新型介孔Al_2O_3的制备、表征及负载Pt催化剂的催化加氢性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于纯度、化学成分和晶体形貌的不同,Al2O3表现出不同的性能,并广泛应用于冶金、航天、电子、化学化工、催化剂及其载体、耐火材料、绝缘材料、填充剂、陶瓷、机械等领域,已成为许多行业不可缺少的材料。作为催化材料使用的Al2O3,人们希望其具有高热稳定性、大比表面积以及特殊的结构或形貌。因此,具有高热稳定性、大比表面积或特殊形貌的介孔Al2O3的制备引起了研究者们的广泛关注。本论文通过制备方法的设计合成了一系列新型介孔Al2O3,利用多种近代分析技术对它们的结构性能进行了表征,并用制备的介孔Al2O3为载体合成了负载型的Pt催化剂,以苯乙酮(或硝基苯)催化加氢为模型反应,考察了Pt催化剂的催化加氢性能,探讨了载体的织构性能和形貌对Pt催化剂性能的影响,取得了如下主要的研究结果:
     利用“壳聚糖(CS)-硝酸铝-氨水”体系合成了介孔Al2O3。研究发现,合成过程中CS的用量对合成的Al2O3的宏观形状、表面微观形貌、孔结构及比表面积均有很大的影响。用H2PtCl6水溶液(7.72×10-2mol/L,pH≈1)等体积浸渍合成的Al2O3制备Pt/Al2O3的过程中会发生酸刻蚀现象,从而使Al2O3载体的孔结构发生重构,导致制备的催化剂的比表面积大于Al2O3载体,同时孔容和孔径分布也发生了变化。催化剂的焙烧温度对Pt分散度影响很大,合适的焙烧温度(550℃)有利于表面Pt的分散。对于苯乙酮加氢反应,以CS为模板合成的介孔Al2O3为载体负载Pt制备的Pt/Al2O3,其活性高于以商品γ-Al2O3为载体制备的Pt/γ-Al2O3。催化剂表面的微观形貌和孔道结构会明显影响催化剂中Pt的分散度及Pt活性中心的催化效率,从而影响催化剂的整体性能。
     首次利用“硝酸铝-葡萄糖-水”体系在180℃水热合成了球花型介孔Al2O3,通过研究影响合成Al2O3性能的因素和结构特征间的关系,提出了球花型介孔Al2O3的可能形成机理。研究发现,硝酸铝和葡萄糖的摩尔比、合成体系的pH值等对合成Al2O3的形貌有很大的影响,不同铝前驱体(如Al(NO3)3、AlCl3、Al(OCH(CH3)2)和Al2(SO4)3)对合成产物的形貌和组成也产生明显地影响。利用本文的方法可以合成金属掺杂的球花型Al2O3(如La-Al2O3和Ce-Al2O3等)和其它具有特殊形貌的金属氧化物(如形貌各异的La2O3、Ce2O3和Fe2O3等)。以球花型Al2O3为载体,用等体积浸渍法和原位还原法制备了Pt/Al2O3催化剂。用等体积浸渍法制备的催化剂,Pt分散不均匀,颗粒较大。采用原位还原法制备的催化剂,Pt分散较好,但在制备过程中Pt的损失较大,且对Al2O3载体的结构有一定的损坏作用。对于硝基苯催化加氢反应,在水溶液中原位还原制备的3.2%Pt/Al2O3催化剂具有最高的催化加氢活性,在醇溶液中原位还原制备的3.3%Pt/Al2O3与浸渍法制备的5.0%Pt/Al2O3的催化性能相当。
     首次以“乙酸乙酯(EA)-偏铝酸钠-水”体系在室温下合成了纳米线组装的介孔Al2O3,研究发现,合成反应时间、静置前搅拌时间、NaAlO2用量、EA用量、反应温度和溶剂等都对合成产物的形貌、孔径分布及孔容大小产生影响。与用商品γ-Al2O3制备的Pt/γ-Al2O3催化剂相比,纳米线组装介孔Al2O3制备的Pt/Al2O3催化剂具有更多不同强度的正电吸附中心,或者负载的PrOx。以更多的分散相或粒子相存在,并能使负载在表面的部分还原态Pt粒子以纳米晶体的形式存在。对于硝基苯催化加氢反应,用合成的Al2O3为载体制备的Pt/Al2O3催化剂,比用商品γ-Al2O3制备的Pt/γ-Al2O3催化剂具有更好的催化活性。
     以高浓度十六烷基三甲基溴化铵(CTAB)为液晶模板、Al(OCH(CH3)2)3为铝源合成的产物经过醇洗后具有一定的介孔有序性,但焙烧后Al2O3的介孔有序性失去。以十二烷基苯磺酸钠(SDBS)或十二烷基磺酸钠(SDS)为模板剂,在“尿素-硝酸铝-水”体系中合成的样品未焙烧前具有有序介孔结构,但在空气中焙烧后样品的有序介孔结构被破坏。合成母液中模板剂、尿素和硝酸铝的用量对合成样品的有序介孔结构产生明显的影响。制备的样品在N2气氛和低温(200℃以下)焙烧后具有明显的有序介孔结构,经高温(400℃以上)焙烧后,由于有机物的炭化和样品的严重脱水,使其介孔有序性完全失去。
     在酸性和0℃条件下,以CTAB为模板剂和TEOS为硅源,采用“一步法”合成了球型MCM-41和Pt-MCM-41介孔材料(包括Pt-MCM-41、Pt-Al-MCM-41和Pt-La-MCM-41),这些材料的孔径在2-3nm,比表面积为1151-1389m2/g。在酸性条件下,金属阳离子(Al3+,La3+)具有很好的稳定性,在合成过程中很难被引入到合成的产物中。Pt的前躯体H2PtCl6,由于带负电的PtCl62-与带正电的C16H31(CH3)3N+之间的强相互静电作用,几乎100%的Pt在合成时能被引入到合成的介孔材料中,从而有效地避免了在碱性条件下一步合成含贵金属催化剂时贵金属利用率低的问题。合成的含Pt介孔材料经550℃焙烧除去模板剂过程中,H2PtCl6会发生分解并主要以金属Pt的形式存在,此外还有少量的PtOx。和Pt2Si生成。焙烧后的样品不经还原处理,对硝基苯加氢反应具有很好的催化活性和产物选择性,催化效果与还原后的相当。
Owing to the differences of purities, chemical compositions and crystal morphologies, Al2O3 displays many different performances, which has been used widely in many fields, such as metallurgy, astronautics, electronic, chemical processes, catalysts and supports, fireproof materials, insulation materials, filling agents, ceramics and mechanics, etc. As the catalytic materials, AI2O3 should behave a high thermal stability, big surface area, special structure and morphology. Nowadays, mesoporous Al2O3 with a high thermal stability, big surface area, special structure and morphology has attracted people's much more attention. In this thesis, some novel methods were designed to synthesize novel mesoporous Al2O3 and doped mesoporous Al2O3 and their textural and structural properties have been characterized by the recent analytic techniques. The catalytic performances of Pt catalysts supported mesoporous Al2O3 were investigated for the hydrogenation of acetophenone (or nitrobenzene). The effects of the textural and structural properties and morphologies of supports on the catalytic hydrogenation performances of Pt catalysts were studied. The main results obtained are as follows:
     Mesoporous Al2O3 was synthesized with the synthesis solution of "Chitosan (CS)-Al(NO3)3-NH3-H2O ". The results indicate that, the CS amount in the synthesis solution has a great influence on the macro-shapes, surface mirco-morphologies, pore structures and surface areas of prepared Al2O3. When supported Pt/Al2O3 catalyst was prepared by the "incipient wetness impregnation method" with the H2PtCl6 aqueous solution (7.72×10-2 mol/L, pH≈1), the acid eroding phenomenon of Al2O3 will occur, which results in the structure re-construction of Al2O3 and the surface area of the prepared Pt/Al2O3 catalyst is larger than that of the Al2O3 support, at the same time, its pore volume and pore size distribution will be changed. The calcination temperature of the as-synthesized catalyst has a great influence on the Pt dispersion. The appropriate calcination temperature is 550℃and is in favor of the good dispersion of Pt on the surface. For the hydrogenation of acetophenone, Pt/Al2O3 (synthesized A12O3 using CS as a template) has higher catalytic activity than Pt/y-Al2O3 (commercialγ-Al2O3). The catalytic properties of Pt active sites and Pt dispersion on the catalyst will be varied by the surface morphology and pore structure of support, resulting in the change of the catalytic efficiency of whole catalyst.
