白念珠菌CaPTC6和CaHXT5基因及酿酒酵母ScATP16基因的功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
蛋白质的可逆磷酸化是真核细胞信号转导途径中的一个关键调控机制,蛋白磷酸酯酶是这一可逆过程中的关键酶,PP2C是依赖于镁离子或锰离子的单体蛋白磷酸酯酶。葡萄糖是大多数生物的主要能量来源,涉及到许多生物学过程。白念珠菌是一种重要的机会性致病真菌。白念珠菌表现出多种形态特征,与它能够利用多种糖类作为碳源密切相关。为了挖掘抗真菌药物的作用靶点,我们首先对参与蛋白质可逆磷酸化的PP2C基因CaPTC6和参与葡萄糖转运的CaHXT5基因的功能进行了研究。
     通过酿酒酵母和白念珠菌数据库的搜索比对,我们获得了白念珠菌基因CaPTC6和CaHXT5的序列。CaPTC6的ORF长为1299bp,编码433个氨基酸,CaPTC6与ScPTC6所编码蛋白氨基酸序列的相似性为26.9%。我们克隆并在细菌中表达了CaPtc6p的催化区域,发现重组蛋白具有去磷酸化活性,这种活性依赖于Mg2+或Mn2+的存在,并且受到丝氨酸/苏氨酸去磷酸酯酶抑制剂NaF的抑制,表明CaPtc6p是一种PP2C类蛋白磷酸酯酶。我们采用URA-BLASTER方法依次敲除了CaPTC6两个等位基因,但是没有发现该基因缺失株的任何表型。
     CaHXT5基因的ORF长1836bp,编码612个氨基酸,CaHXT5与酿酒酵母ScHXT5所编码的氨基酸序列相似性为28%。我们应用同样策略构建了Cahxt5缺失菌株并用PCR方法证实了其基因型。但是,表型研究发现CaHXT5基因的缺失并没有影响白念珠菌细胞对于糖类的利用,也没有影响细胞的菌丝形成能力。我们推测白念珠菌中葡萄糖转运蛋白家族中其他成员可能起着重要的代偿作用。
     最近研究表明酵母细胞ATP合酶的δ亚基上的一个丝氨酸残基可以被磷酸化,这表明δ亚基的功能是受蛋白磷酸化所调控的。为了深入研究δ亚基的磷酸化调控机理,我们功能性表达了酿酒酵母线粒体ATP合酶组分δ亚基并制备了针对这一亚基的多克隆抗体,采用定点突变技术,构建了δ亚基磷酸化位点的突变体。但是,发现δ亚基的磷酸化并不影响线粒体ATP合酶在细胞利用非发酵性碳源方面的功能。
Candida albicans is the importantly opportunitive fungal pathogen. The type 2C protein phosphatases are one group of serine/threonine protein phosphatases involved in the reversible protein phosphorylation. Glucose is the major source of energy in cells and involved in many cellular processes. To identify potential drug target genes in the most important human fungal pathogen C. albicans, we chose to study the functions of CaPTC6 and CaHXT5 genes.
     From the Candida genome database, we identified CaPTC6 and CaHXT5 gene sequences. CaPTC6 has an open reading frame (ORF) of 1299bp in length, which encodes a protein of 433 amino acids sharing 26.9% similarity with ScPtc6p at amino acid level. We cloned and expressed the catalytic domain of CaPtc6p, and found that the purified catalytic domain protein exhibited dephosphorylation activity, which was dependent on the presence of Mg2+ or Mn2+ ion and inhibited by the protein Ser/Thr phosphatase inhibitor NaF. These results indicate that CaPTC6 encoded a PP2C phosphatase. We constructed the homozygous deletion mutant for CaPTC6, but did not find any phenotype for this mutant under various growth conditions.
