CO_2中空纤维膜解吸过程的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
中空纤维膜解吸过程作为一种新型的低能耗CO_2解吸工艺,结合了中空纤维膜接触器作为传质分离设备的优点以及热解吸过程的优点。中空纤维膜接触器具有巨大的传质比表面积,可以有效地提高解吸过程的传质传热效率。在中空纤维膜解吸工艺中,气、液两相分别在膜的两侧流动,不仅可以避免传统解吸设备的雾沫夹带、液泛等操作问题,并且气液两相可以独立调节,增大了解吸过程的操作弹性,可以通过分别调节气、液两相的操作条件,同时达到提高解吸效率、降低解吸能耗的目的。
     论文使用PP(聚丙烯)和PTFE(聚四氟乙烯)中空纤维膜接触器,研究了吸收剂种类、吸收剂浓度、解吸温度、液相流速、气相操作条件、膜材料和膜器结构参数等因素对膜解吸过程解吸效率和解吸能耗的影响,初步探索了膜解吸过程的传质机理,分析了各影响因素对膜解吸过程解吸效率和解吸能耗的作用机制。实验结果表明,增大吸收剂浓度、吸收剂中CO_2的负载量、解吸温度、以及液相流速均可以提高CO_2的解吸效率,而气相操作条件则对CO_2解吸效率影响甚微;增大吸收剂的浓度、解吸温度和液相流速,可以降低膜解吸过程中吸收剂的升温能耗;增大吸收剂浓度、气相采用低流速的正压吹扫方式、降低解吸温度可以降低解吸过程中水的蒸发能耗,而液相流速对水的蒸发能耗影响较小。
     论文研究表明,在液相流速为227.46cm·min~(-1),气相采用14.0cm·s~(-1)°的正压吹扫方式,解吸温度为90C的较优操作条件下,使用PP中空纤维膜接触器对5.0mol·L~(-1)的MDEA饱和溶液进行循环解吸,解吸开始的前20分钟内,解吸率迅速增大至90%,到第6分钟时,解吸率已经达到80%,而解吸能耗只有105.55KJ·mol~(-1)CO_2,远远低于常规解吸的180-200KJ·mol~(-1)CO_2。
As a new type of low-power CO_2desorption process,The CO_2desorption process in hollow fiber membrane contactors combined withboth the advantages of a hollow fiber membrane contactor as the masstransfer separation device and the thermal desorption process. The hollowfiber membrane contactor which has a large mass transfer area in pervolume can effectively improve the heat and mass transfer efficiency ofthe desorption process. In the CO_2desorption process in hollow fibermembrane contactors, respectively the gas phase and liquid phase flow oneach side of the membrane, It not only can avoided the operationalproblems such as entrainment, flooding which happened in the traditionaldesorption equipment, but also the gas phase and liquid phase can beadjusted independently, therefore the operation has larger elasticity. Inhollow fiber membrane contactors, liquid phase and gas phase can beadjusted independently, so it is feasible that adjusting the liquid conditionto improving the desorption efficiency and changing gas phase condition to reducing the energy consumption synchronously.
     In this paper, the PP and PTFE hydrophobic porous hollow fibermembrane contactors which have huge interfacial area per volume hasbeen used for carbon dioxide desorption. The effect of various parameterssuch as the absorbent types, the concentration of MDEA solution, flowrate of liquid phase and gas phase, temperature, the operating conditionsof gas phase, membrane materials and the device structure parameters ofmembrane contactors on CO_2desorption efficiency and energyconsumption were investigated, and high desorption ratio and masstransfer flux were obtained, the energy consumption reduced on the sametime. The mass transfer mechanism of the desorption process in hollowfiber membrane contactors has been investigated. The experimentalresults show that the carbon dioxide desorption efficiency was improvedby the increasing of the concentration of MDEA, the saturation level ofCO_2in absorbent, the temperature, liquid flow rate and mass transferarea. However, the gas phase condition had little effect on CO_2desorptionefficiency but obvious effect on energy consumption in membranecontactors. The reheating energy consumption of CO_2desorptionprocess in hollow fiber membrane contactors can be reduced byincreasing MDEA concentration and liquid flow rate. The evaporationheat of water can be reduced by increasing MDEA concentration andreducing gas phase flow rate when the tube side of contactor was taken sweeping with positive pressure, but it is useless by changing the liquidflow rate. The effect of desorption temperature on the desorption energyconsumption was restricted by the gas operating conditions.