     A novel flower-like spherical mesoporous A12O3 was synthesized hydrothermally first at 180℃in the synthesis solution of "Al(NO3)3-Glucose-H2O". The possible evolution process of flower-like spherical mesoporous A12O3 was proposed based on the relations of the structure characteristics and the effect factors on the structure properties of Al2O3. The results show that, the mole ratio of Al(NO3)3 to glucose, pH value in the synthesis solution and so on have a great influence on the morphology of prepared Al2O3, and the different Al precursors such as Al(NO3)3, AlC13, Al(OCH(CH3)2) and Al2(SO4)3 affect also the morphology and composition of prepared Al2O3. Using this novel method, the metal doped flower-like spherical Al2O3 (such as La-Al2O3 and Ce-Al2O3) and other metal oxides (such as La2O3, Ce2O3 and Fe2O3) with special morphology can be synthesized, indicating it is an excellent approach to prepare the metal oxides with special morphology. Using the flower-like spherical Al2O3 as the support, the Pt/Al2O3 catalysts were prepared by an incipient wetness method and in-situ reduction method. The catalyst prepared by an incipient wetness method has an uneven Pt dispersion and large Pt particles. The catalyst prepared by an in-situ reduction method has a good Pt dispersion, however, during the preparing process, a quite amount of Pt will be lost, and the structure of Al2O3 support will be destroyed in a certain degree. For the hydrogenation of nitrobenzene,3.2%Pt/Al2O3 catalyst prepared by an in-situ reduction method in aqueous solution has the higher catalytic activity than that of 3.3%Pt/Al2O3 prepared by the in-situ reduction method in ethanol solution, the latter has the similar catalytic activity to 5.0%Pt/Al2O3 prepared by an incipient wetness method.
     In the synthesis solution of "Ethyl Acetate (EA)-NaAlO2-H20", the nanowire assembled mesoporous Al2O3 was synthesized first at room temperature. The properties (such as morphology, pore size distribution and pore volume) of the synthesized Al2O3 are affected by the reaction time, aged time under stirring before standing, NaAlO2 and EA amounts, and reaction temperature, solvent and so on. Using synthesized Al2O3 and commercialγ-Al2O3 as the supports, the Pt catalysts were prepared by an incipient wetness method. Compared with the Pt catalyst on commercialγ-Al2O3, the Pt catalyst on the nanowire assembled mesoporous Al2O3 (Pt/Al2O3), has much more positive charged adsorption centers with different strengths, or the PtOx supported on it exists as much more dispersed phase or particle phase, which makes some Pt particles supported on the synthesized Al2O3 exist as Pt nano-crystals. For the hydrogenation of nitrobenzene, Pt/Al2O3 has an excellent catalytic activity, which is higher than that of Pt/γ-Al2O3.
     Using cetyltrimethylammonium bromide (CTAB) as a liquid crystal template and Al(OCH(CH3)2)3 as Al source, obtained Al2O3 after washed with ethanol is of a certain ordered meso-pore structure, which will be lost after being calcined. Using sodium dodecylbenzenesulfonate (SDBS) or sodium dodecylsulfonate (SDS) as a template and the "Urea-Al(NO3)3-H2O" synthesis system, the as-synthesized sample is of the ordered meso-structure and will be destroyed after being calcined in air. The amounts of template, urea and Al(NO3)3 in the synthesis solution have a influence on the ordered pore structure of as-synthesized samples. When the as-synthesized sample is calcined at below 200℃in N2, its ordered meso-structure can be maintained, and after being calcined at above 200℃its ordered meso-structure will be lost because of the carbonization of organic compounds and the severe dehydration of the calcined sample.
     Spherical-like Pt-MCM-41 meso-materials (including Pt-MCM-41, Pt-Al-MCM-41 and Pt-La-MCM-41) and MCM-41 were synthesized by a "one-step" approach with orthosilicate (TEOS) as silica source and cetyltrimethylammonium bromide (CTAB) as a template in the acidic solution at 0℃. The prepared samples have high surface areas of 1151-1389 m2/g with the pores of 2-3 nm. As the metallic cations (such as Al3+ and La3+) are very stable in acidic solution and the metal-O-Si bonds can formed uneasy, they are hardly incorporated into the synthesized samples. H2PtCl2 precursor can be almost 100% incorporated in the samples, based on the strong electrostatic interaction between the negatively charged PtCl62- and the positively charged C16H31(CH3)3N+, which avoids the low utilization of precious metal in synthesizing the precious metal-containing catalyst at the basic condition. H2PtCl6 in the as-synthesized samples can be decomposed mostly into metallic Pt with part of Pt2Si and few Pt oxides, when the as-synthesized sample was calcined at 550℃to remove the template. For the catalytic hydrogenation of nitrobenzene, the calcined Pt-MCM-41 meso-material exhibits high catalytic activity with excellent selectivity to aniline, which is similar to the corresponding reduced sample.
引文
[1]苗建国,李小斌,龚辉辉.多品种氧化铝的研究进展[J],轻金属,1997,(8):12-16
    [2]宋晓岚,邱冠周,吴雪兰,曲选辉.特种氧化铝生产研究开发现状及其展望[J].材料导报,2004,18(4):12-16
    [3]戚立宽.初论多品种氧化铝分类法[J].轻金属,1996,(2):18-20
    [4]马善理.非冶金氧化铝[J].轻金属,1997,(6):27-30
    [5]陈胜福,黄坚,李建文.非冶金氧化铝产品的发展动向及市场现状[J].耐火材料,2006,40(3):225-230
    [6]朴成吉,蒋青,陈东阳,徐志宏.Al2O3微粒对成人成骨细胞的影响[J].江苏医药,2007,33(8):821-826
    [7]沈雪荣,周德昌.氧化铝生物陶瓷人工听骨的临床应用[J].临床耳鼻咽喉科杂志,1996,10(5):269-271
    [8]吴俊辉,郭建平,朱青,等.硅衬底阳极氧化铝膜的荧光发射研究[J].发光学报,2000,1:53-56.
