直接甲醇燃料电池膜电极的制备及电化学性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
膜电极(MEA)是直接甲醇燃料电池(DMFC)的核心部件, MEA的性能较大程度地决定了DMFC的电池性能,因此制备高性能的MEA就显得非常重要。本论文针对主动式和自呼吸式DMFC的MEA进行了研究,包括MEA的制备方法和MEA催化层与扩散层组成与结构的优化,同时分析了MEA热压工艺的影响机制以及MEA的活化机制,并考察了主动式DMFC的工作条件。
     系统研究了MEA热压工艺(热压温度、热压压力和热压时间)对电极结构与性能的影响,并利用电化学阻抗谱(EIS)分析了MEA热压工艺的影响机制。研究表明采用135℃热压温度,80 kg·cm-2热压压力,热压时间为90 s制备的MEA性能较好,在电池温度为80℃时,最大功率密度可达到46.0mW·cm-2,此MEA具有较小的欧姆电阻、电化学反应电阻和传质阻抗。
     比较了不同的MEA催化层的制备工艺,SEM(Scanning electronmicroscopy)和AFM(Atomicforcemicroscopy)等分析结果表明,刮涂法制备的催化层表面裂纹较少,表面粗糙度较小,其MEA性能较好,并发现催化层表面形貌和表面粗糙度对MEA性能影响较小。同时优化了膜电极催化层中Nafion含量,发现阳极和阴极催化层中最佳的Nafion含量分别为34mass %和28 mass %,膜电极催化层中最佳的Nafion含量与催化层内催化剂的金属含量无关。
     优化了MEA阳极扩散层的组成与结构,发现采用未浸渍聚四氟乙烯(PTFE)的碳纸作为阳极扩散层基底,碳粉与10 mass % Nafion混合物作为阳极微孔层的MEA性能最好。通过自制可视化单体电池,研究阳极产物CO2在不同阳极扩散层的析出和传质规律,发现憎水型阳极扩散层不利于阳极产物CO2的顺利排出。优化了MEA阴极扩散层的组成,发现阴极扩散层基底中较佳的PTFE含量为16 mass %。PTFE含量较少(20 mass %PTFE)的阴极微孔层有利于缓解阴极催化层的水淹,提高MEA的长时间放电性能。
     考察了不同MEA活化方法对MEA的结构与性能的影响,通过EIS和电化学活性面积的测试并辅以SEM和XRD(X-ray diffraction)分析,对MEA活化机制进行研究,结果表明MEA中催化剂颗粒在活化过程中会发生长大,但活化过程可以打开电极的孔结构,提高电极的电化学活性面积。详细考察了主动式DMFC的工作条件,发现阳极甲醇水溶液的浓度更大程度地决定DMFC的性能,甲醇水溶液的流量对DMFC性能影响较小。对于主动式DMFC,不需要对阴极氧气进行加湿处理。
     针对自呼吸式DMFC阴极存在较严重的水淹问题,设计了“内吸水”和“外吸水”两种自呼吸式MEA阴极结构。研究发现,在MEA阴极微孔层添加15 mass %的SiO2而构成“外吸水”式阴极结构,有利于提高MEA的性能,并可以提高阴极扩散层的亲水性及其排水能力,缓解阴极的水淹。另外,设计了一种“集流体内置型”自呼吸式DMFC的MEA新结构,把原本用作阴极集流体的薄金属网直接嵌入阴极催化层中。相比传统型MEA,此新型MEA具有更小的欧姆电阻、较好的氧气传输性和水管理能力,MEA的最大功率密度提高了10.3 %。
The membrane electrode assembly (MEA) was a key component of directmethanol fuel cell (DMFC), and the performance of the DMFC was greatly dependenton the performance of MEA. In this thesis, the MEAs of the active DMFC andair-breathing DMFC were investigated. The MEA fabrication methods were studied,and the compositions and the structures of the catalyst layers and gas diffusion layers(GDLs) of the MEAs were optimized. The mechanism of the effect of MEAhot-pressing technologies, and the mechanism of MEA activation were also analysed.Moreover, the operation parameters of active DMFC were studied.
     The effects of the MEA hot-pressing technologies (hot-pressing temperatures,pressures and time) on the performances and structures of the MEA were detailedlyinvestigated. The mechanism analysis of the effects of MEAhot-pressing technologieswere revealed by electrochemical impedance spectroscopies (EIS). It was concludedthat the MEA which was hot pressed at 135℃under 80 kg cm-2 for 90 s showed thehighest power density (46.0 mW·cm-2 at cell temperature of 80℃), and the MEA hadthe lower cell resistance, electrochemical reaction resistance and diffusion resistance.
     The fabrication methods for MEA catalyst layers were investigated. SEM andAFM analyses revealed that the scraping method was a little more profitable forimproving the cell performance due to the more flat and smooth (the surface roughnesswas lower) surface of the scraped catalyst layer. It was concluded that the surfacemorphology and roughness of the catalyst layer had less effect on the performance ofthe MEA. The optimum Nafion content in the catalyst layer was also investigated, andthe optimum Nafion content in the anode and cathode catalyst layer was 34 mass %and 28mass %, respectively. The optimum Nafion content in the catalyst layer was notrelated to the metal content of the catalyst.
