水压先导式电磁溢流阀的研制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
液压传动具有控制灵活、快速性好、容易获得很大的力和力矩、能无级调速、易于实现过载保护、操作方便等优点,而水压控制阀是液压系统中重要的元件之一,它的可靠性直接影响到系统的稳定性,所以进行阀的可靠性研究工作很有必要。
     首先,本文以油压溢流阀的设计方法为基础,并考虑到海水传动介质的特殊性,提出了水压溢流阀的设计方法,论述了水压溢流阀的设计理论、方法与传统油压阀的异同,提出了水压控制阀存在的关键技术难点,并就这些难点提出了解决办法,再详细介绍了阀的结构,说明了该阀的设计过程,接着,本文介绍了一些耐海水腐蚀的新型工程材料如耐蚀合金(渗氮17-4PH和1Cr18Ni9Ti)、工程塑料(TX、PEEK和PTFE)、工程陶瓷(氧化铝和氧化锆),并研究了金属的两种表面处理技术,然后对这三类材料两两之间摩擦副配对,再在不同压力与不同转速下进行摩擦磨损试验,研究材料的摩擦力和磨损情况,以期找到高性能的摩擦副材料。
     然后,对溢流阀的元件进行了可靠性算例分析,建立水液压控制阀中关键元件的不确定可靠性计算模型。由于实际中数据的有限性和参数的不确定性,只能得到参数的区间,所以本文介绍了区间-随机混合可靠性模型,并把这种模型运用到水压控制阀中,分析阀的阀座结构的可靠性,计算了它的可靠度。以期能从设计上提高阀的可靠性。
     接着,基于AMESim软件对阀的静、动态特性作了详细的分析,分析了阀的结构参数对阀性能的影响,使阀的结构参数最优化。
     最后,提出了试验原理和试验方法,对研制的阀进行了试验,进行了阀的静动态特性研究,并说明了阀中存在的问题及提出了改进方案。
Hydraulic transmission has the merits of flexible control, fast response, convenient operation, easy access to large force and moment, stepless speed regulation, easy to achieve overload protection, ect. Water hydraulic control valve is one of the most important components in water hydraulic system. The research of its reliability directly affects the stability of the system, as a result, it is quite necessary to carry out the research.
     Firstly, based on the design method of the oil hydraulic pressure relief valve, simultaneously considering the special characteristic of sea water, a design method of water hydraulic pressure relief valve is proposed in this paper. The sameness and difference in design theory between the oil and water hydraulic pressure relief valve is discussed in detail, the critical technical difficulty is proposed. And the corresponding solution is brought forward. Then, the paper detailedly introduces the structure of the valve, explains the design process. Afterward, some new engineering materials resistanting sea water erosion are introduced in the paper, such as corrosion resistant alloys (Nitriding 17-4PH and 1Cr18Ni9Ti), engineering plastic (TX, PEEK, and PTFE), engineering ceramic (Al2O3 and ZrO2). Two ways of surface treatment technology are researched. Then these three types of materials are composed friction pairs between two of them, the friction and wear experiments are carried out in different pressure and different rotating speed, in order to find out friction pair materials with high performance.
     Then, reliability analysis is processed on the pressure relief valve to establish an uncertainty reliability calculation model of the critical components in water hydraulic control valve. On account of the limitation of data and uncertainty of parameter in actual, it only can gain parameter intervals, this paper introduced interval-stochastic mixed reliability model. And the model is used in water hydraulic control valve, the reliability of valve seat is analyzed, in order to improve the reliability in design.
     Thirdly, AMESim software is used to analyze the static and dynamic characteristics of the valve, the effect of the structural parameter on its performance, which makes the optimization of the parameter.
     Finally, the experiment method of the valve is introduced, and experiments are carried out to research the static and dynamic characteristics. The problems appeared in the valve and the solutions are illuminated.