    [9]罗玉长.氧化铝在精细陶瓷中的应用[J].山东陶瓷,1992,(1):24-27
    [10]李广战,周峰,王强,孟春玲.氧化铝质陶瓷纤维的制备方法与应用[J].现代技术陶瓷,2007,(2):32-35
    [11]钟声,苗忠.氧化铝系陶瓷刀具材料性能及应用[J].机械工程师,1995,(5):21-22
    [12]M. J. Yu, X. Li, W.-S. Ahn. Adsorptive removal of arsenate and orthophosphate anions by mesoporous alumina[J]. Microporous and Mesoporous Materials.2008,113(1-3): 197-203
    [13]W. Qiu, Y. Zheng. Arsenate removal from water by an alumina-modified zeolite recovered from fly ash[J]. Journal of Hazardous Materials.2007,148(3):721-726
    [14]E. Schreier, R. Eckelt, M. Richter, R. Fricke. Sulphur trap materials based on mesoporous Al2O3[J]. Applid Catalysis B:Environmental.2006,65(3-4):249-260
    [15]A. Javaid, S. O. Gonzalez, E. E. Simanek, D. M. Ford. Nanocomposite membranes of chemisorbed and physisorbed molecules on porous alumina for environmentally important separations[J]. Journal of Membrane Science,2006,275(1-2):255-260
    [16]N. Laitinen, A. Luonsi, E. Levanen, L. Gronroos, T. Mantyla, M. Nystrom. Modified and unmodified alumina membranes in ultrafiltration of board mill wastewater fractions[J]. Desalination.1998,115:63-67
    [17]李亚东,张文兵,于光元.活性氧化铝在双氧水生产中的应用[J].化学推进剂与高分子材料,2003,1(5):48-49
    [18]Z. Zhang, R. W. Hicks, T. R. Pauly, T. J. Pinnavaia, Mesostructured Forms of γ-Al2O3
    [J]. Journal of the American Chemical Society.2002,124:1592-1593
    [19]C. K. Narula, J. E. Allison, D. B. Bauer, H. S. Gandhi. Materials Chemistry Issues Related to Advanced Materials Applications in the Automotive Industry[J]. Chemistry of Materials.1996,8:984-1003
    [20]I. Salem, X. Courtois, E. C. Corbos, P. Marecot, D. Duprez. NO conversion in presence of O2, H2O and SO2:Improvement of a Pt/Al2O3 catalyst by Zr and Sn, and influence of the reducer C3H6 or C3H8[J]. Catalysis Communications.2008,9(5):664-669
    [21]J. H. Xiao, X. H. Li, S. Deng, F. R. Wang. L. F. Wang. NOx storage-reduction over combined catalyst Mn/Ba/Al2O3-Pt/Ba/Al2O3[J]. Catalysis Communications.2008,9(5): 563-567
    [22]R. S. Zhu, M. X. Guo, X. B. Ci, F. O. Yang. An exploratory study on simultaneous removal of soot and NOX over Ir/γ-Al2O3 catalyst in the presence of O2[J]. Catalysis Communications.2008,9(6):1184-1188
    [23]F. A. Marchesini, S. Irusta, C. Querini, E. Miro. Nitrate hydrogenation over Pt,In/Al2O3 and Pt,In/SiO2. Effect of aqueous media and catalyst surface properties upon the catalytic activity[J]. Catalysis Communications.2008,9(6):1021-1026
    [24]毛丽萍,吕功煊.Ni/A1203和Fe/A1203催化剂催化乙醇水蒸气重整制氢的对比研究.分子催化.2007,21(4):365-367
    [25]Z. G Hao, Q. S. Zhu, Z. Jiang, H. Z. Li. Fluidization characteristics of aerogel Co/Al2O3 catalyst in a magnetic fluidized bed and its application to CH4-CO2 reforming[J]. Powder Technology.2008,183(1):46-52
    [26]H. Shen, Y. C. Fu, Q. Sun, S. L. Zuo, A. Auroux, J. Y. Shen. High surface area carbons as acidic components with Cu-ZnO/Al2O3 for the reforming of dimethoxymethane[J]. Catalysis Communications.2008,9(5):801-806
    [27]H. V. Fajardo, L. F. D. Probst. Production of hydrogen by steam reforming of ethanol over Ni/Al2O3 spherical catalysts[J]. Applied Catalysis A:General.2006,306:134-141
    [28]邓凡政,陈素明.A1203光催化降解染料性能研究[J].2007,30(2):26.28
    [29]章乃辛.TiO2-Al2O3复合载体在石油化工催化剂中的应用[J].化学工业与工程技术,1996,17(4):5-9
    [30]陈玮,尹周澜.氧化铝在汽车尾气催化剂载体中的应用研究[J].新技术新工艺,2008,(2):98-99
    [31]李强,马智.活性氧化铝在FCC催化剂中的应用研究[J].工业催化,2006,14(1):64-67
    [32]郑纯智,张国华,刘丽荣.硝基苯催化加氢合成对氨基苯酚[J].精细石油化工,2002,(1):4-6
    [33]陈兴权,赵春香,赵天生.焙烧温度对TiO/γ2-A1203催化剂气相酯交换合成碳酸甲
    丙酯性能的影响[J].石油化工,2007,36(5):447-451
    [34]T. Oikawa, T. Ookoshi, T. Tanaka, T. Yamamoto, M. Onaka. A new heterogeneous olefin metathesis catalyst composed of rhenium oxide and mesoporous alumina[J]. Microporous and Mesoporous Materials.2004,74:93-103
    [35]J. Aguado, J. M. Escola, M. C. Castro, B. Paredes. Metathesis of 1-hexene over rhenium oxide supported on ordered mesoporous aluminas:comparison with Re2O7/γ-Al2O3[J]. Applied Catalysis A:General.2005,284:47-57
    [36]X. Zhang, F. Zhang, K. Chan, W. Yu. The synthesis of large mesopores alumina by microemulsion templating, their characterization and properties as catalyst support [J]. Material Letters.2004,58:2872-2877
    [37]Z. H. Zhua, H. Y. Zhub, S. B. Wang, and G. Q. Lu. Preparation and characterization of copper catalysts supported on mesoporous Al2O3 nanofibers for N2O reduction to N2[J]. Catalysis Letters.2003,91(1-2):73-81
    [38]L. Kaluza, M. Zdrazil, N. Zilkova, J. Cejka. High activity of highly loaded MoS2 hydrodesul-furization catalysts supported on organized mesoporous alumina[J]. Catalysis Communications.2002,3:151-157
    [39]X. P. Zhao, Y. H. Yue, Y. Zhang, W. M. Hua, Z. Gao. Mesoporous alumina molecular sieves:characterization and catalytic activity in hydrolysis of carbon disulfide[J]. Catalysis Letters 2003,89(1-2):41-47
    [40]侯炳毅.氧化铝生产方法简介[J].金属世界,2004,(1):12-12,15
    [41]U. Janosovits, G. Ziegler, U. Scharf, A. Wokaun. Structural characterization of intermediate species during synthesis of Al2O3-aerogels[J]. Journal of Non-Crystalline Solids,1997,210:1-13
    [42]F. Babonneau, L. Coury, J. Livage. Aluminum sec-butoxide modified with ethylacetoacetate:an attractive precursor for the sol-gel synthesis of ceramics[J]. Journal of Non-Crystalline Solids.1990,121:153-157
    [43]R. Nass, H. Schmidt. Synthesis of an alumina coating from chelated aluminium alkoxides[J]. Journal of Non-Crystalline Solids.1990,121:329-333
