氧电极催化剂的制备及可充锌—空气电池工艺研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
双功能氧电极催化剂是二次锌-空气电池研制的关键问题之一;此外,空气电极的结构和锌电极的结构对二次锌-空气的性能也有极大的影响。本文对空气电极催化剂的合成、空气扩散电极的制作方法以及锌电极集流体进行了比较系统的探索和研究。采用改进的溶胶-凝胶法合成了钙钛矿型双功能氧电极催化剂LaNi0.8Co0.2O3。采用XRD、SEM、TEM对催化剂进行了表征和物相分析。用极化曲线、交流阻抗技术、恒流放电曲线等电化学手段对催化剂在7mol/L KOH溶液中的电化学性能进行了测试。
     采用改进的溶胶-凝胶法制备LaNi0.8Co0.2O3,在前驱体中按n(总金属离子):n(石墨)为1:1添加石墨,在不同温度下制得了催化剂氧化物,结果表明,其中以500℃下制得的催化剂团聚最小,催化活性最高,以此产物为催化剂制备的空气电极在-0.4V时电流密度能达到-230mA·cm-2;当以乙二醇和丙酮的复合溶剂代替去离子水作溶剂,在600℃下制得了钙钛矿型催化剂,催化剂粒径在20-30nm之间,以此产物为催化剂制备的空气电极在-0.4V时电流密度能达到-273mA·cm-2,并优化了其它制备条件。
     确定了可充空气电极的最佳配方,其中碳载体采用乙炔黑。催化层的最佳配方PTFE:乙炔黑:催化剂质量比为1:1:2,同时添加占催化层总质量16.7%的醋酸铅的造孔剂;防水层的最佳配方为,PTFE:乙炔黑质量比7:3,同时添加占防水层总质量4.7%的醋酸铅作造孔剂;空气电极采取催化层/导电网/防水透气层的结构。
     研究了可充锌-空气电池的制备工艺,辅助电极采用附钴泡沫镍具有最佳的析氧性能;锌电极集流体采取镀铅铜带能明显降低析氢腐蚀。以此工艺制备的锌-空气电池,在10A恒流放电、5.3A恒流充电的制度下能循环35次。
The bifunctional oxygen electrode catalyst is the one of key problem of secondary zinc-air battery. Additionally, the structure of air electrode and zinc electrode have a great influence on zinc-air battery.In this article, the preparation of the catalyst, air electrode and the current collector of zinc electrode were studied and explored systematically. The perovskite type oxides LaNi0.8Co0.2O3 was prepared by the improved sol-gel method. XRD, SEM and TEM were employed to characterize the prepared catalysts.The polarization curves, electrochemical impedence spectroscopy methods and the galvanostatic discharge curves were used to study the electrocatalytic performances of the prepared catalyst in 7 mol/L KOH solution.
     The perovskite catalyst was prepared by the improved sol-gel method, the graphite was added into precursor by the molar ratio of all metal ion to the graphite was 1:1.The catalyst was prepared under different calcination temperatures, The results showed that the catalyst had the lowest agglomerates and the best electrochemical performance at the calcination temperature of 500℃. The oxygen reduction current density was 230mA·cm-2 at the electrode potential of -0.4V(vs.Hg/HgO). When the solvent was mixed by glycol and acetone instead of deionized water, The catalyst was prepared at the calcination temperature of 600℃, the grain diameter could get to 20-30nm and the oxygen reduction current density was 273mA·cm-2 at the same condition, respectively, a series of factors were considered during preparing process.
     The best composition of the rechargeable air electrode was established. The acetylene black was applied as the gas diffusion electrode carrier. In the catalysis layer, the best quality ratio of the component of PTFE, acetylene black and catalyst was 1:1:2. When adding 16.7%wt lead acetate as pore forming material, the best quality ratio of PTFE and acetylene black was 7:3 in the waterproof layer, the lead acetate was added in the mass ratio of 4.7% of the waterproof layer. Finally, the component of air electrode were arrayed as catalysis layer/ current collector/waterproof layer.