引文
[1] Erik Trostmann. Water Hydraulics Control Technology [M], Danfoss APS. 1996
    [2]刘银水,黄艳,贺小峰.水压阀的研究与发展.液压与气动. 2001(5):10-14
    [3]许耀铭.液压可靠性工程基础.哈尔滨:哈尔滨工业大学出版社. 1991
    [4] Hasofer A. M, Lind N. C. Exact and invariant second-moment code format, Journal of Engineering Mech. Div, ASCE. 1974, 100 (1): 111-121
    [5] Fiessler B, Neumann H. J, Rackwitz R. Quadratic limit states in structural reliability, Journal of Engineering Mech. Div, ASCE. 1979, 105 (4): 661-675
    [6] Feng Y. S. The computation of failure probability for nonlinear safety margin equations, Reliability Engineering and System Safety. 1989 (26): 1-9
    [7] Cornell C. A. Bounds on the reliability of structural systems, Journal of Struct. Div, ASCE. 1967, 93 (1): 171-200
    [8] Ditlevsen O. Narrow reliability bounds for structural systems, Journal of Struct. Div, ASCE. 1979 (7): 453-472
    [9] Wong F. S. Uncertainties in dynamic soil-structure interaction, Journal of Engineering Mech. Div, ASCE. 1984 (110): 308-324
    [10] Bucher C. G, Bourgund U. A fast and efficient response surface approach for structural reliability problems, Struct. Safety. 1990 (7): 57-66
    [11] Rajashekhar M. R, Elligwood B. R. A new look at the response surface approach for reliability analysis, Struct. Safety. 1993 (12): 205-220
    [12] Faravelli L. Response-surface approach for reliability analysis, Journal of Engineering Mech. Div, ASCE. 1989 (115): 2763-2781
    [13] Lv Z. Z, Feng Y. S. Reliability analysis method for structural stiffness, Chinese Journal of Aeronautics. 1995 (8): 29-35
    [14] Kim S, Na S. Response surface method using vector projected sampling points, Struct. Safety. 1997 (19): 3-19
    [15] Brown C. B. A fuzzy safety measure Journal of Engineering Mech. Div, ASCE. 1979 (105): 855-872
    [16] Brown C. B, James T. P, Yao F. Fuzzy sets and structure engineering, Journal of Struct. Div. ASCE. 1983 (109): 1211-1225
    [17] Singer D. A fuzzy set approach to fault tree and reliability analysis, Fuzzy Sets and Systems.1990, 34: 145-155
    [18] Kenarangui R. Event tree analysis by fuzzy reliability, IEEE Trans on Reliability. 1991, 40: 120-124
    [19] Cheng C.H, Mon D.L. Fuzzy system reliability analysis by interval of confidence. FuzzySets and Systems. 1993, 56: 29-36
    [20]赵静一,陈卓如,王益群等.可靠性工程在液压领域中的应用.重庆工业高等专科学校学报. l999 (3): 139-141
    [21]赵静一,孔祥东,马保海等.液压系统可靠性研究的现状与发展.机械设计与制造. 1999 (2): 8-9
    [22]孙毅刚,高建树,李国洪.液压泵摩擦副可靠性设计基本方法研究.中国民航学院学报. 1999 (12): 5-9
    [23]贾跃虎,乔田红.径向柱塞泵高速滑动摩擦副可靠性实验.太原重型机械学院学报. 2003 (4): 299-301