    [44]E. Elaloui, A. C. Pierre, G. M. Pajonk. Influence of the Sol-Gel Processing Method on the Structure and the Porous Texture of Nondoped Aluminas[J]. Journal of Catalysis. 1997,166:340-346
    [45]K. Tadanaga, S. Ito, T. Minami, N. Tohge. Precursor structure and microstructure of Al2O3 xerogels prepared from aluminum-tri-sec-butoxide chemically modified with mono-di-tri-ethanolamines[J]. Journal of Non-Crystalline Solids.1996,201:231-236
    [46]A. Ayral, J. Phalippou, J. C. Droguet. Better Ceramics through Chemistry Ⅲ; Materials Research Society Symposium Proceedings Vol.121; Materials Research Society:
    Pittsburgh, PA,1988; p 239
    [47]S. Rezgui, B. C. Gates. Sol-Gel Synthesis of Alumina in the Presence of Acetic Acid: Distinguishing Gels and Gelatinous Precipitates by NMR Spectroscopy[J]. Chemistry of Materials.1994,6:2386-2389
    [48]S. Rezgui, B. C. Gates, S. L. Burkett, M. E. Davis. Chemistry of Sol-Gel Synthesis of Aluminum Oxides with In Situ Water Formation:Control of the Morphology and Texture[J]. Chemistry of Materials.1994,6:2390-2397
    [49]F. Vaudry, S. Khodabandeh, M. E. Davis. Synthesis of Pure Alumina Mesoporous Materials[J]. Chemistry of Materials.1996,8:1451-1464
    [50]D. J. Suh, T.-J. Park. Fast sol-gel synthetic route to high-surface-area alumina aerogels[J]. Chemistry of Materials.1997,9(9):1903-1905
    [51]L. Ji, J. Lin, K. L. Tan and H. C. Zeng. Synthesis of high-surface-area alumina using aluminum tri-sec-butoxide-2,4-pentanedione-2-propanol-nitric acid precursors[J]. Chemistry of Materials.2000,12:931-939
    [52]B. J. Xu, T. C. Xiao, Z. F. Yan, X. Sun, J. Sloan, S. L. Gonzalez-Cortes, F. Alshahrani, M. L. H. Green. Synthesis of mesoporous alumina with highly thermal stability using glucose template in aqueous system[J]. Microporous and Mesoporous Materials.2006,91: 293-295
    [53]Z. X. Hao, H. Liu, B. Guo, H. Li, J. W. Zhang, L. H. Gan, Z. J. Xu, L. W. Chen. Sol-gel synthesis of alumina using inorganic salt precursor[J]. Acta Physico-Chimica Sinica. 2007,23(3):289-294
    [54]Q. Liu, A. Q. Wang, X. D. Wang, T. Zhang. Mesoporous y-alumina synthesized by hydro-carboxylic acid as structure-directing agent[J]. Microporous and Mesoporous Materials.2006,92:10-21
    [55]S. A. Bagshaw, T. J. Pinnavaia. Mesoporous Alumina Molecular Sieves[J]. Angewandte Chemie International Edition:English.1996,35(10):1102-1105
    [56]Z. R. Zhang, T. J. Pinnavaia. Mesostructured γ-Al2O3 with a lathlike framework morphology[J]. Journal of the American Chemical Society.2002,124:12294-12301
    [57]H. Y. Zhu, J. D. Riches, and J. C. Barry. γ-Alumina nanofibers prepared from aluminum hydrate with poly(ethylene oxide) surfactant[J]. Chemistry of Materials.2002,14: 2086-2093
    [58]赵瑞红,郭奋,李翠平,陈建峰,赵焕祺.非离子模板剂制备有序介孔氧化铝及表征[J].化工进展,2007,26(5):710-714
    [59]张波,王晶,王新刚.半代聚酰胺.胺型树状高分子对介孔氧化铝孔径调节作用[J].硅酸盐通报,2006,25(6):52-55
    [60]Q. Liu, A. Q. Wang, X. H. Wang, P. Gao, X. D. Wang, T. Zhang. Synthesis,
    characterization and catalytic applications of mesoporous y-alumina from boehmite sol[J]. Microporous and Mesoporous Materials.2008,111(1-3):323-333
    [61]K. Niesz, P. D. Yang, G. A. Somorjai. Sol-gel synthesis of ordered mesoporous alumina[J]. Chemical Communications.2005,1986-1987
    [62]M. Kuemmel, D. Grosso, C. Boissiere, B. Smarsly, T. Brezesinski, P. A. Albouy, H. Amenitsch, C. Sanchez. Thermally stable nanocrystalline γ-alumina layers with highly ordered 3D mesoporosity[J]. Angewandte Chemie International Edition:English.2005, 44:4589-4592
    [63]M. Yada, H. Kitamura, M. Machida, T. Kijima. Biomimetic surface pattern of layered aluminum oxide mesophases template by mixed surfactant assemblies[J]. Langmuir.1997, 13:5252-5257
    [64]L. Sicard, P. L. Llewellyn, J. Pararin, F. Kolenda. Investigation of the mechanism of the surfactant removal from a mesoporous alumina prepared in the presence of sodium dodecylsulfate[J]. Microporous and Mesoporous Materials.2001,44-45:195-201
    [65]Q. Liu, A. Q. Wang, X. D. Wang, T. Zhang. Morphologically controlled synthesis of mesoporous alumina[J]. Microporous and Mesoporous Materials.2007,100:35-44
    [66]F. Vaudry, S. Khodabandeh, M. E. Davis. Synthesis of pure alumina mesoporous materials[J]. Chemistry of Materials.1996,8:1451-1464
    [67]P. Kim, Y. Kim, C. Kim, H. Kim, Y. Park, J. H. Lee, I. K. Song, J. Yi. Synthesis and characterization of mesoporous alumina as a catalyst support for hydrodechlorination of 1,2-dichloropropane:effect of catalyst preparation method[J]. Catalysis Letters.2003, 89(3-4):185-192
    [68]X. Zhang, F. Zhang, K.Y. Chan. The synthesis of large mesoporous alumina by microemulsion templating, their characterization and properties as catalyst support[J]. Materials Letters.2004,58:2872-2877
    [69]S. Cabrera, J. El Haskouri, J. Alamo, A. Beltran, D. Beltran, S. Mendioroz, M. D. Marcos, P. Amoros. Surfactant-assisted synthesis of mesoporous alumina showing continuously adjustable pore sizes[J]. Advanced Materials.1999,11(5):379-381
    [70]W. H. Deng, M. W. Toepke, B. H. Shanks. Surfactant-assisted synthesis of alumina with hierarchical nanopores[J]. Advanced Functional Materials.2003,13(1):61-65
    [71]J. Aguado, J. M. Escola, M. C. Castro, B. Paredes. Sol-gel synthesis of mesostructured y-alumina template by cationic surfactants[J]. Microporous and Mesoporous Materials. 2005,83:181-192
