. The incidence of bilateral well-differentiated thyroid cancer found at completion thyroidectomy. World J Surg 1992; 16:711-6.
    [5]Pacini F, Elisei R, Capezzone M, et al. Contralateral papillary thyroid cancer is frequent at completion thyroidectomy with no difference in low-and high-risk patients. Thyroid 2001;11:877-81.
    [6]Katoh R, Sasaki J, Kurihara H, et al. Multiple thyroid involvement (intraglandular metastasis) in papillary thyroid carcinoma. A clinicopathologic study of 105 consecutive patients. Cancer 1992;70:1585-90.
    [7]Iida F, Yonekura M, Miyakawa M. Study of intraglandular dissemination of thyroid cancer. Cancer 1969;24:764-71.
    [8]Rein hoff WF Jr. Lymphatic vessels of thyroid gland in dog and man. Arch Surg 1931;23:783-804.
    [9]Utiger RD. The multiplicity of thyroid nodules and carcinomas. N Engl J Med 2005;352:2376-8.
    [10]Nikiforova MN, Nikiforov YE. Molecular genetics of thyroid cancer: implications for diagnosis, treatment and prognosis. Expert Rev Mol Diagn 2008;8:83-95.
    [11]Kimura ET, Nikiforova MN, Zhu Z, et al. High prevalence of BRAF mutations in thyroid cancer:genetic evidence for constitutive activation of the RET/PTC-RAS-BRAF signaling pathway in papillary thyroid carcinoma. Cancer Res 2003;63:1454-7.
    [12]Hara H, Fulton N, Yashiro T, et al. N-ras mutation:an independent prognostic factor for aggressiveness of papillary thyroid carcinoma. Surgery 1994; 116: 1010-6.
    [13]Grieco M, Santoro M, Berlingieri MT, et al. PTC is a novel rearranged form of the ret proto-oncogene and is frequently detected in vivo in human thyroid papillary carcinomas. Cell 1990;60:557-63.
    [14]Pierotti MA, Vigneri P, Bongarzone I. Rearrangements of RET and NTRK1 tyrosine kinase receptors in papillary thyroid carcinomas. Recent Results Cancer Res 1998;154:237-47.
    [15]Lyon MF. Gene action in the X-chromosome of the mouse (Mus musculus L.). Nature 1961;190:372-3.
    [16]Fialkow PJ. Clonal origin of human tumors. Biochim Biophys Acta 1976;458:283-321.
    [17]DeLellis RA. Pathology and genetics of thyroid carcinoma. J Surg Oncol 2006;94:662-9.
    [18]Greene FL, Page DL, Fleming ID, et al, eds. American Joint Committee on Cancer Staging Manual.6th ed. Philadelphia:Springer,2002;77-87.
    [19]Tilley WD, Marcelli M, Wilson JD, et al. Characterization and expression of a cDNA encoding the human androgen receptor. Proc Natl Acad Sci USA 1989;86:327-31.
    [20]Allen RC, Zoghbi HY, Moseley AB, et al. Methylation of HpaⅡ and Hhal sites near the polymorphic CAG repeat in the human androgen-receptor gene correlates with X chromosome inactivation. Am J Hum Genet 1992;51:1229-39.
    [21]Moniz S, Catarino AL, Marques AR, et al. Clonal origin of non-medullary thyroid tumours assessed by non-random X-chromosome inactivation. Eur J Endocrinol 2002;146:27-33.
    [22]Carcangiu ML, Zampi G, Pupi A, et al. Papillary carcinoma of the thyroid. A clinicopathologic study of 241 cases treated at the University of Florence, Italy. Cancer 1985;55:805-28.
    [23]Correa P, Chen VW. Endocrine gland cancer. Cancer 1995;75:338-52.
    [24]Ringel MD, Ladenson PW. Controversies in the follow-up and management of well-differentiated thyroid cancer. Endocr Relat Cancer 2004; 11:97-116.
    [25]Shattuck TM, Westra WH, Ladenson PW, et al. Independent clonal origins of distinct tumor foci in multifocal papillary thyroid carcinoma. N Engl J Med 2005;352:2406-12.