     The compositions and the structures of anode GDL were optimized. It wasrevealed that the MEA which consisted of the untreated carbon paper and hydrophilicanode micro-porous layer (comprised carbon black and 10mass% Nafion) showed thebest performance. The evolution and diffusion characteristics of anode CO2 gasbubbles on different anode GDLs were investigated using home-made transparentsingle cell. It was observed that the hydrophobic anode GDL was not helpful for improving the CO2 gas transport in the anode GDL. It was found that the optimumPTFE content in the cathode backing layerwas 16 mass%. The MEA with much lowerPTFE content (20mass % PTFE) in the cathode MPL was more beneficial for cathodewater releasing and the long-term operation.
     The effects of MEA activation methods on the structures and performances of theMEAs were studied. And the MEA activation mechanism was investigated by EIStests, electrochemical surface areas tests, SEM and XRD analyses. Although theparticle sizes of the catalysts in the electrodes increased during the MEA activationprocess, the electrochemical surface areas of the catalysts were increased because thepores in the electrodes were opened after the activation. The influences of the celloperation parameters on the performances of active DMFC were also researched.Compared with anode flow rate of methanol solution, the concentration of methanolsolution was more influential on the performance of active DMFC. It was found thatthere was no need to humidify the cathode oxygen of the active DMFC.
     In consideration of the water flooding in the cathode catalyst layer and cathodeGDL of air-breathing DMFC, two improved“Inner-water-absorption”and“Outer-water-absorption”cathode structures were proposed. It was revealed that the“Outer-water- absorption”cathode structure with 15 mass %SiO2 in the cathode MPLwas more suitable for the improvement of performance of MEA due to the increasingof hydrophilic water transport paths in the cathode MPL, thus the water floodings inthe cathode were alleviated. Moreover, a novel“current collector inside”air-breathingMEA was proposed, in which a thin metal mesh used as the cathode current collectorwas directly embedded in the cathode catalyst layer of this novel MEA cathode. Thenovel MEA showed better cell performance (increased 10.3 %) and long-termoperation performance than the conventional one because of the lower cell resistance,enhanced oxygen transport and increased water removal rate in such a novel MEAstructure.
引文
1衣宝廉.质子交换膜燃料电池关键材料的现状与展望.电源技术. 2003,5(27): 175~182
    2衣宝廉.燃料电池——原理、技术、应用.化学工业出版社. 2003: 1~3
    3毛宗强.燃料电池.化学工业出版社. 2005: 1~2
    4 G. Apanel, E. Johnson. Direct Methanol Fuel Cells-Ready to GoCommercial. Fuel Cell Bulletin. 2004, 2004(11): 12~17
    5 M. Baldauf, W. Preidel. Status of the Development of a DirectMethanol Fuel Cell. J. Power Sources. 1999, 84(2): 161~166
    6 S. Wasmus, A. Kuver. Methanol Oxidation and Direct Methanol FuelCells:aSelectiveReview.J.Electroanal.Chem.1999,461(1-2):14~31
    7齐亮,谢晓峰,李胜强等.直接甲醇燃料电池的阳极进料系统及控制策略.清华大学学报(自然科学版). 2007, 47(3): 436~440
    8 B. K. Kho, I. H. Oh, S. A. Hong, et al. The Effect of PretreatmentMethods on the Performance of Passive DMFCs. Electrochim. Acta.2004, 50(2-3): 781~785
    9 C. Lamy, J. M. Leger, S. Srinivasan. Direct Methanol Fuel Cells: FromaTwentiethCenturyElectrochemist’sDreamtoaTwenty-firstCenturyEmerging Technology. Modern Aspects of Electrochemistry. 2001,(34): 53~118
    10夏朝阳,黄爱宾,汪洋等.碱性电解质膜直接甲醇燃料电池.电池. 2004,34(3): 227~228
    11 K. Scott, W. M. Taama, P. Argyropoulos. Engineering Aspects of theDirect Methanol Fuel Cell System. J. Power Sources. 1999, 79(1):43~59
    12 H.J.Doo, H.L.Chang,S.K.Chang.Performance ofa Direct MethanolPolymer Electrolyte Fuel Cell. J. Power Sources. 1998, 71(1-2):169~173