    [72]X. H. Liu, Y. Wei, D. L. Jin, W.-H. Shih. Synthesis of mesoporous aluminum oxide with aluminum alkoxide and tartaric acid[J]. Materials Letters.2000.42:143-149
    [73]Q. Liu, A. Q. Wang, X. D. Wang, T. Zhang. Ordered crystalline alumina molecular
    sieves synthesized via a nanocasting route[J]. Chemistry of Materials.2006,18: 5153-5155
    [74]Q. Liu, A. Q. Wang, X. D. Wang, T. Zhang. Nanocasting synthesis of ordered mesoporous alumina with crystalline walls:influence of aluminium precursors and filling times[J]. Studies in Surface Science and Catalysis.2007,170(2):1819-1826
    [75]H. S. Park, S. H. Yang, Y.-S. Jun, W. H. Hong, J. K. Kang. Facile route to synthesize large-mesoporous y-alumina by room temperature ionic liquids[J]. Chemistry of Materials.2007,19:535-542
    [76]N. Zilkova, A. Zukal, J. Cejka. Synthesis of organized mesoporous alumina templated with ionic liquids[J]. Microporous and Mesoporous Materials.2006,95:176-179
    [77]W. H. Deng, B. H. Shanks. Synthesis of hierarchically structured aluminas under controlled hydrodynamic conditions[J]. Chemistry of Materials.2005,17:3092-3100
    [78]周莲凤,徐宏,杨根山.硝基苯催化加氢制苯胺的技术概况[J].化学工业与工程技术,2007,28(2):39-41
    [79]李速延,周晓奇.苯胺生产技术研究进展[J].工业催化,2006,14(12):7-10
    [80]姜恒,徐筠,廖世建,等.双重负载钯催化剂用于硝基化合物的催化加氢[J].催化学报,1997,18(1):34-37
    [81]刘青,韩雪,文婕,储伟,罗仕忠,江成发.Ni-B/SiO2催化剂上硝基苯选择加氢制备苯胺[J].四川化工,2007,10(4):1-4
    [82]彭爱东,陆世维.硒催化剂下CO/H2O还原硝基苯制苯胺[J].催化学报,2002,23(5):457-459
    [83]M. Breysse, P. Afanasiev, C. Geantet, M. Vrinat. Deep desulfurization:Reactions, catalysts and technological challenges[J]. Catalysis Today.2003,86(5):173-189
    [84]P. Gelin, M. Primet. Complete oxidation of methane at low temperature over noble metal based catalysts:a review[J]. Applied Catalysis B.2002,39:1-37
    [85]M. Pineda, J. M. Palacios. The effect of surface and thermal treatments on γ-Al2O3 as a catalyst of the claus reaction at low temperature[J]. Applied Catalysis A:General.1997, 158:307-321
    [86]E. Laperdrix, A. Sahibed-dine, G. Costentin, O. Saur, M. Bensitel, C. Nedze, A. B. Mohamed Saad. J. C. Lavalley. Reduction of sulfate species by H2S on different metal oxides and promoted aluminas[J]. Applied Catalysis B:Environmental.2000,26:71-80
    [87]L. Wang, F. Zhang, J. Chen. Carbonyl Sulfide Derived from Catalytic Oxidation of Carbon Disulfide over Atmospheric Particles[J]. Environmental Science & Technology. 2001,35:2543-2547
    [88]K. Okada, Y. Saito, M. Hiroki, T. Tomita, S. Tomura. Water Vapor Sorption on Mesoporous Gamma-Alumina Prepared by the Selective Leaching Method[J]. Journal of
    Porous Materials.1997,4:253-260
    [89]Q. Yuan, A. X. Yin, C. Luo, L. D. Sun, Y. W. Zhang, W. T. Duan, H. C. Liu, C. H. Yan. Facile Synthesis for Ordered Mesoporous y-Aluminas with High Thermal Stability[J]. Journal of the American Chemical Society.2008,130:3465-3472
    [90]F. Vaudry, S. Khodabandeh, M. E. Davis. Synthesis of Pure Alumina Mesoporous Materials[J]. Chemistry of Materials.1996,8:1451-1464
    [91]W. Deng, M. W. Toepke, B. H. Shanks. Surfactant-Assisted Synthesis of Alumina with Hierarchical Nanopores[J]. Advanced Functional Materials.2003,13:61-65
    [92]H. J. Kim, T. G. Kim, J. J. Kim, S. S. Park, S. S. Hong, G. D. Lee. Influences of precursor and additive on the morphology of nanocrystalline α-alumina[J]. Journal of Physics and Chemistry of Solids.2008,69:1521-1524
    [93]M. Trueba, S. P. Trasatti.γ-Alumina as a Support for Catalysts:A Review of Fundamental Aspects[J]. European Journal of Inorganic Chemistry.2005,17:3393-3403
    [94]Q. Liu, A.Q. Wang, X. D. Wang, T. Zhang. Ordered Crystalline Alumina Molecular Sieves Synthesized via a Nanocasting Route[J]. Chemistry of Materials,2006,18: 5153-5155
    [95]S. Bhattacharyya, A. Gabashvili, N. Perkas, A. Gedanken. Sonochemical Insertion of Silver Nanoparticles into Two-Dimensional Mesoporous Alumina[J]. Journal of Physical Chemistry C.2007,111:11161-11167
    [96]S. J. Gregg, K. S. Sing. Adsorption, Surface Area and Porosity, second ed., Academic Press, New York,1982
    [97]E. Pabon, J. Retuert, R. Quijada, A. Zarate. TiO2-SiO2 mixed oxides prepared by a combined sol-gel and polymer inclusion method[J]. Microporous and Mesoporous Materials.2004,67:195-203
    [98]S. L. Ghen, H. L. Zhang, J. Hu, C. Contescu, J. A. Schwarz. Applied Catalysis.1991,73: 289-312
    [99]J. A. Mieth, J. A. Schwarz. Effects of alumina dissolution and metal ion buffering on the dispersion of alumina supported nickel and ruthenium catalysts[J]. Applied Catalysis. 1989,55:137-149
    [100]X. H. Li, X. You, P. L. Ying, J. L. Xiao and C. Li. Some Insights into the Preparation of Pt/y-Al2O3 Catalysts for the Enantioselective Hydrogenation of a-Ketoesters[J]. Topics in Catalysis.2003,25:63-70
    [101]C. Misra, Industrial Alumina Catalysts, ACS Monograph Series.1986,184:133
    [102]Z. R. Zhang, R. W. Hicks, T. R. Pauly, T. J. Pinnavaia. Mesostructured Forms of y-Al2O3[J]. Journal of the American Chemical Society.2002,124(8):1592-1593
    [103]M. Trueba, S. P. Trasatti. γ-Alumina as a Support for Catalysts:A Review of Fundamental Aspects[J]. European Journal of Inorganic Chemistry.2005, (17):
    3393-3403