    [26]Xing M. BRAF mutation in thyroid cancer. Endocr Relat Cancer 2005;12:245-62.
    [27]Knauf JA, Ma X, Smith EP, et al. Targeted expression of BRAFV600E in thyroid cells of transgenic mice results in papillary thyroid cancers that undergo dedifferentiation. Cancer Res 2005;65:4238-45.
    [28]Sedliarou I, Saenko V, Lantsov D, et al. The BRAFT1796A transversion is a prevalent mutational event in human thyroid microcarcinoma. Int J Oncol 2004;25:1729-35.
    [29]Park SY, Park YJ, Lee YJ, et al. Analysis of differential BRAF(V600E) mutational status in multifocal papillary thyroid carcinoma:evidence of independent clonal origin in distinct tumor foci. Cancer 2006;107:1831-8.
    [30]Fialkow, P. J. Clonal origin of human tumors. Biochim. Biophys. Acta 1976;458: 283-321.
    [31]Vogelstein, B., Fearon, E. R., Hamilton, S. R., et al. Use of restriction fragment length polymorphisms to determine the clonal origin of human tumors. Science (Washington DC) 1985;227:642-5.
    [32]Gilliland, D. G., Blanchard, K. L., Levy, J., Perrin, S., et al. Clonality in myeloproliferative disorders:analysis by means of the polymerase chain reaction. Proc. Natl. Acad. Sci. USA 1991;88:6848-52.
    [33]Greet, C. E., Peterson, S. L., Kiviat, N. B., et al. PCR amplification from paraffin-embedded tissues. Effects of fixative and fixation time. Am. J. Clin. Pathol.1991;95:117-24.
    [34]Crisan, D., and Mattson, J. C. Amplification of intermediate-size DNA sequences from formalin and B-5 fixed tissue by polymerase chain reaction. Clin. Biochem. 1992;25:99-103.
    [35]Tilley, W. D., MarceUi, M., Wilson, J. D., et al. Characterization and expression of a cDNA encoding the human androgen receptor. Proc. Natl. Acad. Sci. USA 1989;86:327-31.
    [36]Allen RC, Zoghbi HY, Moseley AB, et al. Methylation of HpaⅡ and HhaⅠ sites near the polymorphic CAG repeat in the human androgen-receptor gene correlates with X chromosome inactivation. Am J Hum Genet 1992;51:1229-39.
    [37]Jovanovic L, Delahunt B, McIver B, et al. Thyroid gland clonality revisited:the embryonal patch size of the normal human thyroid gland is very large, suggesting X-chromosome inactivation tumor clonality studies of thyroid tumors have to be interpreted with caution. J Clin Endocrinol Metab 2003;88:3284-91.
    [38]Giannini R, Ugolini C, Lupi C, et al. The heterogeneous distribution of BRAF mutation supports the independent clonal origin of distinct tumor foci in multifocal papillary thyroid carcinoma. J Clin Endocrinol Metab 2007;92:3511-6.
    [39]Ricarte-Filho JC, Ryder M, Chitale DA, et al. Mutational profile of advanced primary and metastatic radioactive iodine-refractory thyroid cancers reveals distinct pathogenetic roles for BRAF, PIK3CA, and AKT1. Cancer Res 2009;69:4885-93.
    [1]Robinson MJ, Cobb MH. Mitogen-activated protein kinase pathways. Curr Opin Cell Biol 1997;9:180-6.
    [2]Sithanandam G, Druck T, Cannizzaro LA, et al. B-raf and a B-raf pseudogene are located on 7q in man. Oncogene 1992;7:795-9.
    [3]Wan PT, Garnett MJ, Roe SM, et al. Mechanism of activation of the RAF-ERK signaling pathway by oncogenic mutations of B-RAF. Cell 2004;116:855-67.
    [4]Trovisco V, Vieira de Castro I, Soares P, et al. BRAF mutations are associated with some histological types of papillary thyroid carcinoma. J Pathol 2004;202:247-51.
    [5]Castro P, Rebocho AP, Soares RJ, et al. PAX8-PPARgamma rearrangement is frequently detected in the follicular variant of papillary thyroid carcinoma. J Clin Endocrinol Metab 2006;91:213-20.