     The preparation technology of the rechargeable zinc-air battery was analyzed. The air electrode has the best oxygen evolution property if the foamy nickel as a auxiliary electrode. The lead plating copper as the current collector of zinc electrode can decrease hydrogen corrosion remarkably. The zinc-air battery was fabricated, the discharging and recharging number of the battery attained 35 times when the galvanostatic discharge current was 10A and galvanostatic charge current was 5.3A.
引文
[1]Muller S,Haas O,Schlatter C, et al. Development of a 100W rechargeable bipolar zinc/oxygen battery[J]. Appl.Electrochem,1998,28:305-310
    [2]陈军,陶占良,苟兴龙.化学电源-原理、技术与应用[M].北京:化学工业出版社,2005,262-272
    [3]朱梅,徐献芝,苏润,等.碱性锌空气电池的新发展[J].电池工业,2004,9(3):149-151
    [4]程翔.钕锰钙钛矿型氧化物制备及氧还原催化性能研究:[硕士学位论文].长沙:中南大学,2009
    [5]文纲要,李长志,孙公权..燃料电池氧阴极催化剂的研究[J].电池,1999,29(3):110-112
    [6]Mukerjee S,Srinivasan S,Soriaga M P.Role of Structural and Electronic Properties of Pt and Pt Alloys on Electrocatalysis of Oxygen Reduction An In Situ xanes and exafs Investigation[J].Electrochem Soc.,2005,142(5):1409-1422
    [7]Min M K,Cho J,Cho K,et al.Microwave polyol synthesis of Pt/C catalysts with size-controlled Pt particles for methanol electrocatalytic oxidation[J]. Electrochim. Acta,2008,45(25-26):4211-4217
    [8]Mukerjee S,Srinivasan S.Enhanced electrocatalysis of oxygen reduction on platinum alloys in proton exchange membrane fuel cells[J]. Electroanal Chem, 1993,357:201-204
    [9]Shibli M A,Noel M.,Development and evaluation of platinum-ruthenium bimetal catalyst-based carbon electrodes for hydrogen/oxygen fuel cells in NaOH media [J].Power Sources,1993,45:139-152
    [10]Shim J,Yoo D Y,Lee J S.Characteristics for electrocatalytic properties and hydrogen-oxygen adsorption of platinum ternary alloy catalysts in PEFC[J]. Electrochimica. Acta 2000,45(12):1943-1952
    [11]Ryun S,Lee S B.Effect of surface groups on the electrocatalytic behaviour of Pt-Fe-Co alloy dispersed carbon electrodes in the pH osoric acid fuel cell[J]. Power Sources,1999,(77):170-177
    [12]Landsman D A,Luczak F J.USP:4880711,1988
    [13]Tamizhmani G,Capuano G A.Improved electrocatalytic oxygen reduction performance of platinum ternary alloy-oxide in solid-polymer-electrolyte fuel cells. [J]. Electrochem. Soc.,1994,141(4):968-975
    [14]Tamizhmani G,Capuano G A.Study of the Passive Film Formation on Al-Ta Alloys The Role of Al3Ta Precipitates in Breakdown [J]. Electrochem.Soc.,1994, 141(9):1132-1137
    [15]Li Y J,Chang C C,Wen T V.A mixture design approach to thermally prepared Ir-Pt-Au ternary electrodes for oxygen reduction in alkaline solution[J]. Appl. Electrochem.,1997,27:227-234
    [16]候雨风.锌-空气电池的研究[J].电源技术,1984,8(3):9-12
    [17]Jorissen L.Bifunctional oxygen/air electrodes [J]. Power Sources, 2006,155:23-32
    [18]吕鸣祥.扣式锌-空气电池的研究进展[J].电源技术,1987,11(3):21-26
    [19]Vasudevan P,Neelam M S.Electroreduction of oxygen on some novel cobalt phthalocyanine complexes[J]. Power Sources,1989,28:317-320