    [104]C. T. Kresge, M. E. Leonowicz, W. J. Roth, J. C. Vartuli, J. S. Beck. Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism [J]. Nature.1992,359:710-712
    [105]D. Zhao, J. Feng, Q. Huo, N. Melosh, G. H. Fredrickson, B. F. Chmelka, G. D. Stucky, Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores[J]. Science.1998,279:548-552
    [106]B. Z. Tian, X. Y. Liu, B. Tu, C. Z. Yu, J. Fan, L. M. Wang, S. H. Xie, G. D. Stucky, D. Y. Zhao. Self-adjusted synthesis of ordered stable mesoporous minerals by acid-base pairs[J]. Nature Materials.2003,2:159-163
    [107]K. Niesz, P.D.Yang, Gabor A. Somorjai. Sol-gel synthesis of ordered mesoporous alumina[J]. Chemical Communications.2005,5(15):1986-1987
    [108]M. Kuemmel, D. Grosso, U. Boissiere, B. Smarsly, T. Brezesinski, P. A. Albouy, H. Amenitsch, C. Sanchez. Thermally Stable Nanocrystalline y-Alumina Layers with Highly Ordered 3D Mesoporosity[J]. Angewandte Chemie International Edition:English.2005, 44(29):4589-4592
    [109]Q. Liu, A. Q. Wang, X. D. Wang, T. Zhang. Mesoporous y-alumina synthesized by hydro-carboxylic acid as structure-directing agent[J]. Microporous and Mesoporous Materials.2006,92(1-3):10-21
    [110]B. J. Xu, T. C. Xiao, Z. F. Yan, X. Sun, J. Sloan, S. L. Gonzalez-Cortes, F. Alshahrani, M. L. H. Green. Synthesis of mesoporous alumina with highly thermal stability using glucose template in aqueous system[J]. Microporous and Mesoporous Materials.2006,91(1-3):293-295
    [111]H. Park, S. H. Yang, Y. S. Jun, W. H. Hong, J. K. Kang. Facile Route to Synthesize Large-Mesoporous y-Alumina by Room Temperature Ionic Liquids[J]. Chemistry of Materials.2007,19(3):535-542
    [112]Q. Liu, A. Q. Wang, X. D. Wang, T. Zhang. Ordered Crystalline Alumina Molecular Sieves Synthesized via Nanocasting Route[J]. Chemistry of Materials.2006,18(22): 5153-5155
    [113]A. Valentini, N. L. V. Carreno, L. F. D. Probst, E. R. Leite, E. Longo. Synthesis of Ni nanoparticles in microporous and mesoporous Al and Mg oxides[J]. Microporous and Mesoporous Materials.2004,68(1-3):151-157
    [114]H. Y. Zhu, J. D. Riches, J. C. Barry. γ-Alumina Nanofibers Prepared from Alumina Hydrate with Poly(ethylene oxide) Surfactant [J]. Chemistry of Materials.2002,14(5): 2086-2093
    [115]H. J. Kim, H. C. Lee, C. H. Rhee, S. H. Chung. H. C. Lee, K. H. Lee, J. S. Lee.
    Alumina Nanotubes Containing Lithium of High Ion Mobility[J]. Journal of the American Chemical Society.2003,125(44):13354-13355
    [116]Q. Peng, Y. J. Dong, Y. D. Li. ZnSe Semiconductor Hollow Microspheres[J]. Angewandte Chemie International Edition:English.2003,42(26):3027-3030
    [117]T. Sakaki, M. Shibata, T. Miki, H. Hirosue, N. Hayashi. Reaction model of cellulose decomposition in near-critical water and fermentation of products[J]. Bioresource Technology.1996,58(2):197-202
    [118]X. M. Sun, Y. D. Li. Colloidal Carbon Spheres and Their Core/Shell Structures with Noble-Metal Nanoparticles[J]. Angewandte Chemie International Edition:English.2004, 43(5):597-601
    [119]S. Ramanathan, S. K. Roy, R. Bhat, D. D. Upadhyaya, A. R. Biswas. Alumina powders from aluminium nitrate-urea and aluminium sulphate-urea reactions-The role of the precursor anion and process conditions on characteristics[J]. Ceramic International. 1997,23(1):45-53
    [120]C. C. Perry, K. L. Shafran. The systematic study of aluminium apeciation in medium concentrated aqueous solutions[J]. Journal of Inorganic Biochemistry.2001,87(1-2): 115-124
    [121]C. Brosset, G. Biedermann, L. C. Sillen. Hydrolysis of metal ions:the aluminum ion Al3+ [J]. Acta Chem. Scand.1954,8(10):1917-1926
    [122]王莲鸳,程振兴,薛勇,等.硝基苯加氢合成对氨基酚用负载铂催化剂的制备.催化学报.2002,23:19-23.
    [123]顾伯锷,吴振霄.工业催化过程导论.北京:高等教育出版杜,1990,195-286
    [124]胡瑞生,孙燕华,沈岳年等.四种负载型Pt/Al2O3重整催化剂性能和表征的研究[J].内蒙古大学学报(自然科学版),1997,28(2):196-199.
    [125]H. C. Yao, M. Sieg, H. K. Plummer Jr. Surface interaction in the Pt/γ-Al2O3 system[J]. Journal of Catalysis.1979,59(3):365-374
    [126]M. Primet, Electronic transfer and ligand effects in the infrared spectra of adsorbed carbon monoxide[J]. Journal of Catalysis.1984,88:273-282
    [127]P. A. Carlsson, L. Osterlund, P. Thormahlen, A. Palmqvist, E. Fridell, J. Jansson, M. Skoglundh. A transient in situ FTIR and XANES study of CO oxidation over Pt/Al2O3 catalysts[J]. Journal of Catalysis.2004,226:422-434
    [128]A. Martinez-Arias, J. M. Coronado, R. Cataluna, J. C. Conesa, J. Soria. Influence of Mutual Platinum-Dispersed Ceria Interactions on the Promoting Effect of Ceria for the CO Oxidation Reaction in a Pt/CeO2/Al2O3 Catalyst[J]. Journal of Physical Chemistry B. 1998,102:4357-4365
    [129]M. Primet, J. M. Basset, M. V. Mathieu, M. Prettre. Infrared study of CO adsorbed
    on Pt/Al2O3. A method for determining metal-adsorbate interactions[J]. Journal of Catalysis.1973,29:213-223
    [130]O. S. Alexeev, S. Y. Chin, M. H. Engelhard, L. Ortiz-Soto, M. D. Amiridis. Effects of Reduction Temperature and Metal-Support Interactions on the Catalytic Activity of Pt/y-Al2O3 and Pt/TiO2 for the Oxidation of CO in the Presence and Absence of H2[J]. Journal of Physical Chemistry B.2005,109:23430-23443
    [131]G. Kaltenpoth, M. Himmelhaus, L. Slansky, F. Caruso, M. Grunze. Conductive Core-Shell Particles:An Approach to Self-Assembled Mesoscopic Wires[J]. Advanced Materials.2003,15:1113-1118
    [132]A. M. Stratz. Catalysis of organic reactions. Chemical Industries.1984,18:335.