     CaHXT5 has an ORF of 1836bp, which encodes a protein of 612 amino acids sharing 28% similarity with ScHxt5p at the amino acid level. We constructed the homozygous mutant of CaHXT5. However, the homozygous mutant did not show any visible phenotype in utilization of different sugars and in hypha formation. We speculate that other members of glucose transporters might play a redundant role for CaHxt5p in these processes.
     Recent studies show that the ScATP16-encodedδsubunit of the mitochondrial F1F0-ATP synthase is phosphorylated in Saccharomyces cerevisia. To understand the molecular mechanism by which the phosphorylation of the delta subunit is regulated. We expressed aδ-His6 fusion protein in bacterial cells and prepared its rabbit polyclonal antibodies. In addition, we applied site-directed mutagenesis to construct the point mutant at the phosphorylation site of theδsubunit. However, we found that this mutation does not affect the function of mitochondrial ATP synthase in the utilization of nonfermentable carbon sources.
引文
[1] Sansiviero A., Almeida N.Q., Bactericidal action of modified cavity varnishes-their action against microorganism found in the human oral cavity (in vitro study)., Rev Fac Odontol Sao Jose Campos., 1976, 5: 43~47
    [2] Odds F. C., Candida infections: an overview,Crit Rev Microbiol., 1987, 15: 1~5
    [3] Odds F.C., Pathogenesis of Candida infections, J Am Acad Dermatol., 1994, 31: 2~5
    [4] Kobayashi S.D., Cutler J.E., Candida albicans hyphal formation and virulence: is there a clearly defined role, Trends Microbiol., 1998, 6: 92~94
    [5] Cutler J.E., Putative virulence factors of Candida albicans, Annu Rev Microbiol., 1991, 45: 187~218
    [6] Bedford D., Das A.K., and Egloff M.P., The structure and mechanism of protein phosphatases: insights into catalysis and regulation, Annu Rev Biophys Biomol Struct., 1998, 27:133~164
    [7] Cohen P., The structure and regulation of protein phosphatases, Annu Rev Biochem., 1989, 58:453~508
    [8] Cohen P., Cohen P.T., Protein phosphatases come of age, J Biol Chem., 1989, 264: 21435~21438
    [9] Bork P, Brown N P, Hegyi H., The protein phosphatase 2C (PP2C) superfamily: detection of bacterial homologues, Protein Sci., 1996, 5(7):1421~1425
    [10] Stark M.J., Yeast protein serine/threonine phosphatases: multiple roles and diverse regulation, Yeast, 1996, 12:1647~1675
    [11] Cohen P., The structure and regulation of protein phosphatases, Annu Rev Biochem., 1989, 58: 453~508
    [12] Jiang L., Whiteway M, Ramos C, et al., The YHR076w gene encodes a type 2C protein phosphatase and represents the seventh PP2C gene in budding yeast, FEBS Lett., 2002, 527 (1-3):323~325
    [13] Schweighofer A., Hirt H., Meskiene I., Plant PP2C phosphatases: emerging functions in stress signaling, Trends Plant Sci., 2004, 9:236~243
    [14] Duncan L., Alper S., Arigoni F., et al., Activation of cell-specific transcription by a serine phosphatase at the site of asymmetric division, Science, 1995, 270:641~644