     The performance of desorption efficiency and energy consumptionin membrane desorption process is excellent. In the optimal conditionswhich liquid flow rate was227.46cm·min~(-1), the gas flow rate was14.0cm·s~(-1), the desorption temperature of90°C, the desorption ratio increasedrapidly to over90%when CO_2was released from5.0mol·L~(-1)MDEAsolution in PP hollow fiber membrane contactor within began20minutesthe desorption rate has reached80%at6th minute, while the desorptionenergy consumption is only105.55KJ·mol~(-1)CO_2which was far lowerthan the conventional desorption180-200KJ·mol~(-1)CO_2.
引文
[1]UNFCCC, Durban Climate Change Conference-November2011, http://unfccc.int/-2860.php.
    [2]UNFCCC, FCCC/SBSTA/2008/INF.3,25September2008.
    [3]杨志,张洪国.气候变化与低碳经济、绿色经济、循环经济之辨析[J].广东社会科学,2009年,6期:34-42.
    [4]裴莹莹等.中国发展低碳经济的若干思考[J].环境科技,2009年12月,22(6):68-72.
    [5]齐凌翘等.低碳经济中国的困境、迷思与破局[J].科技与经济画报,2009年,6期:1-4.
    [6]周洁,王云珠.国内外发展低碳经济的启示[J].科技创新与生产力,2011年第5期.
    [7]韩玉杰. CO_2捕集和封存技术的现状、前景与挑战[J].应用能源技术,2009年第6期.
    [8]赵毅等.燃煤电厂CO_2捕集分离技术研究现状机器展望[J].热力发电,2011年第6期.
    [9]薛全民等.甲基二乙醇胺水溶液吸收CO_2的研究[J].化学工程,2009年第9期.
    [10]桂霞,汤志刚,费维扬.高压下CO_2在几种物理吸收剂中的溶解度测定[J].化学工程,2011年,06期,55-58.
    [11]H.J.Herzog. The economics of CO_2separation and capture. MIT Energy Laborator-y, Cambridge, USA.1997.
    [12]赵立中.关于火电厂CO_2回收、利用问题[J].华中电力,1997,10(2):52-54.
    [13]Robert L.K., D.E.K.. Carbon sequestration: an option for mitigating global clima-te change. http://www.aiche.org/cep/,2001.
    [14]德国E.ON公司将建立世界最先进燃煤电厂[EB/OL]. http://www.CO_2-China.com/art-icl.asp?id=14901,2006.
    [15]Evangelos Tzimas, Calin-Cristian Cormos, Stathis D. P. Trade-off in emissions ofacid gas pollutants and of carbon dioxide in fossil fuel power plants with carboncapture. Energy Policy,2007(doi:10.1016/j.enpo1.2007.01.027).
    [16]Davison, et al. Performance and costs of power plants with capture and storageof CO_2[J]. Energy,2007,32:11631176.
    [17]邓丹.变压吸附法脱除烟气中二氧化碳的实验研究[D].华中科技大学,2008.
    [18]李刚等.优化变压吸附脱碳工艺减少有效气体损耗[J].小氮肥,2005,第6期,8-10.
    [19]王志等.分离CO_2膜技术[J].膜科学与技术,2011年第3期:11-17.
    [20]王志,张莉莉,张颖,等.分离CO_2的促进传递膜[J].膜科学与技术,2003,23:166-171.