    [20]Swette L,Giner J.Oxygen electrodes for rechargeable alkaline fuel cells[J]. Power Sources,1988,22:399-408
    [21]Lamminen J,Juhani K S.Preparation of air electrodes and long run tests[J]. Electrochemical society,1991,138(94):905-908
    [22]Kiros Y, Schwartz S.Ryrolyzed macrocycles on high surface area carbons for the reduction of oxygen in alkaline fuel cells[J]. Power sources,1991,36 (4):547-555
    [23]Holze R,Vielstich W.The kinetics of oxygen reduction at porous teflon-bonded cell electrodes[J]. Electrochem Soc,1984,131(10):2298-2304
    [24]Wei Z D,Huang W H,Zhang S T,et al.Carbon-based air electrodes carrying MnO2 in Zinc-air batteries[J]. Power Sources,2000,91:83-85
    [25]Zhou D B, Lv X K, Liu D P.Electro-catalytic effect of manganese oxide on oxygen reduction at teflonbonded carbon electrode[J].Trans Nonferrous Met. Soc. China,2006,16:217-222
    [26]Prakash J, Tryk D, Alred W,et al.Transition-metal oxide electrocatalysts for O2 electrodes[J]. Power sources,1992,32(8):123
    [27]Shukla A K, Kannan A M, Hedge M S J, et al.[J].Power Sources,1991,35:163
    [28]Tenkortenaar M V,Vente J F D,Muller S,et al.[J].Power Sources,1995,56:51
    [29]Isabel M G,Alice C M, Pereira M I,et al.Effect of the Partial replacement of Fe by Ni and/or Mn on the electrocatalytic activity for oxygen evolution of the CoFe2O4 spinel oxide electrode[J].Electrochimica Acta,2002,47:4307-4314
    [30]Fradette N,Marsan B. Surface studies of CuxCo3-xO4 electrodes for the electrocatalysis of oxygen evolution[J].J.Electrochem.Soc.,1998,145(7):2320-327
    [31]Sebastian P J. Chemical synthesis and characterization of Mox-RuySez-(CO)n. electrocatalyst[J].Hydrogen Energy,2000,25:255-259
    [32]Rodriguez F J,Sebastian P J.MoxSez-(CO)n,electro-catalyst prepared by screen-printing and sinteting[J].Hydrogen Energy,2000,25:243-247
    [33]Trovarelli A,Zamar F,Lorea J,et al.Nanpophase fluorite-structured CeO2-ZeO2 catalyst prepared by high-energy mechanical milling analysis of lower-temerature redox activity and oxygen storage capacity [J]. Catal,1997,169 (2):490-500
    [34]Gina P,Claudia C,Octavio P,et al.Structural,magnetic and catalytic properties of perovskite-type mixed oxides LaMn1-yCoyO3 (y= 0.0,0.1,0.3,0.5,0.7,0.9,1.0) [J]. Journal of Molecular Catalysis,2008,282:158
    [35]Bursell M,Pirjamali M,Kiros Y.La0.6Ca0.4CoO3,La0.1Ca0.9MnO3 and LaNiO3 as bifunctional oxygen electrodes[J].Electrochim Acta,2002,47(10):1651-1657
    [36]Kahoul A, Hammouchea A, et al.Solvent effect on synthesis of perovskite-type La1-xCaxCoO3 and their electrochemical properties for oxygen reactions[J]. Materials Research Bulletin 2000,(35):1955-1966
    [37]Levasseur B,Kaliaguine S.Methanol oxidation on LaBO3(B=Co, Mn,Fe) perovskite type catalysts prepared by reactive grinding [J].Applied Catalysis A: General,2008,343:29
    [38]Abdelkrim K,Abderrezak H,Gerard P,et al.Electrocatalytic activity and stability of La1-xCaxCoO3 perovskite-type oxides in alkaline medium[J]. Catalysis Today,2004 (89):287-288
    [39]李大光,章弘毅,张鹤丰,等.钙钛矿型复合氧化物的研究与应用进展[J].材料导报,2006,20(6):296-297