    [15] Tong Y., Quirion R., Shen S.H., Cloning and characterization of a novel mammalian PP2C isozyme, J.Biol. Chem., 1998, 273:35282~35290
    [16] Leung J., Bouvier-Durand M., Morris P.C., et al., Arabidopsis ABA response gene ABI1: features of a calcium-modulated protein phosphatase, Science, 1994, 264:1448~1452
    [17] Mapes J., Ota I.M., Nbp2 targets the Ptc1-type 2C Ser/Thr phosphatase to the HOG MAPK pathway, EMBO J., 2004, 23:302~311
    [18] Lammers T., Lavi S., Role of type 2C protein phosphatases in growth regulation and in cellular stress signaling, Crit Rev Biochem Mol Biol., 2007, 42(6):437~461
    [19] Gonzalez A, Ruiz A, Serrano R, et al., Transcriptional profiling of the protein phosphatase 2C family in yeast provides insights into the unique functional roles of Ptc1, J Biol Chem., 2006, 281(46):35057~35069
    [20] Young C., Mapes J., Hanneman J., et al., Role of Ptc2 type 2C Ser/Thr phosphatase in yeast high-osmolarity glycerol pathway inactivation, Eukaryot Cell., 2002,1(6):1032~1040
    [21] Jiang L., Whiteway M., Ramos C., et al., The YHR076w gene encodes a type 2C protein phosphatase and represents the seventh PP2C gene in budding yeast, FEBS Lett., 2002, 527(1-3):323~325
    [22] Cheng A, Ross K E, Kaldis P, et al., Dephosphorylation of cyclin-dependent kinases by type 2C protein phosphatases, Genes Dev., 1999, 13(22):2946~2957
    [23] Marsolier M.C., Roussel P., Leroy C., et al., Involvement of the PP2C-like phosphatase Ptc2p in the DNA checkpoint pathways of Saccharomyces cerevisiae, Genetics., 2000, 154(4):1523~1532
    [24] Leroy C, Lee S.E., Vaze M.B., et al., PP2C phosphatases Ptc2 and Ptc3 are required for DNA checkpoint inactivation after a double-strand break, Mol Cell., 2003, 11(3):827~835
    [25] Leroy C., Lee S.E., Vaze M.B., et al., PP2C phosphatases Ptc2 and Ptc3 are required for DNA checkpoint inactivation after a double-strand break, Mol Cell., 2003, 11:827~835
    [26] Cheng A, Ross K.E., Kaldis P., et al., Dephosphorylation of cyclin-dependent kinases by type 2C protein phosphatases, Genes Dev., 1999, 13(22):2946~2957
    [27] Krause-buchholz U., Gey U., Wunschmann J., et al., YIL042c and YOR090c encode the kinase and phosphatase of the Saccharomyces cerevisiae pyruvate dehydrogenase complex, FEBS Lett., 2006, 580(11):2553~2560
    [28] Ruan H., Yan Z., Sun H. et al., The YCR079w gene confers a rapamycin-resistant function and encodes the sixth type 2C protein phosphatase in Saccharomyces cerevisiae, FEMS Yeast Res., 2007, 7:209~215
    [29] Ramos C.W., Guldener U., Klein S., et al., Molecular analysis of the Saccharomycescerevisiae YHR076w gene, IUBMB Life., 2000, 50(6):371~377
    [30]张军,黄瑞林,李铁军,印遇龙,张平,葡萄糖代谢调控,广西农业生物科学, 2006, 25(1):86~90
    [31] Kruckeberg A.L., The hexose transporter family of Saccharomyces cerevisiae, Arch. Microbiol., 1996, 166:283~292
    [32] Boles E., Hollenberg C.P., The molecular genetics of hexose transport in yeasts, FEMS Microbiol.Rev., 1997, 21:85~111
    [33] Johnston M., Feasting, fasting and fermenting– glucose sensing in yeast and other cells, Trends Genet., 1999, 15:29~33.