    [21]Pandey P, Chauhan R S. Membranes for gas separation [J]. Prog Polym Sci,2001,26:853-893.
    [22]Ho M T, Allison G W, Wiley D E. Reducing the cost of CO_2capture from fluegases using membrane technology [J]. Ind Eng Chem Res,2008,47:1562-1568.
    [23]ZhangQi.; E.L.Cussler, Hollow fiber gas membrane[J]. AICEh.J1985,31(9):1548-1553.
    [24]ZhangQi.; E.L.Cussler. Microporous hollow fibers for gas absorptionⅠ. Mass tran-sfer in the liquid [J]. J. Membr.Sci.,1985,23:321-332.
    [25]ZhangQi.; E.L.Cussler. Microporous hollow fibers for gas absorptionⅡ. Mass tran-sfer across the membrane [J]. J. Membr.Sci.,1985,23:333-345.
    [26]V.Y. Dindore, D.W.F. Brilman, F.H. Geuzebroek, G.F.Versteeg. Membrane–solventselection for CO_2removal using membrane gas-liquid contactors[J]. Sep. Pur.&Tech.,2004,40:133-145.
    [27]V.Y. Dindore, D.W. F. Brilman, G.F.Versteeg. Hollow fiber membrane contactor asa gas-liquid model contactor [J]. Chem. Eng. Sci,2005,60:467-479.
    [28]P. Cote, J.-L. Bersillon. A. Huyard, G. FauP, Bubble-free aeration using membrans;mass transfer analysis[J]. J. Membr. Sci.1989,47:91-106.
    [29]Vincenza Calabro. A theoretical analysis of transport phenomena in a hollow fibermembrane bioreactor with immobilized biocatalyst[J]. J. Membr. Sci.2002,206:217-241.
    [30]Ahmed, M.J. Semmens. Use of transverse flow hollow fibers for bubbleless mem-brane aeration[J]. water Res,1996,30:440-446.
    [31]郭占虎,史季芬,徐静年等.中空纤维膜组件分离酸性气体[J].化工冶金,2000,21(3):268-273.
    [32]刘涛,史季芬,徐静年,等.中空纤维膜气体溶剂吸收分离过程[J].化工冶金,1999,20(1):11-16.
    [33]M.Gambini, M.V.. CO_2emmission abatement from fossil fuel power plants by eg-gsaust gas treatment. Proceedings of2000international power generation confere-nce [J]. Miami bech, Florida,2000, July:23-26.
    [34]J. Zhang, S. Zhang, K. Dong, Y. Zhang, Y. Shen, X. Lv, Supported absorption ofCO_2by tetrabutylphosphonium amino acid ionic liquids[J]. Chemistry A Europe-an Journal12(2006)4021-4026.
    [35]Prachi Singh, Geert F. Versteeg. Structure and activity relationships for CO_2rege-neration from aqueous amine-based absorbents[J]. Process safety and environmentprotection86(2008)347–359.
    [36]P.H.M. Feron, A.E.Jansen. Capture of carbon dioxide using membrane gas absorpt-ion and reuse in the horticultural industry. Energy Conversion and Management.1995.36(6-9),411-414.
    [37]高明. MDEA脱碳再生塔液泛与工况优化[J].天然气化工,2007,32(3):52-55.
    [38]A. Mansourizadeh, A.F. Ismail. CO_2stripping from water through porous PVDFhollow fiber membrane contactor[J]. Desalination,2011,273:386-390.
    [39]Sakarin Khaisri, David deMontigny, Paitoon Tontiwachwuthikul, Ratana Jiraratanan-on. Membrane Contacting Process for CO_2Desorption [J]. Energy Procedia,2011,4:688–692.
    [40]Bai H., Yeh A.C.. Removal of CO_2greenhouse gas by ammonia scrubbing[J]. Ind.Eng. Chem. Res.,1997,36:2490-2493.