    13 M. Baldauf, W. Preidel. Experimental Results on the DirectElectrochemical Oxidation of Methanol in PEM Fuel Cells. J. Appl.Electrochem. 2001, 31(7): 781~786
    14田立朋,李伟善.直接甲醇燃料电池研究进展.现代化工. 1998, 15(5):14~17
    15 X. M. Ren, P. Zelenay, S. Thomas, et al. Recent Advances in DirectMethanol Fuel Cells at Los Alamos National Laboratory. J. PowerSources. 2000, 86(1-2): 111~116
    16 K. Scott, W. Taama. Performance of a Direct Methanol Fuel Cell. J.Appl. Electrochem. 1998, 28 (3): 289~297
    17汪国雄,孙公权,辛勤等.直接甲醇燃料电池.物理学与新能源材料专题. 2004, 33(3): 165~169
    18 X. M. Ren, M. S. Wilson. S. Gottesfeld. High Performance DirectMethanol Polymer Electrolyte Fuel Cells. J. Electrochem. Soc. 1996,143(1): L12~L15
    19 A. Kuver, W. Vielstich. Investigation of Methanol Crossover andSingle Electrode Performance during PEMDMFC Operation - A StudyUsing a Solid Polymer Electrolyte Membrane Fuel Cell System. J.Power Sources. 1998, 74(2): 211~218
    20 J. Pavio, J. Hallmark, J. Bostaph, et al. Developing Micro-Fuel Cellsfor Wireless Communications. Fuel Cells Bulletin. 2002, 2002(4):8~11
    21 D. J. Kim, E. A. Cho, S. A. Hong, et al. Recent Progress in PassiveDirect Methanol Fuel Cells at KIST. J. Power Sources. 2004, 130(1-2):172~177
    22刘建国,衣宝廉,魏昭彬.直接甲醇燃料电池的原理、进展和主要技术问题电源技术. 2001, 25(5): 363~366
    23 S. Q. Song, Z. X. Liang, W. J. Zhou, et al. Direct Methanol Fuel Cells:The Effect of Electrode Fabrication Procedure on MEAs StructuralProperties and Cell Performance. J. Power Sources. 2005, 145(2):495~501
    24赵安中.韩开发出大容量燃料电池.功能材料信息. 2007, 4(1): 49~50
    25徐维正.国外甲醇燃料电池技术开发概况.精细与专用化学品. 2006,14(3-4): 26~29
    26 S. W. Ku. Toshiba Unveils Prototype DMFC for Portable PCs. FuelCells Bulletin. 2003, 2003(5): 1~2
    27 L. H. Jiang, G. Q. Sun, X. S. Zhao, et al. Preparation of SupportedPtRu/C Electrocatalyst for Direct Methanol Fuel Cells. Electrochim.Acta. 2005, 50(12): 2371~2376
    28 L. Liu, C. Pu, R. Viswanathan, et al. Carbon Supported andUnsupportedPt-RuAnodesforLiquidFeedDirectMethanolFuelCells.Electrochim. Acta. 1998, 43 (24): 3657~3663
    29王振波,尹鸽平,史鹏飞. DMFC阳极多元合金催化剂的研究进展.工业催化. 2005, 13(2): 1~6
    30 V. M. Barragán, A. Heinzel. Estimation of the Membrane MethanolDiffusion Coefficient from Open Circuit Voltage Measurements in aDirect Methanol Fuel Cell. J. Power Sources. 2002, 104 (1): 66~72
    31 N. Munichandraiah, K. M. Grath, G. K. S. Prakash, et al. APotentiometric Method of Monitoring Methanol Crossover throughPolymer Electrolyte Membranes of Direct Methanol Fuel Cells. J.Power Sources. 2003, 117 (1-2): 98~101
    32 V. M. Barragan, C. R. Bauza, J. P. G. Villaluenga. Transport ofMethanol and Water through Nafion Membranes. J. Power Sources.2004, 130 (1-2): 22~29
    33 S. Litster, G. Mclean. PEM Fuel Cell Electrodes. J. Power Sources.2004, 130(1-2): 61~76
    34 V. Mehta, J. S. Cooper. Review and Analysis of PEM Fuel Cell Designand Manufacturing. J. Power Sources. 2003, 114(1): 32~53
    35 E. Antolini. Recent Developments in Polymer Electrolyte Fuel CellElectrodes. J. Appl. Electrochem. 2004, 34(6): 563~576
    36邵志刚,衣宝廉,韩明等.PEMFC膜电极三合一组件的制备方法.电池.2000, 30(6): 269~271
    37 J. H. Kim, H. Y. Ha, I. H. Oh, et al. Influence of the Solvent in AnodeCatalyst Ink on the Performance of a Direct Methanol Fuel Cell. J.Power Sources. 2004, 135(1-2): 29~35
    38 J.S.Lee,K.I.Han,S.O.Park,etal.PerformanceandImpedanceunderVarious Catalyst Layer Thicknesses in DMFC. Electrochim. Acta.2004, 50(2-3): 807~810
    39 W. R. W. Daud, A. B. Mohamad, A. A. H. Kadhum, et al. PerformanceOptimisation of PEM Fuel Cell during MEA Fabrication. Energ.Convers. Manage. 2004, 45(20): 3239~3249
    40 G. Q. Lu, C. Y. Wang, T. J. Yen, et al. Development andCharacterization of a Silicon-Based Micro Direct Methanol Fuel Cell.Electrochim. Acta. 2004, 49(5): 821~828