    [24]包明宇,容刚,曹国强.模糊可靠性优化法在液压泵设计中的应用.通用机械. 2004 (12): 62-64
    [25]邹云,蔡池兰,张一兵.金属基/陶瓷涂层柱塞杆可靠性设计.机械. 2004 (2): 23-25
    [26]余祖耀,李壮云,聂松林等.水液压柱塞泵陶瓷柱塞的可靠性设计.机械设计. 2003 (4): 12-14
    [27]张于贤,王红.液压泵寿命的试验研究.机床与液压. 2006 (8): 83-84
    [28]陈从桂.溢流阀调压弹簧的模糊可靠性设计.中南工学院学报. 2000 (4): 37-39, 48
    [29]钟贤栋.液压元件的可靠性设计.液压气动与密封. 2002 (2): 25-27
    [30]叶发中.双喷嘴挡板式力反馈电液伺服阀可靠性设计与研究.液压与气动. 1992 (1): 20-24
    [31]彭惠芬,刘巨保.基于ANSYS软件的泵轴可靠性设计.石油工业技术监督. 2006 (10): 22-44
    [32]邵正宇,勾频,鞠远萍.液体动力润滑径向滑动轴承可靠性设计.现代机械. 2001 (4): 92-93
    [33]鲁建平,周春华.液压系统广义可靠性设计.机床与液压. 2002 (4): 143-144
    [34]苏春,沈戈,许映秋.基于随机故障Petri网的液压系统可靠性建模与分析.液压与气动. 2006 (6): 29-31
    [35]苏春,王圣金,许映秋.基于蒙特卡洛仿真的液压系统动态可靠性.东南大学学报(自然科学版). 2006 (3): 370-371
    [36]贺小峰,王学兵,刘银水.先导式水压溢流阀的设计.中国机械工程. 2005, 16(18):162-162
    [37]刘银水,黄艳等.水压阀的研究与发展.液压与气动. 2001(5):10-13
    [38]弓永军.纯水液压控制阀关键技术研究: [博士学位论文].浙江大学. 2005
    [39]杨署东,李壮云.水压传动的发展及其关键基础技术.机床与液压. 2000(5): 6-9
    [40]朱碧海,李壮云,贺小峰等.水液压阀关键技术的研究.润滑与密封. 2004(3):132-133
    [41]赵恩刚,数字式纯水液压溢流阀的设计研究: [硕士学位论文].昆明理工大学. 2008
    [42]焦素娟.纯水液压柱塞泵及溢流阀关键技术的研究: [博士学位论文].浙江大学, 2004
    [43]刘银水,杨友胜等.中高压水压减压阀的研制.流体机械. 2007.35(3):10-13
    [44]刘银水,黄艳等.二级节流的性能分析及其在水压阀中的应用.机床与液压, 2005(5): 16-17
    [45]何存兴,张铁华等.液压传动与气压传动.武汉:华中科技大学出版社. 2000
    [46]李塔.插装式纯水液压电磁换向阀的研制: [硕士学位论文].华中科技大学. 2008
    [47]韩新苗,聂松林等.先导式水压溢流阀静动态特性的仿真研究.机床与液压, 2008, 36(10): 106-108
    [48]顾毅.纯水液压溢流阀及试验系统研究: [硕士学位论文].昆明理工大学. 2003
    [49]李壮云.液压元件与系统.北京:机械工业出版社, 2005
    [50]潘应君,周磊等.等离子在材料中的应用.武汉:湖北科学技术出版社, 2003
    [51] MaPTOBKaR HH.离子渗氮温度和时间对化合物层的影响[C].第五届国际材料热处理年会译文选.北京:机械工业出版社. 1988
    [52]周孝重,陈大凯等.等离子体热处理技术[M].北京:机械工业出版社. 1990: 146
    [53]李惠友,罗德福等. QPQ技术的原理与应用.北京:机械工业出版社. 2008. 6
    [54]黎桂江,彭倩等.QPQ盐浴氮化17-4PH不锈钢的显微组织分析.核动力工程.2007, 28(5)
    [55] Cai K Y, Wen C Y, Zhang M L. Fuzzy variables as a basis for a theory of fuzzy reliability in the possibility context. Fuzzy Sets and Systems,42(2),1991: 145-172
    [56] Utkin L V, Gurov S V. A general formal approach for fuzzy reliability analysis in the possibility context [J]. Fuzzy Sets and Systems, 83(2), 1996:203-213
    [57] Cheng C H, Mon D L. Fuzzy system reliability analysis by interval of confidence [J]. Fuzzy Sets and Systems. 56(1), 1993: 29-35
    [58]郭书详.非随机不确定结构的可靠性方法和优化设计研究: [博士学位论文].西北工业大学. 2003
    [59]付永领,祈晓野等. AMESim系统建模和仿真.北京:北京航空航天大学出版社, 2006
    [60]何海丽.基于AMESim的液压系统建模与仿真技术研究: [西北工业大学].西北工业大学, 2006
    [61]贺小峰,何海洋等.先导式水压溢流阀动态特性的仿真.机械工程学报. 2006, 42(1)
    [62]凌更成,罗金堂.液压传动实验指导书.北京:机械工业出版社. 1990, 11.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700