    [40]王连驰,于作龙,吴越.稀土催化新貌[J].稀土,1990,11(5):36-49
    [41]Hyodo T,Hayashi M, Miura N, et al.Catalytic activities of rare-earth manganites forcathodic rduction of oxygen in alkaline solution[J]. Electrochem.Soc.,1996, 143(11):1266-1267
    [42]Wu N L,Liu W R,Su S J.Effect of oxygenation on electrocatalysis of La0.6Ca0.4CoO3-x in bifunctional air electrode[J]. Electrochim.Acta,2003,47:1-5
    [43]Bursell M,Pirjamali M,Kiros Y.La0.6Ca0.4CoO3 La0.1Ca0.9MnO3 and LaNiO3 as bifunctional oxygen electrodes[J].Electrochim.Acta,2002,47:1651-1660
    [44]冉锐,吴晓东,翁端.稀土钙钛矿催化剂制备方法的研究进展[J].电源技术,2004,25(5):46-49
    [45]宋崇林,王军,沈美庆,等.干燥条件对纳米晶体LaCoO3的结构与合成机理的影响[J].应用化学,1998,15(5):65-67
    [46]张喜梅,李琳,郭祀远,等.用溶胶-凝胶法制备纳米粉体时聚集现象的探讨[J].化学工业与工程,2000,17(3):155-159
    [47]梁新义,秦永宁,齐晓周,等.超声共沉淀法制备LaCoO3纳米晶的研究[J].化学物理学报,1998,11(4):375-378
    [48]宋世栋,唐致远,潘丽珠,等.双功能氧电极催化剂LaNiO3掺杂改性的研究[J].天津大学学报,2006,39(1):774-779
    [49]Neng Li,Yan X M, Zhang W J,et al. Electrocatalytic Activity Of Spinel-type Oxides LiMn2-xCoxO4 With Large Specific Surface Areas For Metal-air Battery [J]. Power Sources,1998,74:256-257
    [50]朱志杰,唐有根,宋永江,等.钙钛矿催化剂的改性与性能研究[J].功能材料,2007,11(38):1834-1836
    [51]魏子栋,李莉,李兰兰,等.氧电极催化材料的研究现状[J].电源技术,2004,28(2):117-119
    [52]Matsumoto Y,Yoneyama H, Tamura H.On the intermediates in electrooxidation of nickel amalgam in aqueous solutions of halogen and pseudohalogen ion[J]. Electroanalytic-al Chemistry,1977,78(2):319-324
    [53]Tseung A C.Semiconducting oxide oxygen electrodes,Journal of Electrochemistr-y[J].Society,1978,125(10):1660-1664
    [54]Van B F R,Broers G H J,Boesveld C, et al.An electrochemical method for the determination of oxygen ion diffusion coefficients in La1-xSrxCoO3-y compounds[J]. Electroanalytical Chemistry,1978,87(3):389-394
    [55]Yeager E. Electrocatalysts for O2 reduction[J].Journal of Electrochimica Acta, 1984,29(11):1527-1537
    [56]Shimizu Y, Nemoto A,Hyodo T,et al.Gas diffusion-type oxygen electrodes using perovskite-type oxides for rechargeable metal-air batteries[J].Denki Kagaku, 1993,61:1458-1460
    [57]Bockris J O'M.,T.Otagawa[J].Phys.Chem.1983,87:3654
    [58]Bockris J O'M.,T.Otagawa[J].Electrochem.Soc.1984,131:290
    [59]Miles M H, Huang Y H, Srinivasan S[J].Electrochem.Soc.1978,125:1931
    [60]Bockris J O'M.Mechanism of oxygen evolution perovskites[J]. Physical Chemistry, 1983,87(15):2960-2971
    [61]ShimizuY,Uemura K,Matsuda H,et al.Bifunctional oxygen electrode using large surface area La1-xCaxCoO3 for rechargeable metal-air battery[J]. Electrochem. Soc.,1990,137(11):3430-3433
    [62]Wang X Y,Sebastian P J, Smit M A,et al.Studies on the oxygen reduction catalyst for zinc-air battery electrode[J]. Power Sources,2003,124:278-284
    [63]HU J, Shao G G, Huang H,et al.Preparation of nanometer perovskite-type oxide La0.8Sr0.2MnO3 by organic solvent sol-gel method and capability testing [J].Rare Metals,2008,27(2):131
    [64]Youichi S,Kenchi U,Haruyuki M J.Bifunction oxygen electrode using large surface area La1-xCaxCoO3 for rechargeable metal-air batteries[J].Electrochem. Soc,2000,137:3430.