    41 C. Lim, C. Y. Wang. Development of High-Power Electrodes for aLiquid-Feed Direct Methanol Fuel Cell. J. Power Sources. 2003,113(1): 145~150
    42 M. Hogarth, P. Christensen, A. Hamnett, et al. The Design andConstruction of High-performance Direct Methanol Fuel Cells. J.Power Sources. 1997, 69(1-2): 113~124
    43 A. Lindermeir, G. Rosenthal, U. Kunz, et al. Improvement of MEAs forDirect Methanol Fuel Cells by Tuned Layer Preparation and CoatingTechnology. Fuel Cells. 2004, 4(1-2): 78~85
    44 E. Gulzow, R. Reissner, S. Weisshaar, et al. Progress in DMFCDevelopment Using the Dry Spraying Preparation Technique. FuelCells. 2003, 3(1-2): 48~51
    45 E. Gulzow, T. kaz, R. Reissner, et al. Study of Membrane ElectrodeAssemblies for Direct Methanol Fuel Cells, J. Power Sources. 2002,105(2): 261~266
    46 E. Gulzow, T. Kaz. New Results of PEFC Electrodes Produced by theDLR Dry Preparation Technique. J. Power Sources. 2002, 106(1-2):122~125
    47 Z. B. He, J. Chen, D. Liu. Deposition and Electrocatalytic Properties ofPlatinum Nanoparticals on Carbon Nanotubes for MethanolElectrooxidation. Mater. Chem. Phy. 2004, 85(2-3): 396~401
    48 E. J. Taylor, E. B. Anderson, R. K. Vilambin. Preparation of HighPlatinum Utilization Gas Diffusion Electrodes for Proton ExchangeMembrane Fuel Cell. J. Electrochem. Soc. 1992, 139(5): L45~L46
    49 M. S. Loffler, B. Gross, H. Natter, et al. Synthesis and Characterizationof Catalyst Layers for Direct Methanol Fuel Cell Applications. Phys.Chem. Chem. Phys. 2001, 3(3): 333~336
    50 A. Missiroli, F. Soavi, M. Mastragostino. Increased Performance ofElectrodeposited PtRu/C-Nafion Catalysts for DMFC. Electrochem.Solid-State Lett. 2005, 8 (2): A110~A114
    51 Y. Y. Shao, G. P. Yin, J. J. Wang, et al. In-situ Deposition of HighlyDispersed Pt Nanoparticles on Carbon Black Electrode for OxygenReduction. J. Electrochem. Soc. 2006, 153 (7): A1261~A1265
    52 H. Kim, N. P. Subramanian, B. N. Popov. Preparation of PEM Fuel CellElectrodes Using Pulse Electrodeposition. J. Power Sources. 2004,138(1-2): 14~24
    53 C. Coutanceau, A. F. Rakotondrainibe, A. Lima, et al. Preparation ofPt-Ru Bimetallic Anodes by Galvanostatic Pulse Electrodeposition:Characterization and Application to the Direct Methanol Fuel Cell. J.Appl. Electrochem. 2004, 34(1): 61~66
    54 D. S. Thompson, R. L. Jordan, M. Forsyth. Platinum Electrodepositionfor Polymer Electrolyte Membrane Fuel Cells. Electrochim. Acta. 2001,46(10-11): 1657~1663
    55 G. X. Wang, G. Q. Sun, Z. H. Zhou, et al. Performance Improvement inDirect Methanol Fuel Cell Cathode Using High Mesoporous AreaCatalyst Support. Electrochem. Solid-State Lett. 2005, 8(1): A12~A16
    56 S. L. Wang, G. Q. Sun, G. X. Wang, et al. Improvement of DirectMethanol Fuel Cell Performance by Modifying Catalyst CoatedMembrane Structure. Electrochem. Commun. 2005, 7(10): 1007~1012
    57 C. S. Kim, Y. G. Chun, D. H. Peck, et al. A Novel Process to FabricateMembrane Electrode Assemblies for Proton Exchange Membrane FuelCells. Int. J. Hydrogen Energy. 1998, 23 (11): 1045~1048
    58 S. Gottesefld, M. Wilson. High Performance Catalyzed Membrane ofUltra-Low Pt Loadings of Polymer Electrolyte Fuel Cells. J.Electrochem. Soc. 1992, 139(2): L28~L30
    59 M. S. Wilson, S. Gottesfeld. Thin-film Catalyst Layers for PolymerElectrolyte Fuel Cell Electrodes. J. Appl. Electrochem. 1992, 22(1):1~7
    60 S. Hirano, J. Kim, S. Srinivasan. High Performance Proton ExchangeMembrane Fuel Cell with Sputter-Deposited Pt Layer Electrode.Electrochim. Acta. 1997, 42(10): 1587~1593
    61 C. K. Witham, W. Chun, T. I. Valdez, et al. Performance of DirectMethanol Fuel Cells with Sputter-Deposited Anode Catalyst Layers.Electrochem. Solid-State Lett. 2000, 3(11): 497~500
    62 M. S. Wilson,J. A. Valerio,S. Gottesefld. Low Platinum LoadingElectrodes of Polymer Electrolyte Fuel Cells Fabricated UsingThermoplastic Ionomers. Electrochim. Acta. 1995, 40 (3): 355~363