    [34] Gancedo J.M., Yeast carbon catabolite repression, Microbiol. Mol. Biol. Rev., 1998, 62:34~361
    [35] Carlson M., Glucose repression in yeast, Curr.Opin.Microbiol., 1999, 2:202~207
    [36] Pego J.V., Weisbeek P.J., Smeekens S., Mannose inhibits Arabidopsis germination via a hexokinase-mediated step, Plant Physiol., 1999, 119:1017~1023
    [37] Reifenberger E., Boles E., Ciriacy M., Kinetic characterization of individual hexose transporters of Saccharomyces cerevisiae and their relation to the triggering mechanisms of glucose repression, Eur. J. Biochem., 1997, 245:324~333
    [38] Ma H., Bloom L.M., Walsh C.T., et al., The residual enzymatic phosphorylation activity of hexokinase II mutants is correlated with glucose repression in Saccharomyces cerevisiae, Mol. Cell. Biol., 1989, 9:5643~5649
    [39] Rose M., Albig W., Entian K.D., Glucose repression in Saccharomyces cerevisiae is directly associated with hexose phosphorylation by hexokinase-PI and hexokinase-PII, Eur. J. Biochem., 1991, 3:511~518
    [40] Herrero P., Martinez-Campa C., Moreno F., The hexokinase 2 protein participates in regulatory DNA–protein complexes necessary for glucose repression of the SUC2 gene in Saccharomyces cerevisiae, FEBS Lett., 1998, 434:71~76
    [41] Jiang H., Medintz I., Zhang B. et al., Metabolic signals trigger glucose-induced inactivation of maltose permease in Saccharomyces cerevisiae, J. Bacteriol., 2000, 182:647~654
    [42] Ozcan S., Dover J., Rosenwald A.G., et al., Two glucose transporters in Saccharomyces cerevisiae are glucose sensors that generate a signal for induction of gene expression, Proc. Natl. Acad. Sci., 1996, 93:12428~12432
    [43] Ozcan S., Dover J., and Johnston M., Glucose sensing and signaling by two glucose receptors in the yeast Saccharomyces cerevisiae, EMBO J., 1998, 17:2566~2573
    [44] Boles E., Hollenberg C.P., The molecular genetics of hexose transport in yeasts, FEMSMicrobiol.,Rev., 1997, 21:85~111
    [45] Bisson L.F., Coons D.M., Kruckeberg A.L., et al., Yeast sugar transporters., Crit. Rev. Biochem. Mol. Biol., 1993, 28:259~308
    [46] Walsh M.C., Smits H.P., Scholte M., et al., Affinity of glucose transport in Saccharomyces cerevisiae is modulated during growth on glucose, J. Bacteriol., 1994, 176:953~958
    [47] Ozcan S., Dover J., Rosenwald A.G., et al., Two glucose transporters in Saccharomyces cerevisiae are glucose sensors that generate a signal for induction of gene expression, Proc. Natl. Acad. Sci., 1996, 93:12428~12432
    [48] Wolfl S., Hanemann V., Saluz H.P., Analysis of a 26,756bp segment from the left arm of yeast chromosome IV, Yeast, 1996, 12:1549~1554
    [49] Lewis D.A., Bisson L.F., The HXT1 gene product of Saccharomyces cerevisiae is a new member of the family of hexose transporters, Mol. Cell. Biol., 1991, 11:3804~3813
    [50] Brewster J.L., Valoir T.D., Dwyer N.D., et al., An osmosensing signal transduction pathway in yeast, Science, 1993, 259:1760~1763
    [51] Boles E., Hollenberg C.P., The molecular genetics of hexose transport in yeasts, FEMS Microbiol. Rev., 1997, 21:85~111
    [52] Liang H., Gaber R.F., A novel signal transduction pathway in Saccharomyces cerevisiae defined by Snf3-regulated expression of HXT6, Mol. Biol. Cell., 1996, 7:1953~1966
    [53] Ozcan S., Johnston M., Three different regulatory mechanisms enable yeast hexose transporter (HXT) genes to be induced by different levels of glucose, Mol. Cell. Biol., 1995, 15:1564~1572