    [65]Hideaki M J.Reduction of lead migration during drying of a gel[J].Non Cryst.Solids,1990,121:61
    [66]钟子宜,曹学强,曾跃,等.纳米钙钛矿型氧化物制备及催化性能[J].分子催化,1997,11(2):95-100
    [67]Zhou D B,Vander pooren H.Electrochemical characterisation of oxygen reduction on Teflon-bonded gas diffusion electrodes[J].Electrochimica Acta,1995,40(12):1823-1824
    [68]Hajime A,Stefan M,Otto H.AC Impedance Analysis of Bifunctional Air Electrodes for Metal-Air Batterries[J].Electrochem.soc,2000,147(10):3584-3589
    [69]Zhou D B, Huang K L, Zhang S M. Oxygen reduction on teflon-bonded carbon electrode[J]. Trans.Nonferrous Met.Soc.China,2004,14(4):820-821
    [70]魏子栋,燃料电池电催化剂材料及空气电极传质过程的研究:[博士学位论文].天津:天津大学,1993
    [71]冯燕,杨占红,谷鹏,等.氧电极气体扩散层的研究[J].电池,2006,36(2):96
    [72]尹屹峰,锌空气电池氧电极制备工艺及催化剂的研究:[硕士学位论文].哈尔滨:哈尔滨工业大学,2005
    [73]黄辉,张文魁,赵峰鸣,等.纳米碳管空气电极在氧还原反应中的电催化性能[J].应用化学,2002,19(8):761-762
    [74]刘业翔.功能电极材料及其应用[M].长沙:湖南中南工业大学出版社,1996,266-276
    [75]杨绮琴,方北龙,童叶翔.应用电化学[M].广州:广州中山大学出版社,2001,88-89.
    [76]John O M B,Takaaki O.The Electrocatalysis of Oxygen Evolution Perovskites [J]. Electrochemistry Society,1984,131(2):290-302
    [77]Lu P W T,Srinivasan S J.Electrochemical Ellipsometric studies of oxformed on nickel during oxygen evolution[J]. Electrochemistry 1978,125 (9):1416-1422
    [78]Hall D E,Ni(OH)2 Impregnated anode for alkaline water electrolysis[J]. Electro-chemistry Society,1983,2(130):317-321
    [79]夏熙.锌电极[J].电池工业,2007,12(2):140-142
    [80]谢波.锌-空电池负极的研究:[硕士学位论文].重庆:重庆大学,2001
    [81]Alder T C,Mclarnon F R,Cairns E T.Low-zinc-solubility electrolytes for use in zinc-nickel oxide cells[J]. Electrochem Soc,1993,140(2):289-293
    [82]Alder T C,Mclarnon F R,Cairns E T.Proceedings of the 22nd Intersociety Energy Conversion Engineering Conference.[J].AIAA,1987,1097
    [83]McBreen J,Gannon E.The electrochemisty of metal oxide additives in pasted zinc electrodes [J]. Electrochim Acta,1981,26(10):1439
    [84]McBreen J,Gannon E.The effect of additives on current distribution in pasted zinc electrodes [J]. Electrochem Soc,1983,130 (10):1980-1982
    [85]蔡传.密封性锌空电池[P].CN:200310106308.6,2005
    [86]刘小锋,唐有根,宋永江,等.锌-空气电池负极集流体析氢性能研究[J].电池工业,2009,14(2):90-92

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700