    63 S. J. C. Cleghorn, X. Ren, T. E. Springer, et al. PEM Fuel Cells forTransportation and Stationary Power Generation Applications. Int. J.Hydrogen Energy. 1997, 22(12): 1137~1144
    64 G. Bender, T. A. Zawodzinski, A. P. Saab. Fabrication of HighPrecision PEFC Membrane Electrode Assemblies. J. Power Sources.2003, 124(1): 114~117
    65 J. T. Müeller, P. M. Urban. Impedance Studies on Direct Methanol FuelCell Anodes. J. Power.Sources. 1999, 84(2): 157~160
    66 L. Xiong, A. Manthiram. High Performance Membrane-ElectrodeAssemblies with Ultra-Low Pt Loading for Proton ExchangeMembrane Fuel Cells. Electrochim. Acta. 2005, 50(16-17): 3200~3204
    67 K. Singh, V. K. Shahi. Electrochemical Studies on Nafion Membrane. J.Membr. Sci. 1998, 140 (1): 51~56
    68 H. W. Carla. Recent Advances in Perfluorinated Ionomer Membranes:Structure, Properties and Applications. J. Membr. Sci. 1996, 120(1):1~33
    69 Y. M. Kim, K. W. Park, J. H. Chio. A Pd-Impregnated NanocompositeNafion Membrane for Use in High-concentration Methanol Fuel inDMFC. Electrochem. Commun. 2003, 5(7): 571~574
    70 S. H. Kwak, T. H. Yang, C. S. Kim, et al. The Effect of PlatinumLoading in the Self-Humidifying Polymer Electrolyte Membrane onWater Uptake. J. Power Sources. 2003, 118(1-2): 200~204
    71 Z. Q. Ma, P. Cheng, T. S. Zhao. A Palladium-Alloy Deposited NafionMembrane for Direct Methanol Fuel Cells. J. Membr. Sci. 2003,215(1-2): 327~336
    72 H. S. Park, Y. J. Kim, W. H. Hong. Physical and ElectrochemicalProperties of Nafion/Polypyrrole Composite Membrane for DMFC. J.Membr. Sci. 2006, 272(1-2): 28~36
    73 M. A. Smit, A. L. Ocampoa, M. A. E. Medina. A Modified NafionMembrane with in situ Polymerized Polypyrrole for the DirectMethanol Fuel Cell. J. Power Sources. 2003, 124(1): 59~64
    74 J. Zhu, R. R. Sattler, A. Garsuch. Optimisation of Polypyrrole/NafionComposite Membranes for Direct Methanol Fuel Cells. Electrochim.Acta. 2006, 51(19): 4052~4060
    75 H. L. Lin, T. L. Yu, L. N. Huang. Nafion/PTFE Composite Membranesfor Direct Methanol Fuel Cell Applications. J. Power Sources. 2005,150(4): 11~19
    76李磊,张军,吴洪等.直接甲醇燃料电池新型聚合物膜的研究.电化学.2002, 8(2): 177~181
    77吴洪,王宇新,王世昌.新型阻醇质子导电聚合物膜PVA/Nafion共混膜的制备及性能研究.高校化学工程学报. 2002, 16(3): 326~330
    78 L. Li, J. Zhang, Y. X. Wang. Sulfonated Poly (Ether ether ketone)Membranes for Direct Methanol Fuel Cell. J. Membr. Sci. 2003,226(1-2): 159~167
    79 R. T. S. M. Lakshmi, J. M. Haack, K. Schlenstedt, et al. SulphonatedPoly (Ether ether ketone) Copolymers: Synthesis, Characterisation andMembrane Properties. J. Membr. Sci. 2005, 261(1-2): 27~35
    80 Y. S. Kim, L. Dong, M. A. Hicknera, et al. Processing InducedMorphological Development in Hydrated Sulfonated Poly (Aryleneether sulfone) Copolymer Membranes. Polymer. 2003, 44(19):5729~5736
    81 D. S. Kim, H. B. Park, J. W. Rhim, et al. Preparation andCharacterization of Crosslinked PVA/SiO2 Hybrid MembranesContaining Sulfonic Acid Groups for Direct Methanol Fuel CellApplications. J. Membr. Sci. 2004, 240(1-2): 37~48
    82 D. J. Jones, J Roziere. Recent Advances in the Functionalisation ofPolybenzimidazole and Polyetherketone for Fuel Cell Applications. J.Membr. Sci. 2001, 185(1): 41~58
    83 M. L. Ponce, L. A. S. A. Prado, V. Silva, et al. Membranes for DirectMethanol Fuel Cell Based on Modified Heteropolyacids. Desalination.2004, (162): 383~391
    84 C. Lu, C. Rice, R. I. Masel, et al. UNV, Electrochemical NMR, andElectrochemical Studies of Platinum/Ruthenium Fuel Cell Catalysts. J.Phys. Chem. B. 2002, 106(37): 9581~9589
    85 A. S. Arico, P. Creli, H. Kim, et al. Analysis of the ElectrochemicalCharacteristics of a Direct Methanol Fuel Cell Based on a Pt-Ru/CAnode Catalyst. J. Electrochem. Soc. 1996, 143 (12): 3950~3959