    [41]Yeh J.T., Resnik K.P., Rygle K., Pennline H.W., Semibatch absorption and regene-ration studies for CO_2capture by aqueous ammonia [J]. Fuel Process.Technol.,2005,86:1533-1546.
    [42]万方.聚合离子液体的合成及其对二氧化碳吸收性能的研究[D].南京信息大学,2011.
    [43]Blanchard L.A., Hancu D., Bechman E.J., Brennecke J.F., Greenhouse Processingu-sing ionic liquids and CO_2[J]. Nature,1999,399:28-29.
    [44]Schilderman A.M., Raeissi S., Peters C.J., Solubility of carbon dioxide in the ion-ic liquid l-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide[J]. Fluid Ph-ase Equilibr.,2007,260:19-22.
    [45]Anthony J.L., Kaki S.N.V., Maginn E.J., Brennecke J.F., Feasibility of using ionicliquids for carbon dioxide capture[J]. Int. J. Environ. Technol. Manage.,2004,4:105-115.
    [46]Klara S.M., Figueroa J.D., Maginn E.J., Design and evaluation of ionic liquids asnovel absorbents.2004, Available at http://www.osti.gov/bridge/servlets.
    [47]Mandal B.P., Bandyopadhyay S.S., Simulation absorption of carbon dioxide and h-ydrogen sulfide into aqueous blends of2-amino-2-methyl-1-propanol and diethano-lamine[J], Chem. Eng. Sci.,2005,60:6438-6451.
    [48]Mimura T., Suda T., Honda A., Kumazawa H., Kinetics of reaction between carb-on dioxide and sterically hindered amines for carbon dioxide recovery from pow-er plant flue gases [J]. Chem. Eng. Comm.,1998,170:245-260.
    [49]王金莲.吸收CO_2的新型化学吸收剂和工艺研究[D].浙江大学,2007.
    [50]李正西,秦旭东,宋洪强,等.聚乙二醇二甲醚与醇胺的复配.天然气技术,2008,2(4):45-48.
    [51]李正西,秦旭东,宋洪强,等.聚乙二醇二甲醚与醇胺的复配探讨.河南化工,2009,26(2):44-47.
    [52]Feron P.H.M., ten Asbroek N., New solvents based on amino-acid salts for CO_2capture from flue gases [C].7thInternational Conference on Greenhouse Gas Co-ntrol Tchnologies (GHGT-7),2004, Vancouver, Canada.
    [53]Kumar P.S., Hogendoorn J.A., Feron P.H.M., Versteeg G.F., Density, viscosity, sol-ubility, and diffusivity of N2O in aqueous amino acid salt solutions [J]. J. Chem.Eng. Data.,2001,46:1357-1361.
    [54]Holst J. van., Versteeg G.F., Brilman D.W.F., Hogendoorn J.A., Kinetic study ofCO_2with various amino acid salts in aqueous solution[J]. Chem. Eng. Sci.,2009,64:59-68.
    [55]陈健,郑错,陈伟,费维扬.二氧化碳减排的紧迫性及其分离技术的发展[C].第十届中国科协年会第18分会场:二氧化碳减排和绿色化利用与发展研讨会,郑州,2008:10-13.
    [56]费维扬,任钟旗.萃取塔设备强化的研究和应用[J].化工进展,2004,23(1):12-16.
    [57]Gabelman A, Hwang S T. Hollow fiber membrane contactors[J]. J Mem Sci,1999,159:61-106.
    [58]Albrecht W, Hilke R, Kneifel K, et a1. Selection of microporous hydrophobic me-mbranes for use in gas/liquid contactors: An experimental approach [J]. J MembrSci,2005,263:66-76.
    [59]Yeon S H, Lee K S, Sea B, et a1. Application of pilot-scale membrane contactorhybrid system for removal of carbon dioxide from flue gas[J]. J Mem Sci,2005,257:156-160.