    [6]Koh CS, Ku JL, Park SY, et al. Establishment and characterization of cell lines from three human thyroid carcinomas:responses to all-trans-retinoic acid and mutations in the BRAF gene. Mol Cell Endocrinol 2007;264:118-27.
    [7]Davies H, Bignell GR, Cox C, et al. Mutations of the BRAF gene in human cancer. Nature 2002;417:949-54.
    [8]Garnett MJ, Rana S, Paterson H, et al. Wild-type and mutant B-RAF activate C-RAF through distinct mechanisms involving heterodimerization. Mol Cell 2005;20:963-9.
    [9]Carta C, Moretti S, Passeri L, et al. Genotyping of an Italian papillary thyroid carcinoma cohort revealed high prevalence of BRAF mutations, absence of RAS mutations and allowed the detection of a new mutation of BRAF oncoprotein (BRAF(V5991ns)). Clin Endocrinol (Oxf).2006;64:105-9.
    [10]Meyer P, Sergi C, Garbe C. Polymorphisms of the BRAF gene predispose males to malignant melanoma. J Carcinog 2003;2:7.
    [11]Garnett MJ, Marais R. Guilty as charged:B-RAF is a human oncogene. Cancer Cell 2004;6:313-9.
    [12]Michaloglou C, Vredeveld LC, Mooi WJ, et al. BRAF(E600) in benign and malignant human tumours. Oncogene 2008;27:877-95.
    [13]Pollock PM, Harper UL, Hansen KS, et al. High frequency of BRAF mutations in nevi. Nature Genetics 2003;33:19-20.
    [14]Namba H, Nakashima M, Hayashi T, et al. Clinical Implication of hot spot BRAF mutation, V599E, in papillary thyroid cancers. J Clin Endocrinol Metab 2003;88:4393-7.
    [15]Kim KH, Kang DW, Kim SH, et al. Mutations of the BRAF gene in papillary thyroid carcinoma in a Korean population. Yonsei Medical Journal 2004;45: 818-21.
    [16]Deng G, Bell I, Crawley S, et al. BRAF mutation is frequently present in sporadic colorectal cancer with methylated hMLH1, but not in hereditary nonpolyposis colorectal cancer. Clin Cancer Res 2004;10:191-5.
    [17]Domingo E, Laiho P, Ollikainen M, et al. BRAF screening as a low-cost effect strategy for simplifying HNPCC genetic testing. J Med Genet 2004;41:664-8.
    [18]Domingo E, Niessen RC, Oliveira C, et al. BRAF-V600E is not involved in the colorectal tumorigenesis of HNPCC in patients with functional MLH1 and MSH2 genes. Oncogene 2005;24:3995-8.
    [19]Liu D, Liu Z, Condouris S, et al. BRAF V600E maintains proliferation, transformation, and tumorigenicity of BRAF-mutant papillary thyroid cancer cells. J Clin Endocrinol Metab 2007;92:2264-71.
    [20]Brummer T, Martin P, Herzog S, et al. Functional analysis of the regulatory requirements of B-Raf and the B-Raf(V600E) oncoprotein. Oncogene 2006;25:6262-76.
    [21]Mitsutake N, Knauf JA, Mitsutake S, et al. Conditional BRAFV600E expression induces DNA synthesis, apoptosis, dedifferentiation, and chromosomal instability in thyroid PCCL3 cells. Cancer Res 2005;65:2465-73.
    [22]Moretti S, Macchiarulo A, De Falco V, et al. Biochemical and molecular characterization of the novel BRAF(V599Ins) mutation detected in a classic papillary thyroid carcinoma. Oncogene.2006;25:4235-40.
    [1]Davies H, Bignell GR, Cox C, et al. Mutations of the BRAF gene in human cancer. Nature 2002;417:949-54.
    [2]Porra V, Ferraro-Peyret C, Durand C, et al. Silencing of the tumor suppressor gene SLC5A8 is associated with BRAF mutations in classical papillary thyroid carcinomas. J Clin Endocrinol Metab 2005;90:3028-35.