    [54] Nehlin J.O., Ronne H., Yeast MIG1 repressor is related to the mammalian early growth response and Wilms’tumour finger proteins, EMBO J., 1990, 9:2891~2898
    [55] Nehlin J.O., Carlberg M., Ronne H., Control of yeast GAL genes by MIG1 repressor: a transcriptional cascade in the glucose response, EMBO J. 1991, 10:3373~3377
    [56] Ozcan S., Johnston M., Two different repressors collaborate to restrict expression of the yeast glucose transporter genes HXT2 and HXT4 to low levels of glucose, Mol. Cell. Biol., 1996, 16:5536~5545
    [57] Kasahara M., Maeda M., Contribution to substrate recognition of two aromatic amino acid residues in putative transmembrane segment 10 of the yeast sugar transporters Gal2 and Hxt2, J. Biol. Chem., 1998, 273:29106~29112
    [58] Huang L., Zhang W., Roth S.Y., Amino termini of histones H3 and H4 are required for a1-a2 repression in yeast, Mol. Cell. Biol., 1997, 17:6555~6562
    [59] Redd M.J., Arnaud M.B., Johnson A.D., A complex composed of tup1 and ssn6 repressestranscription in vitro, J. Biol. Chem., 1997, 272:11193~11197
    [60] Boles E., Hollenberg C.P., The molecular genetics of hexose transport in yeasts, FEMS Microbiol. Rev., 1997, 21:85~111
    [61] Nourani A., Wesolowski-Louvel M., Delaveau T., et al., Multi-drug-resistance phenomenon in the yeast Saccharomyces cerevisiae: involvement of two hexose transporters, Mol. Cell. Biol., 1997, 17:5453~5460
    [62] Decottignies A., Goffeau A., Complete inventory of the yeast ABC proteins, Nat. Genet., 1997, 15:137~145
    [63] Varma A., Singh B.B., Karnani N., et al., Molecular cloning and functional characterisation of a glucose transporter, CaHGT1, of Candida albicans, FEMS Microbiol Lett., 2000, 182(1):15~21
    [64] Victoria B., Jessica A. S., Johnston M., A Glucose Sensor in Candida albicans, Eukaryotic Cell., 2006, 26:1726~1737
    [65] Vanessa M.S., Caroline J.B., Hube B., et al., Exposure of Candida albicans to antifungal agents affects expression of SAP2 and SAP9 secreted proteinase genes, J. Antimicrobial Chemotherapy., 2005, 55:645~654
    [66] Robin E.B., Teresa T., Barker K.S., Genome-wide expression profiling of the response to ciclopirox olamine in Candida albicans, J. Antimicrobial Chemotherapy. 2005, 55:655~662
    [67] Luo L., Tong X.Z., Farley P.C., The Candida albicans gene HGT12 (orf19.7094) encodes a hexose transporter, FEMS Immuno. Med. Micro., 2007, 51:14~17
    [68] Information about the Nobel Prize in Physiology or Medicine, 1953, The Royal Swedish Academy of Sciences
    [69] Lehninger A.L., Nelson D.L., Cox M.M., Principles of Biochemistry (2nd edition), New York: Worth publishers, 1993, 562
    [70] Walker J.E., Dickson V.K., The peripheral stalk of the mitochondrial ATP synthase, Biochimica et Biophysica Acta., 2006, 1757:286~296
    [71] Yoshida M., Muneyuki E., Hisabori T., ATP synthase—a marvellous rotary engine of the cell, Nat. Rev. Mol. Cell Biol., 2001, 2:669~676
    [72] Vaillier J., Arselin G., Graves P.V., et al., Isolation of supernumerary yeast ATP synthase subunits e and i. Characterization of subunit i and disruption of its structural gene ATP18, J. Biol. Chem., 1999, 274:543~548
    [73] Arnold I., Pfeiier K., Neupert W., et al., ATP Synthase of Yeast Mitochondria .Isolation of subunit j and disruption of the ATP18 gene, J. Biol. Chem., 1999, 274:36~40