    86 H. Hoster, T. Iwasita, H. Baumgartner, et al. Pt-Ru Model Catalysts forAnodic Methanol Oxidation: Influence of Structure and Compositionon the Reactivity. Phys. Chem. Chem. Phys. 2001, 3(3): 337~346
    87 T. Seiler, E. R. Savinova, K. A. Friedrich, et al. Poisoning of PtRu/CCatalysts in the Anode of a Direct Methanol Fuel Cell: a DEMS Study.Electrochim. Acta. 2004, 49(22-23): 3927~3936
    88 A. S. Arico, V. Antonucci, N. Giordanon, et al. Methanol Oxidation onCarbon Supported Platinum Tin Electrodes in Sulfuric Acid. J. PowerSources. 1994, 50(3): 295~309
    89 M. P. Janssen, N. J. Moolhuyse. State and Action of the Tin Atoms inPlatinum Tin Catalyst for Methanol Fuel Cells. J. Catal. 1977, 46(3):289~296
    90 A. K. Shunka, A. S. Arico, K. M. Elkhatib, et al. An X-rayPhotoelectron Spectroscopic Study on the Effect of Ru and SnAdditions to Platinized Carbons. Appl. Surf. Sci. 1999, 137(1-4):20~29
    91 S. Mylswamy, C. Y. Wang, R. S. Liu, et al. Anode Catalysts forEnhanced Methanol Oxidation: An in situ XANES Study of PtRu/C andPtMo/C Catalysts. Chem. Phys. Lett. 2005, 412(4-6): 444~448
    92 Z. B. Wang, G. P. Yin, J. Zhang, et al. Co-catalyst Effect of Ni in theMethanol Electro-Oxidation on Pt-Ru/C Catalyst for Direct MethanolFuel Cell. Electrochim. Acta. 2006, 51(26): 5691~5697
    93 Z. B. Wang, G. P. Yin, J. Zhang, et al. Investigation of EthanolElectrooxidation on a Pt-Ru-Ni/C Catalyst for a Direct Ethanol FuelCell. J. Power Sources. 2006, 160(1): 37~43
    94 P. K. Shen, C. C. Tseunga. Anodic Oxidation of Methanol Pt/WO3 inAcidic Media. J. Electrochem. Soc. 1994, 141(11): 3082~3089
    95 K. Lasch, L. Jorissen, J. Garche. The Effect of Metal Oxides asCo-catalysts for the Electro-Oxidation of Methanol onPlatinum-Ruthenium. J. Power Sources. 1999, 84(2): 225~230
    96 J. F. Drillet, A. Ee, J. Friedemann, et al. Oxygen Reduction at Pt andPt70Ni30 in H2SO4/CH3OH Solution. Electrochim. Acta. 2002, 47(12):1983~1988
    97 E. Antolini, J. R. C. Salgado, E. R. Gozalez. Carbon Supported Pt75M25(M = Co, Ni) Alloys as Anode and Cathode Electrocatalysts for DirectMethanol Fuel Cells. J. Electroanal. Chem. 2005, 580(1): 145~154
    98 E. Antolini, J. R. C. Salgado, A. M. dos Santos, et al.Carbon-Supported Pt-Ni Alloys Prepared by the Borohydride Methodas Electrocatalysts for DMFCs. Electrochem. Solid-State Lett. 2005,8(4): A226~A230
    99 H. Yang, N. Alonso-Vante, J. M. Leger, et al. Tailoring, Structure, andActivity of Carbon-Supported Nanosized Pt -Cr Alloy Electrocatalystsfor Oxygen Reduction in Pure and Methanol-Containing Electrolytes. J.Phys. Chem. B. 2004, 108(6): 1938~1947
    100 W. Z. Li, W. J. Zhou, H. Q. Li, et al. Nano-stuctured Pt-Fe/C asCathode Catalyst in Direct Methanol Fuel Cell. Electrochim. Acta.2004, 49(7): 1045~1055
    101 A. S. Arico, Z. Poltarzewski, H. Kim, et al. Investigation of aCarbon-supported Quaternary Pt-Ru-Sn-W Catalyst for DirectMethanol Fuel Cells. J. Power Sources. 1995, 55(2): 159~166
    102 L. Xiong, A. Manthiram. Synthesis and Characterization of MethanolTolerant Pt/TiOx/C Nanocomposites for Oxygen Reduction in DirectMethanol Fuel Cells. Electrochim. Acta. 2004, 49(24): 4163~4170
    103 S. Y. Ye, A. K. Vijh, L. H. Dao. A New Fuel Cell Electrode Based onHighly Porous Carbonised Polyacrylonitrile Foam with very LowPlatinum Loading. J. Electrochem. Soc. 1996, 143(1): L1~L9
    104 W. Z. Li, C. H. Liang, J. S. Qiu, et al. Carbon Nanotubes as Support forCathode Catalyst of a Direct Methanol Fuel Cell. Carbon. 2002, 40(5):791~794
    105 G. X. Wang, G. Q. Sun, Z. H. Zhou, et al. Performance Improvement inDirect Methanol Fuel Cell Cathode Using High Mesoporous AreaCatayst Support. Electrochem. Solid-State Lett. 2005, 8 (1): A12~A16
    106 Y. C. Liu, X. P. Qiu, Y. Q. Huang, et al. Influence of PreparationProcess of MEA with Mesocarbon Microbeads Supported Pt-RuCatalysts on Methanol Electro-oxidation. J. Appl. Electrochem. 2002,32(11): 1279~1285