    [3]Kim KH, Kang DW, Kim SH, et al. Mutations of the BRAF gene in papillary thyroid carcinoma in a Korean population. Yonsei Med J 2004;45:818-21.
    [4]Sapio MR, Posca D, Troncone G, et al. Detection of BRAF mutation in thyroid papillary carcinomas by mutant allele-specific PCR amplification (MASA). Eur J Endocrinol 2006; 154:341-8.
    [5]Xing M. BRAF mutation in thyroid cancer. Endocr Relat Cancer 2005;12:245-62.
    [6]Nikiforova MN, Kimura ET, Gandhi M, et al. BRAF mutations in thyroid tumors are restricted to papillary carcinomas and anaplastic or poorly differentiated carcinomas arising from papillary carcinomas. J Clin Endocrinol Metab 2003; 88: 5399-404.
    [7]Knauf JA, Ma X, Smith EP, et al. Targeted expression of BRAFV600E in thyroid cells of transgenic mice results in papillary thyroid cancers that undergo dedifferentiation. Cancer Res 2005;65:4238-45.
    [8]Sclabas GM, Staerkel GA, Shapiro SE, et al. Fine-needle aspiration of the and thyroid correlation with histopathology in a contemporary series of 240 patients. Am J Surg 2003; 186:702-9.
    [9]Salvatore G, Giannini R, Faviana P, et al. Analysis of BRAF point mutation and RET/PTC rearrangement refines the fine-needle aspiration diagnosis of papillary thyroid carcinoma. J Clin Endocrinol Metab 2004;89:5175-80.
    [10]Xing M, Tufano RP, Tufaro AP, et al. Detection of BRAF mutation on fine needle aspiration biopsy specimens:a new diagnostic tool for papillary thyroid cancer. J Clin Endocrinol Metab 2004;89:2867-72.
    [11]Puxeddu E, Moretti S, Elisei R, et al. BRAF(V599E) mutation is the leading genetic event in adult sporadic papillary thyroid carcinomas. J Clin Endocrinol Metab 2004;89:2414-20.
    [12]Namba H, Nakashima M, Hayashi T, et al. Clinical implication of hot spot BRAF mutation, V599E, in papillary thyroid cancers. J Clin Endocrinol Metab 2003;88:4393-7.
    [13]Xing M, Westra WH, Tufano RP, et al. BRAF mutation predicts a poorer clinical prognosis for papillary thyroid cancer. J Clin Endocrinol Metab 2005;90:6373-9.
    [14]Salvatore G, De Falco V, Salerno P, et al. BRAF Is a therapeutic target in aggressive thyroid carcinoma. Clin Cancer Res 2006;12:1623-9.
    [15]Chiloeches A, Marais R. Is BRAF the Achilles'Heel of thyroid cancer? Clin Cancer Res 2006; 12:1661-4.
    [1]Gerard M.Doherty, Britt Skogseid著.刘中民、赵中辛译.内分泌外科学.第一版.北京.人民卫生出版社.2006.007-008.
    [2]Jemal A, Siegel R, Ward E, et al. Cancer statistics,2007. CA Cancer J Clin 2007;57:43-66.
    [3]Carcangiu ML, Zampi G, Pupi A, et al. Papillary carcinoma of the thyroid. A clinicopathologic study of 241 cases treated at the University of Florence, Italy. Cancer 1985;55:805-28.
    [4]Correa P, Chen VW. Endocrine gland cancer. Cancer 1995;75:338-52.
    [5]Katoh R, Sasaki J, Kurihara H, et al. Multiple thyroid involvement (intraglandular metastasis) in papillary thyroid carcinoma. A clinicopathologic study of 105 consecutive patients. Cancer 1992;70:1585-90.
    [6]Ringel MD, Ladenson PW. Controversies in the follow-up and management of well-differentiated thyroid cancer. Endocr Relat Cancer 2004; 11:97-116.
    [7]Shattuck TM, Westra WH, Ladenson PW, et al. Independent clonal origins of distinct tumor foci in multifocal papillary thyroid carcinoma. N Engl J Med 2005;352:2406-12.