    [74] Hashimoto T., Yoshida Y., Tagawa K., Regulatory proteins of F1F0-ATPase: role of ATPaseinhibitor, J. Bioenerg. Biomembr., 1990, 22:27~38
    [75] Issartel J.P., Dupuis A., Garin J., et al., The ATP synthase (F0?F1) complex in oxidative phosphorylation, Experientia, 1992, 48:351~362
    [76] Abrahams J.P., Leslie A.G.W., Lutter R., et al., Structure at 2.8 A resolution of F1-ATPase from bovine heart mitochondria, Nature, 1994, 370(6491):621~628
    [77] Gibbons C., Montgomery M.G., Leslie A.G., The structure of the central stalk in bovine F(1)-ATPase at 2.4A resolution, Nat. Struct. Biol., 2000, 7(11):1055~61
    [78] Fillingame R.H., Getting to the bottom of the F1-ATPase, Nat. Struct. Biol., 2000, 7(11):1002~4
    [79] Carbajo R.J., Silvester J.A., Runswick M.J., Solution structure of subunit F6 from the peripheral stalk region of ATP synthase from bovine heart mitochondria, J. Mol. Biol., 2004, 342:593~603
    [80] Carbajo R.J., Kellas F.A., Runswick M.J., Structure of the F1-binding domain of the stator of bovine F1F0-ATPase and how it binds a subunit, J. Mol.Biol., 2005, 351:824~838
    [81] Dickson V.K., Silvester J.A., Fearnley I.M., et al., On the structure of the stator of the mitochondrial ATP synthase, EMBO J., 2006, 25:2911~918
    [82] Wilkens S., Borchardt D., Weber J., et al., Structural characterization of the interactionof the d and a subunits of the Escherichia coli F1F0-ATP synthase by NMR spectroscopy, Biochemistry., 2005, 44:11786~11794
    [83] Boyer P.D., The ATP Synthase—A Splendid Molecular Machine, Annu.Rev Biochem., 1997, 66:717~749
    [84] Boyer P.D., The binding change mechanism of ATP synthesis, In: Lee CP eds. Membrane Bioenergetics, USA: Addison-Wesley Reading MA, 1979, 461~79
    [85] Boyer P.D., A research journey with ATP synthase, J. Biol. Chem., 2002, 277(42):39045~61
    [86] Kagawa R., Montgomery M.G., Braig K., et al., The structure of bovine F1-ATPase inhibited by ADP and beryllium fluoride, EMBO J., 2004, 23:2734~2744
    [87] Menz R.I., Walker J.E., Leslie A.G., Structure of bovine mitochondrial F1-ATPase with nucleotide bound to all three catalytic sites: implications for the mechanism of rotary catalysis, Cell, 2001, 106:331~341
    [88] Collinson I.R., Raaij M.J., Runswick M.J., et al., ATP synthase from bovine heart mitochondria, In vitro assembly of a stalk complex in the presence of F1-ATPase and in its absence, J. Mol. Biol., 1994, 242:408~421
    [89] Weber J., ATP synthase: subunit–subunit interactions in the stator stalk, Biochim. Biophys. Acta., 2006, 1757:1162~1170
    [90] Del Rizzo P.A., Bi Y., Dunn S.D., ATP Synthase b subunit dimerization domain: a right-handed coiled coil with offset helices, J. Mol. Biol., 2006, 364:735~746
    [91] Weber J., ATP synthase-the structure of the stator stalk, Trends in Biochemical Sciences., 2007, 32(2):53~56
    [92] Walker J.E., Dickson V.K., The peripheral stalk of the mitochondrial ATP synthase, Biochim. Biophys. Acta., 2006, 1757:286~296
    [93] Cho J.H., Lee Y.K., Chae C.B., The modulation of the biological activities of mitochondrial histone Abf2p by yeast PKA and its possible role in the regulation of mitochondrial DNA content during glucose repression, Biochim. Biophys. Acta., 2001, 1522:175~186
    [94] Thomson M., Evidence of undiscovered cell regulatory mechanisms: phosphoproteins and protein kinases in mitochondria, Cell. Mol. Life Sci., 2002, 59: 213~219