    [133]F. Pinna, M. Signoretto, G Strukul, F. Boccuzzi, A. Benedetti, P. Canton, G Fagherazzi. Pd-Fe/SiO2 Catalysts in the Hydrogenation of 2,4-Dinitrotoluene[J]. Journal of Catalysis.1994,150 (2):356-367
    [134]G C. Torres, E. L. Jablonski, G T. Baronetti, A. A. Castro, S. R. de Miguel, O. A. Scelza, M. D. Blanco, M. A. Pena. Jimenez, J. L. G Fierro. Effect of the carbon pre-treatment on the properties and performance for nitrobenzene hydrogenation of Pt/C catalysts[J]. Applied Catalysis A:General.1997,161(1-2):213-226
    [135]Y. Zhao, C. H. Li, Z. X. Yu, K. F. Yao, S. F. Ji, J. Liang. Effect of microstructures of Pt catalysts supported on carbon nanotubes (CNTs) and activated carbon (AC) for nitrobenzene hydrogenation[J]. Materials Chemistry and Physics.2007,103(2-3): 225-229
    [136]H. Zeng, J. Li, Z. L. Wang, J. P. Liu, S. Sun. Exchange-coupled nanocomposite magnets by nanoparticle self-assembly [J]. Nature.2002,420:395-398
    [137]J. Yuan, K. Laubernds, Q. Zhang, S. L. Suib. Self-Assembly of Microporous Manganese Oxide Octahedral Molecular Sieve Hexagonal Flakes into Mesoporous Hollow Nanospheres[J]. Journal of the American Chemical Society.2003,125, 4966-4967
    [138]M. Yada, C. Taniguchi, T. Torikai, T. Watari, S. Furuta, H. Katsuki. Hierarchical Two-and Three-Dimensional Microstructures Composed of Rare-Earth Compound Nanotubes[J]. Advanced Materials.2004,16:1448-1453
    [139]H. Fan, K. Yang, D. M. Boye, T. Sigmon, K. J. Malloy, H. Xu, G. L. Lopez, C. J. Brinker. Self-assembly of ordered, robust, three-dimensional gold nanocrystal/silica array [J]. Science.2004,304:567-571
    [140]P. X. Gao, Z. L. Wang. Mesoporous Polyhedral Cages and Shells Formed by Textured Self-Assembly of ZnO Nanocrystals[J]. Journal of the American Chemical Society.2003,125:11299-11305
    [141]J.-S. Hu, L.-L Ren, Y.-G. Guo, H.-P. Liang, A.-M. Cao, L.-J. Wan, C.-L. Bai. Mass Production and High Photocatalytic Activity of ZnS Nanoporous Nanoparticles[J]. Angewandte Chemie International Edition:English.2005,44:1269-1273
    [142]S. A. Jenekhe, X. L. Chen. Self-assembled aggregates of rod-coil block copolymers and their solubilization and encapsulation of fullerenes[J]. Science.1998,279:1903-1907
    [143]O. Ikkala, G. T. Brinke. Functional materials based on self-assembly of polymeric supramolecules[J]. Science.2002,295:2407-2409
    [144]H. Duan, M. Kuang, J. Wang, D. Chen, M. Jiang. Self-Assembly of Rigid and Coil Polymers into Hollow Spheres in Their Common Solvent[J]. Journal of Physical Chemistry B.2004,108,550-555
    [145]J. Z. Du, Y. M. Chen. Organic-Inorganic Hybrid Nanoparticles with a Complex Hollow Structure [J]. Angewandte Chemie International Edition:English.2004,43, 5084-5087
    [146]W. Shenton, D. Pum, U. B. Sleytr, S. Mann. Synthesis of cadmium sulphide super-lattices using self-assembled bacterial S-layers[J]. Nature.1997,389:585-587
    [147]G. A. Ozin. Revue Canadienne de Chimie,1999 Pure or Applied Inorganic Chemistry Award Lecture-Curves in chemistry:supramolecular materials taking shape[J]. Canadian Journal of Chemistry.1999,77,2001-2014
    [148]S. Park, J.-H. Lim, S.-W. Chung, C. A. Mirkin. Self-Assembly of Mesoscopic Metal-Polymer Amphiphiles[J]. Science.2004,303:348-351
    [149]P. F. Noble, O. J. Cayre, R. G. Alargova, O. D. Velev, V. N. Paunov. Fabrication of "Hairy" Colloidosomes with Shells of Polymeric Microrods[J]. Journal of the American Chemical Society.2004,126:8092-8093
    [150]A. D. Dinsmore, M. F. Hsu, M. G. Nikolaides, M. Marquez, A. R. Bausch, D. A. Weitz. Colloidosomes:Selectively permeable capsules composed of colloidal particles[J]. Science.2002,298:1006-1009
    [151]E. Hosono, S. Fujihara, K. Kakiuchi, H. Imai. Growth of Submicrometer-Scale Rectangular Parallelepiped Rutile TiO2 Films in Aqueous TiCl3 Solutions under Hydrothermal Conditions[J]. Journal of the American Chemical Society.2004,126: 7790-7791
    [152]B. Liu, H. C. Zeng. Mesoscale Organization of CuO Nanoribbons:Formation of "Dandelions"[J]. Journal of the American Chemical Society.2004,126:8124-8125
    [153]S. A. Bagshaw, E. Prouzet, T. J. Pinnavaia. Templating of Mesoporous Molecular Sieves by Nonionic Polyethylene Oxide Surfactants [J], Science,1995,269:1242-1244
    [154]C. T. Kresge, M. E. Leonowicz, W. J. Roth, J. C. Vartuli, J. S. Beck. Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism[J].