    [60]Korikov A P, Sirkar K K. Membrane gas permeance in gas liquid membrane con-tactor systems for solutions containing a highly reactive absorbent [J]. J MembrSci,2005,246:27-37.
    [61]Kreulen H, Smolders C A, Versteeg G F, et al. Determination of mass transfer ra-tes in wetted and non-wetted microporous membranes[J]. Chemical EngineeringScience,1993,48(11):2093-2102.
    [62]Richard W B. Membrane technology and applications[M]. McGraw-Hill: New Yor-k,2000,1-25.
    [63]Feron P H, Jansen A E. CO_2separation with polyolefin membrane contactors anddedicated absorption liquids: performances and prospects[J]. Separation and Purif-ication Technology,2002,27(3):231-242.
    [64]Ghosh A C, Borthakur S, Dutta N N. Absorption of carbon monoxide in hollowfiber membranes[J]. Journal of Membrane Science,1994,96(3):183-192.
    [65]Karoor S, Sirkar K K. Gas absorption studies in microporous hollow fiber memb-rane mudules[J]. Ind. Eng. Chem. Res,1993,32:674-684.
    [66]Lee Y, Noble R D, Yeom B Y, et al. Analysis of CO_2removal by hollow fibermembrane contactors[J]. Journal of Membrane Science,2001,194(1):57-67.
    [67]R.M.C. Viegas, M.Rodriugez, S.Lugue, J.R.Alvaerz, I.M.Coelhoso. Mass transfercorrelations in membrane extraction: analysis of Wilson-plot methodology [J]. J.Membr. Sci.,1998,145:129-138.
    [68]A.B. Shelekhin.; I.N. Beckman, Gas separation processes in membrane absorber[J]. J.Membr. Sci.1992,73(l):73-83.
    [69]Katja Simons, Kitty Nijmeijer, MatthiasWessling. Gas–liquid membrane contactorsfor CO_2removal [J]. J. Membr. Sci.,2009,340:214-220.
    [70]Sirichai Koonaphapdeelert, ZhentaoWu, K. Li, Carbon dioxide stripping in ceramichollow fibre membrane contactors [J]. Chemical Engineering Science64(2009)1–8.
    [71]Teramoto M., Kitada S., Ohnishi N., Matsuyama H., Matsumiya N., Separation a-nd concentration of CO_2by capillary-type facilitated transport membrane modulewith permeation of carrier solution [J]. J. Membr. Sci.,2004,234:83-94.
    [72]TeramotoM., Ohnishi N., Takeuchi N., Kitada S., Matsuyama H., Matsumiya N.,Mano H., Separation and enrichment of carbon dioxide by capillary membranemodule with permeation of carrier solution[J]. Sep. Purif. Technol.,2003,30:215-217.
    [73]Matsumiya N., Teramoto M., Kitada S., Matsuyama H., Evaluation of energy con-sumption for separation of CO_2in flue gas by hollow fiber facilitated transportmembrane module with permeation of amine solution[J]. Sep. Purif. Tech,2005,46:26-32.
    [74]Kazuhiro Okabe, Hiroshi Mano, Yuichi Fujioka. Separation and recovery of carbondioxide by a membrane flash process [J]. International journal of greenhouse gascontrol.2008,2:485-491.
    [75]Kazuhiro Okabe, Hiroshi Mano, Yuichi Fujioka, Preliminary estimations of energyand cost for CO_2recovery by a membrane flash process utilizing waste thermalenergy [J]. International Journal of Greenhouse Gas Control,2010,4:597-602.
    [76]晏水平.膜吸收和化学吸收分离CO_2特性的研究[D].浙江大学,2009.
    [77]Sakarin Khaisri, David deMontigny, et al. CO_2stripping from monoethanolamineusing a membrane contactor[J]. Journal of Membrane Science,2011,376:110-118.