    107 M. C. Lefebvre, Z. G. Qi, P. G. Pickup. Electronically ConductingProton Exchange Polymers as Catalyst Supports for Proton ExchangeMembrane Fuel Cells-Electrocatalysis of Oxygen Reduction,Hydrogen Oxidation, and Methanol Oxidation. J. Electrochem. Soc.1999, 146(6): 2054~2058
    108 Z. B. Wang, G. P. Yin, P. F. Shi. Effects of Ozone Treatment of CarbonSupport on Pt-Ru/C Catalysts Performance for Direct Methanol FuelCell. Carbon. 2006, 44(1): 133~140
    109王振波,尹鸽平,孙迎超等.碳载体前处理对DMFC Pt-Ru/C的催化剂性能影响研究.炭素. 2005, 123(3): 25~29
    110 Y. Y. Shao, G. P. Yin, Y. Z. Gao, et al. Durability Study of Pt/C andPt/CNTs Catalysts under Simulated PEM Fuel Cell Conditions. J.Electrochem. Soc. 2006, 153 (6): A1093~A1097
    111 A. J. Seen. Nafion: an Excellent Support for Metal-Complex Catalysts.J. Mol. Catal. A-Chem. 2001, 177(1): 105~112
    112 G. Sasikumar, J. W. Ihma, H. Ryu. Dependence of Optimum NafionContent in Catalyst Layer on Platinum Loading. J. Power Sources.2004, 132(1-2): 11~17
    113 Y. H. Chu, Y. G. Shul, W. C. Choi, et al. Evaluation of the NafionEffect on the Activity of Pt-Ru Electrocatalysts for theElectro-Oxidation of Methanol. J. Power Sources. 2003, 118(1-2):334~341
    114 S. J. Lee, S. Mukerjee, J. McBreen, et al. Effects of NafionImpregnation on Performances of PEMFC Electrodes. Electrochim.Acta. 1998, 43(24): 3693~3701
    115 G. Sasikumar, J. W. Ihma, H. Ryu. Optimum Nafion content in PEMfuel cell electrodes. Electrochim. Acta. 2004, 50(2-3): 601~605
    116 E. Antolini, L. Giorgi, A. Pozio, et al. Influence of Nafion Loading inthe Catalyst Layer of Gas-Diffusion Electrodes for PEFC. J. PowerSources. 1999, 77(2): 136~142
    117李建玲,毛宗强,徐景明.直接甲醇燃料电池性能研究.电池. 2002,32(2): 72~74
    118 E. Passalacqua, F. Lufrano, G. Squadrito, et al. Nafion Content in theCatalyst Layer of Polymer Electrolyte Fuel Cells: Effect on Structureand Performance. Electrochim. Acta. 2001, 46(6): 799~805
    119 M. Watanabe, H. Igarashi, K. Yosioka. An Experiment Prediction ofthe Preparation Condtion of Nafion-Coated Catalyst Layers for PEFCs.Electrochim. Acta. 1995, 40(3): 329~334
    120程晓亮,衣宝廉,张景新等. PEMFC催化层中PTFE和Nafion对催化剂利用率的影响.电化学. 1999, 5(2): 218~223
    121 J. Nordlund, A. Roessler, G. Lindbergh. The Influence of ElectrodeMorphology on the Performance of a DMFC Anode. J. Appl.Electrochem. 2002, 32(3): 259~265
    122邵志刚,衣宝廉,韩明等.质子交换膜燃料电池电极的一种新的制备方法.电化学. 2000, 6(3): 317~323
    123 M. C. Tucker, M. Odgaard, P. B. Lund, et al. The Pore Structure ofDirect Methanol Fuel Cell Electrodes. J. Electrochem. Soc. 2005, 152(9): A1844~A1850
    124 S. Gamburzev. Recent Progress in Performance Improvement of theProton Exchange Membrane Fuel Cell (PEMFC). J. Power Sources.2002, 107(1): 5~12
    125 Y. G. Yoon, G. G. Park, T. H. Yang, et al. Effect of Pore Structure ofCatalyst Layer in a PEMFC on its Performance. Int. J. HydrogenEnergy. 2003, 28(6): 657~662
    126 A. Fischer, J. Jindra, H. Wendt. Porosity and Catalyst Utilization ofThin Layer Cathodes in Air Operated PEM-Fuel Cells. J. Appl.Electrochem. 1998, 28(3): 277~282
    127 O. Antoine, Y. Bultel, P. Ozil, et al. Catalyst Gradient for CathodeActive Layer of Proton Exchange Membrane Fuel Cell. Electrochim.Acta. 2000, 45(27): 4493~4500
    128 Z. G. Qi, M. C. Lefebvre, P. G. Pickup. Electron and Proton Transportin Gas Diffusion Electrodes Containing Electronically ConductiveProton-Exchange Polymers. J. Electroanal. Chem. 1998, 459(1): 9~14
    129 Y. G. Yoon, T. H. Yang, G. G. Park, et al. A Multi-layer StructuredCathode for the PEMFC. J. Power Sources. 2003, 118(1-2): 189~192
    130 Z. B. Wei, S. L. Wang, B. L. Yi, et al. Influence of Electrode Structureon the Performance of a Direct Methanol Fuel Cell. J. Power Sources.2002, 106(1-2): 364~369