    [95] Goldenthal M.J., Marin-Garcia J., Mitochondrial signaling pathways: a receiver/integrator organelle, Mol. Cell. Biochem., 2004, 262:1~16
    [96] Valente E.M., Abou-Sleiman P.M., Caputo V., et al., Hereditary early-onset Parkinson’s disease caused by mutations in PINK1, Science, 2004, 304:1158~1160
    [97] Pagliarini D.J., Wiley S.E., Kimple M.E., et al., Involvement of a mitochondrial phosphatase in the regulation of ATP production and insulin secretion in pancreatic cells, Mol. Cell, 2005, 19:197~207
    [98] Horbinski C., Chu C.T., Kinase signalling cascades in the mitochondrion: a matter of life or death, Free Radic. Biol. Med., 2005, 38:2~11
    [99] Pagliarini D.J., Dixon J.E., Mitochondrial modulation: reversible phosphorylation takes center stage, Trends Biochem. Sci., 2006, 31:26~34
    [100] McBride H.M., Neuspiel M., Wasiak S., Mitochondria: more than just a powerhouse, Curr. Biol., 2006, 16:551~560
    [101] Boneh A., Regulation of mitochondrial oxidative phosphorylation by second messenger-mediated signal transduction mechanisms, Cell. Mol. Life Sci., 2006, 63:1236~1248
    [102] Reinders J., Wagner K., Rene P.Z., et al., Profiling phosphoproteins of yeast mitochondria reveals a role of phosphorylation in assembly of the ATP synthase. Mol. Cel.Proteo., 2007, 6(11):1896~1906
    [103]吴绍熙,刘维达,郭宁如等, 2002—2003年中国部分地区甲真菌病致病菌流行病学调查报告,临床皮肤科杂志, 2005, 34(9):632~633
    [104] Ruan H, Yan Z, Sun H, et al., The YCR079w gene confers a rapamycin-resistant function and encodes the sixth type 2C protein phosphatase in Saccharomyces cerevisiae, FEMSYeast Res., 2007, 7(2):209~15
    [105] Fan J, Chaturvedi V, Shen S.H., Identification and phylogenetic analysis of a glucose transporter gene family from the human pathogenic yeast Candida albicans, J Mol Evol., 2002, (55):336~346
    [106] Dumitru R, Hornby J.M., Nickerson K.W., Defined anaerobic growth medium for studying Candida albicans basic biology and resistance to eight antifungal drugs, Antimicrob. Agents Chemother., 2004, (48):2350~2354
    [107] Ozcan S., Dover J., Johnston M., Glucose sensing and signaling by two glucose receptors in the yeast Saccharomyces cerevisiae, EMBO J., 1998, (17):2566~2573
    [108] Yao B., Mueller D.M., The role of the amino-terminal beta-barrel domain of the alpha and beta subunits in the yeast F1-ATPase, J Bioenerg Biomembr, 1999, 31(2):95~104
    [109] Reinders J, Wagner K, Zahedi R.P., Profiling phosphoproteins of yeast mitochondria reveals a role of phosphorylation in assembly of the ATP synthase, Mol Cell Proteomics, 2007, 6(11):1896~1906
    [110] Ste′phane D.C., Malgorzata R., Linnka L.L., et al., A“Petite Obligate”Mutant of Saccharomyces cerevisiae FUNCTIONAL mtDNA IS LETHAL IN CELLS LACKING THEδSUBUNIT OF MITOCHONDRIAL F1-ATPASE, J Biol Chem, 2006, 24(281):16305~16313
    [111] Jiang L., Whiteway M., Ramosd C.W., et al., The YHR076w gene encodes a type 2C protein hosphatase and represents the seventh PP2C gene in budding yeast, FEBS Letters, 2002, 527:323~325
    [112] Jiang L, Niu S, Clines K.L, et al., Analyses of the effects of Rck2p mutants on Pbs2pDD-induced toxicity in Saccharomyces cerevisiae identify a MAP kinase docking motif, and unexpected functional inactivation due to acidic substitution of T379, Mol Genet Genomics., 2004, 271(2):208~19

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700