    [78]Kreulen, H., Smolders, C.A., Versteeg, G.F., van Swaaij, W.P.M.,1993. Microporo-us hollow fibre membrane modules as gas–liquid contactors part2. Mass transferwith chemical reaction. Journal of Membrane Science78(3),217–238.
    [79]Lévêque, M.A.,1928. Les lois de la transmission de chaleur par convection. Ann-ales des mines13,201–299.
    [80]时钧,袁权,高从堦.膜技术手册[M].北京:化学工业出版社,2001.
    [81]Rogers J D, Long R L. Modeling hollow fiber membrane contactors using film t-heory, Voronoi tessellations, and facilitation factors for systems with interface rea-ctions[J]. Journal of Membrane Science,1997,134(1):1-17.
    [82]G.F. Versteeg, W.P.M. Van Swaaij, Solubility and diffusivity of acid gases (CO_2,N2O) in aqueous alkanolamine solutions [J]. Chem. Eng. Data,1988,33:29-34.
    [83]Astarita, G. Chemical Desorption. In Mass Transfer with Chemical Reaction in M-ultiphase Systems; Alper, E., Ed.; Martinus Nijhoff Publishers: The Hague,1983;Vol.1:37-53.
    [84]Astarita, G.; Savage, D. W. Gas Absorption and Desorption With Reversible Insta-ntaneous Chemical Reaction. Chem. Eng. Sci.1980b,35,1755.
    [85]Raphael Idem, Mohamed Edali, Ahmed Aboudheir. Kinetics, Modeling, and Simul-ation of the Experimental Kinetics Data of Carbon Dioxide Absorption into Mix-ed Aqueous Solutions of MDEA and PZ using Laminar Jet Apparatus with a N-umerically Solved Absorption-Rate/Kinetic Model[J]. Energy Procedia1(2009):1343–1350.
    [86]Kazuya Goto, Hiromichi Okabe, Shinkichi Shimizu, Masami Onoda and Yuichi F-ujioka. Evaluation Method of Novel Absorbents for CO_2Capture[J]. Energy Proc-edia1(2009)1083–1089.
    [87]Rajabzadeh S, Yoshimoto S, Teramoto M, AlMarzouqi M, Matsuyama H. CO_2ab-sorption by using PVDF hollow fiber membrane contactors with various membra-ne structures[J]. Separation and Purification Technology,2009,69:210-220.
    [88]Su-Hsia Lina, Kuo-Lun Tungb, Wei-Jie Chen, Hao-Wei Chang. Absorption of car-bon dioxide by mixed piperazine-alkanolamine absorbent in a plasma-modified po-ly-propylene hollow fiber contactor[J]. Journal of Membrane Science,333(2009):30-37.
    [89]Francis Bougie and Maria C. Iliuta. CO_2Absorption into Mixed Aqueous Solutio-ns of2-Amino-2-hydroxymethyl-1,3-propanediol and Piperazine[J]. Ind. Eng. Che-m. Res.,2010,49,1150-1159.
    [90]Guo-Wen Xu, Cheng-Fang Zhang, Shu-Jun Qin, Wei-Hong Gao, and Hua-Bin Liu.Gas Liquid Equilibrium in a CO_2-MDEA-H2O System and the Effect of Piperaz-ine on It[J]. Ind. Eng. Chem. Res.,1998,37,1473-1477.
    [91]Wolfram B ttinger, Michael Maiwald, Hans Hasse. Online NMR Spectroscopic Study of Species Distribution in MDEA-H2O-CO_2and MDEA-PIP-H2O-CO_2[J]. Ind.Eng. Chem. Res.,2008,47,7917-7926.
    [92]Viktor Ermatchkov, Gerd Maurer. Solubility of carbon dioxide in aqueous solution-s of N-methyldiethanolamine and piperazine: Prediction and correlation[J]. FluidPhase Equilibria,302(2011)338-346.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700