    Nature.1992,359:710-712
    [155]A. Corma. From microporous to mesoporous molecular sieve materials and their use in catalysis[J]. Chemical Reviews.1997,97(6):2373-2419
    [156]M. E. Davis. Ordered Porous Materials for Emerging Applications[J]. Nature.2002, 417:813-821
    [157]A. Taguchi, F. Schuth. Ordered mesoporous materials in catalysis[J]. Microporous and Mesoporous Materials.2005,77:1-45
    [158]T. R. Gaydhankar, V. Samuel, P. N. Joshi. Hydrothermal synthesis of MCM-41 using differently manufactured amorphous dioxosilicon sources[J]. Material Letters.2006,60 (7):957-961
    [159]B. Wang, C. Chi, W. Shan, Y. H. Zhang, N. Ren, W. L. Yang, Y. Tang. Chiral Mesostructured Silica Nanofibers of MCM-41 [J]. Angewandte Chemie.2006,118: 2142-2144
    [160]M. Grun, I. Lauer, K. K. Unger. Synthesis of micrometer-and submicrometer-size spheres of ordered mesoporous oxide MCM-41. Advanced Materials.1997, 9(3):254-257
    [161]T. Martin, A. Galarneau, F. Di Renzo, F. Fajula, D. Plee. Morphological control of MCM-41 by pseudomorphic synthesis. Angewandte Chemie International Edition: English.2002,41(14):2590-2594
    [162]B. Pauwels, G. Van Tendeloo, C. Thoelen, W. Van Rhijn, P. A. Jacobs. Structure Determination of Spherical MCM-41 Particles. Advanced Materials.2001,13(17): 1317-1320
    [163]S. Velu, L. Wang, M. Okazaki, K. Suzuki, S. Tomura. Characterization of MCM-41 mesoporous molecular sieves containing copper and zinc and their catalytic performance in the selective oxidation of alcohols to aldehydes[J]. Microporous and Mesoporous Materials.2002,54 (1-2):113-126
    [164]A. Szegedi, Z. Konya, D. Mehn, E. Solyma r, G. Pal-Borbely, Z. E. Horvath, L. P. Biro, I. Kiricsi. Spherical mesoporous MCM-41 materials containing transition metals: synthesis and characterization [J]. Applied Catalysis A:General.2004,272 (1-2):257-266
    [165]A. Szegedi, M. Hegedus, J. L. Margitfalvi, I. Kiricsi. Low temperature CO oxidation over iron-containing MCM-41 catalysts[J]. Chemical Communications.2005,1441-1443
    [166]A. Szegedi, M. Popova, V. Mavrodinova, M. Urban, I. Kiricsi, C. Minchev. Synthesis and characterization of Ni-MCM-41 materials with spherical morphology and their catalytic activity in toluene hydrogenation[J]. Microporous and Mesoporous Materials.2007,99 (1-2):149-158
    [167]U. Junges, W. Jacobs, I. Voigtmartin, B. Krutzsch, F. Schuth. MCM-41 as a support
    for small platinum particles:a catalyst for low-temperature carbon monoxide oxidation[J]. Journal of Chemical Society, Chemical Communications.1995, (22):2283-2284
    [168]M. angeles Aramendia, V. Borau, C. Jimenez, J. M. Marinas, F. J. Romero. Supramolecular templated synthesis of platinum-supported silica[J]. Chemical Communications.1999, (10):873-874
    [169]M. Chatterjee, T. Iwasaki, Y. Onodera, T. Nagase. Synthesis of nanosized platinum cluster in cubic mesoporous material via a direct introduction method[J]. Catalysis Letters.1999,61(3-4):199-202
    [170]Q. S. Huo, D. I. Margolese, G. D. Stucky. Surfactant Control of Phases in the Synthesis of Mesoporous Silica-Based Materials[J]. Chemistry of Materials.1996,8(5): 1147-1160
    [171]M. Kruk, M. Jaroniec. Argon Adsorption at 77 K as a Useful Tool for the Elucidation of Pore Connectivity in Ordered Materials with Large Cagelike Mesopores[J]. Chemistry of Materials.2003,15 (15):2942-2949
    [172]Y. Yang, S. Lim, G. Du, C. Wang, D. Ciuparu, Y. Chen, G. L. Haller. Synthesis and Characterization of Highly Ordered Ni-MCM-41 Mesoporous Molecular Sieves[J]. Journal of Physical Chemistry B.2005,109 (27):13237-13246
    [173]E. Sacaliuc-Parvulescu, H. Friedrich, R. Palkovits, B. M. Weckhuysen, T. A. Nijhuis,. Understanding the effect of postsynthesis ammonium treatment on the catalytic activity of Au/Ti-SBA-15 catalysts for the oxidation of propene. Journal of Catalysis.2008,259: 43-53
    [174]G. S. Kumar, M. Palanichamy, M. Hartmann, V. Murugesan. A new route for the synthesis of manganese incorporated SBA-15. Microporous and Mesoporous Materials. 2008,112:53-60
    [175]H. P. Lin, C. Y. Mou.Tubules-Within-a-Tubules Hierarchical Order of Mesoporous Molecular Sieves in MCM-41. Science.1996,273:765-768
    [176]Y. D. Xu, Y. X. Qi, G X. Lu, S. B. Li. Skeletal Isomerization of n-Pentane over Platimun-Promoted Tungstophosphoric Acid Supported on MCM-41. Catalysis Letters. 2008,125:83-89
    [177]A. G. Kong, H. W. Wang, X. Yang, Y. W. Hou, Y. K. Shan. A facile direct route to synthesize large-pore mesoporous silica incorporating high CuO loading with special catalytic property. Microporous and Mesoporous Materials.2009,118:348-353
    [178]W. Y. Jung, S. H. Baek, J. S. Yang, K.-T. Lim, M. S. Lee, G.-D. Lee, S. S. Park, S. S. Hong. Synthesis of Ti-containing SBA-15 materials and studies on their photocatalytic decomposition of orange Ⅱ. Catalysis Today.2008,131:437-443
    [179]M. Selvaraj, B. R. Min, Y. G Shul, T. G Lee. Comparison of mesoporous solid acid catalysts in the production of DABCO by cyclization of ethanolamine I. Synthesis and characterization of mesoporous solid acid catalysts. Microporous and Mesoporous
    Materials.2004,74:143-155
    [180]H. Yang, N. Coombs, G. A. Ozin. Morphogenesis of shapes and surface patterns in mesoporous silica[J]. Nature.1997,386:692-695
    [181]H. P. Lin, C. Y. Mou. Structural and morphological control of cationic surfactant-templated mesoporous silica[J]. Accounts of Chemical Research.2002,35: 927-935
    [182]H. P. Lin, C. Y. Mou. Tubules-Within-a-Tubules Hierarchical Order of Mesoporous Molecular Sieves in MCM-41[J]. Science.1996,273:765-768
    [183]H. Yang, N. Coombs, G. A. Ozin. Morphogenesis of Shapes and Surface Patterns in Mesoporous Silica[J]. Nature.1997,386:692-695
    [184]H. P. Lin, Y. R. Cheng, C. Y. Mou. Hierarchical order in hollow spheres of mesoporous silicates[J]. Chemistry of Materials.1998,10 (12):3772-3776
    [185]S. M. Yang. W. J. Kim. Helical Mesostructured Tubules from Taylor Vortex-Assisted Surfactant Templates[J]. Advanced Materials.2001,13(15):1191-1195
    [186]S. Sadasivan, C. E. Fowler, D. Khushalani, S. Mann. Nucleation of MCM-41 Nanoparticles by Internal Reorganization of Disordered and Nematic-Like Silica-Surfactant Clusters[J]. Angewandte Chemie International Edition:English.2002, 114(12):2255-2257
    [187]J. Wang, J. Zhang, B. Y. Asoo, G. D. Stucky. Structure-Selective Synthesis of Mesostructured/Mesoporous Silica Nanofibers[J]. Journal of the American Chemical Society.2003,125(46):13966-13967
    [188]J. F. Wang, C. K. Tsung, R. C. Hayward, Y. Y. Wu, G. D. Stucky. Single-Crystal Mesoporous Silica Ribbons[J]. Angewandte Chemie International Edition:English.2005, 117:336-340
    [189]Q. Cai, Z. Luo, W. Pang, Y. Fan, X. Chen, F. Cui. Dilute Solution Routes to Various Controllable Morphologies of MCM-41 Silica with a Basic Medium. Chemistry of Materials.2001,13:258-263
    [190]C. D. Wagner, W. M. Riggs, L. E. Davis, J. F. Moulder, G. E. Muilenberg. Handbook of X-Ray Photoelectron Spectroscopy, Perkin-Elmer Corporation. Minnesota, 1979, p.152

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700