    [8]McCarthy RP, Wang M, Jones TD, et al. Molecular evidence for the same clonal origin of multifocal papillary thyroid carcinomas. Clin Cancer Res 2006; 12:2414-8.
    [9]Iida F, Yonekura M, Miyakawa M. Study of intraglandular dissemination of thyroid cancer. Cancer 1969;24:764-71.
    [10]Rein hoff WF Jr. Lymphatic vessels of thyroid gland in dog and man. Arch Surg 1931;23:783-804.
    [11]Utiger RD. The multiplicity of thyroid nodules and carcinomas. N Engl J Med 2005;352:2376-8.
    [12]Lyon MF. Some milestones in the history of X-chromosome inactivation. Annu Rev Genet 1992;26:16-28.
    [13]Diaz-Cano SJ, Blanes A, Wolfe HJ. PCR techniques for clonality assays. Diagn Mol Pathol 2001;10:24-33.
    [14]Gilliland DG, Blanchard KL, Levy J, et al. Clonality in myeloproliferative disorders:analysis by means of the polymerase chain reaction. Proc Natl Acad Sci U S A 1991;88:6848-52.
    [15]Moniz S, Catarino AL, Marques AR, et al. Clonal origin of non-medullary thyroid tumours assessed by non-random X-chromosome inactivation. Eur J Endocrinol 2002;146:27-33.
    [16]Knudson AG Antioncogenes and human cancer. Proc Natl Acad Sci U S A 1993;90:10914-21.
    [17]Cawkwell L, Li D, Lewis FA, et al. Microsatellite instability in colorectal cancer: improved assessment using fluorescent polymerase chain reaction. Gastroenterology 1995; 109:465-71.
    [18]McCarthy RP, Wang M, Jones TD, et al. Molecular evidence for the same clonal origin of multifocal papillary thyroid carcinomas. Clin Cancer Res 2006; 12:2414-8.
    [19]Sithanandam G, Druck T, Cannizzaro LA, et al. B-raf and a B-raf pseudogene are located on 7q in man. Oncogene 1992;7795-9.
    [20]Davies H, Bignell GR, Cox C, et al. Mutations of the BRAF gene in human cancer. Nature 2002;417:949-4.
    [21]Xing M. BRAF mutation in thyroid cancer. Endocr Relat Cancer 2005; 12:245-62.
    [22]Knauf JA, Ma X, Smith EP, et al. Targeted expression of BRAFV600E in thyroid cells of transgenic mice results in papillary thyroid cancers that undergo dedifferentiation. Cancer Res 2005;65:4238-45.
    [23]Sedliarou I, Saenko V, Lantsov D, et al. The BRAF T1796A transversion is a prevalent mutational event in human thyroid microcarcinoma. Int J Oncol 2004;25:1729-35.
    [24]Park SY, Park YJ, Lee YJ, et al. Analysis of differential BRAF(V600E) mutational status in multifocal papillary thyroid carcinoma:evidence of independent clonal origin in distinct tumor foci. Cancer 2006;107:1831-8.
    [25]Takahashi M, Ritz J, Cooper GM Activation of a novel human transforming gene, ret, by DNA rearrangement. Cell 1985;42:581-8.
    [26]Santoro M, Melillo RM, Fusco A. RET/PTC activation in papillary thyroid carcinoma:European Journal of Endocrinology Prize Lecture. Eur J Endocrinol 2006; 155:645-53.
    [27]Nikiforov YE. RET/PTC Rearrangement in Thyroid Tumors. Endocr Pathol 2002;13:3-16.
    [28]Santoro M, Melillo RM, Grieco M, et al. The TRK and RET tyrosine kinase oncogenes cooperate with ras in the neoplastic transformation of a rat thyroid epithelial cell line. Cell Growth Differ 1993;4:77-84.
    [29]Jhiang SM, Sagartz JE, Tong Q, et al. Targeted expression of the ret/PTC1 oncogene induces papillary thyroid carcinomas. Endocrinology 1996; 137:375-8.
    [30]Sugg SL, Ezzat S, Rosen IB, et al. Distinct multiple RET/PTC gene rearrangements in multifocal papillary thyroid neoplasia. J Clin Endocrinol Metab 1998;83:4116-22.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700