    131樊小颖,赵新生,孙海.直接甲醇燃料电池高性能双催化层阳极的研究.电源技术. 2005, 29(4): 231~235
    132谢方艳,孟辉,沈培康.直接醇类燃料电池用立体电极的构筑.电池.2004, 34(3): 219~221
    133 J. Yu, T. Matsuura, Y. Yoshikawa, et al. In Situ Analysis ofPerformance Degradation of a PEMFC under NonsaturatedHumidification. Electrochem. Solid-State Lett. 2005, 8(3):A156~A158
    134 D. Bevers, N. Wagner, M. Bradke. Innovative Production Procedurefor Low Cost PEFC Electrodes and Electrode Membrane Structures. Int.J. Hydrogen Energy. 1998, 23(1): 57~63
    135 S. Y. Cha, W. M. Lee. Performance of Proton Exchange MembraneFuel Cell Electrodes Prepared by Direct Deposition of UltrathinPlatinum on the Membrane Surface. J. Electrochem. Soc. 1999, 146(11): 4055~4060
    136 V. A.Paganin, E. A. Ticianelli, E. R.Gonzalez. Development andElectrochemical Studies of Gas Diffusion Electrodes for PolymerElectrolyte Fuel Cells. J. Appl. Electrochem. 1996, 26(3): 297~304
    137 L. Giorgi, E. Antolini, A. Pozio, et al. Influence of the PTFE Content inthe Diffusion Layer of Low-Pt Loading Electrodes for PolymerElectrolyte Fuel Cells. Electrochim. Acta. 1998, 43(24): 3675~3680
    138 C. Lim, C. Y. Wang. Effects of Hydrophobic Polymer Content in GDLon Power Performance of a PEM Fuel Cell. Electrochim. Acta. 2004,49(24): 4149~4156
    139 G. G. Park, Y. J. Sohn, T. H. Yang, et al. Effect of PTFE Contents in theGas Diffusion Media on the Performance of PEMFC. J. Power Sources.2004, 131(1-2): 182~187
    140 G. Lin, T. V. Nguyen. Effect of Thickness and Hydrophobic PolymerContent of the Gas Diffusion Layer on Layer on Electrode FloodingLevel in a PEMFC. J. Electrochem. Soc. 2005, 152(10): A1942~1948
    141 D. Bevers, R. Rogers, M. V. Bradke. Examination of the Influence ofPTFE Coating on the Properties of Carbon Paper in PolymerElectrolyte Fuel Cells. J. Power Sources. 1996, 63(2): 193~201
    142 X. M. Ren, T. E. Springer, S. Gottesfeld. Water and Methanol Uptakesin Nafion Membranes and Membrane Effects on Direct Methanol CellPerformance. J. Electrochem. Soc. 2000, 147(1): 92~98
    143 S. Gottesfeld. DMFCs Power Up for Portable Devices. The Fuel CellReview. 2004, 1(2): 25~29
    144 C. Xu, T. S. Zhao, Y. L. He. Effect of Cathode Gas Diffusion Layer onWater Transport and Cell Performance in Direct Methanol Fuel Cells. J.Power Sources. 2007, 171(2): 268~274
    145 V. A. Paganin, E. A. Ticianelli, E. R. Gonzalez. Development andElectrochemical Studies of Gas Diffusion Electrodes for PolymerElectrolyte Fuel Cells. J. Appl. Electrochem. 1996, 26(3): 297~304
    146 F. Lufrano, E. Passalacqua, G. Squadrito, et al. Improvement in theDiffusion Characteristics of Low Pt-loaded Electrodes for PEFCs. J.Appl. Electrochem. 1999, 29(4): 445~448
    147 L. R. Ordan, A. K. Shukla, T. Behrsing, et al. Effect of Diffusion LayerMorphology on the Performance of Polymer Electrolyte Fuel CellsOperating at Atmospheric Pressure. J. Appl. Electrochem. 2000, 30(6):641~646
    148 M. Neergat, A. K. Shukla. Effect of Diffusion-Layer Morphology onthe Performance of Solid-Polymer-Electrolyte Direct Methanol FuelCells. J. Power Sources. 2002, 104(2): 289~294
    149 E. Passalacqua, G. Squadrito, F. Lufrano, et al. Effects of the DiffusionLayer Characteristics on the Performance of Polymer Electrolyte FuelCell Electrodes. J. Appl. Electrochem. 2001, 31(4): 449~454
    150 E. Antolini, R. R. Passos, E. A. Ticianelli. Effects of the CarbonPowder Characteristics in the Cathode Gas Diffusion Layer on thePerformance of Polymer Electrolyte Fuel Cells. J. Power Sources. 2002,109(2): 477~482
    151 G. Park, Y. J. Sohn, S. Yim, et al. Adoption of Nano-Materials for theMicro-Layer in Gas Diffusion Layers of PEMFCs. J. Power Sources.2006, 163(1): 113~118
    152 K. W. Park, B. K. Kwon, J. H. Choi, et al. New RuO2 and Carbon-RuO2Composite Diffusion Layer for Use in Direct Methanol Fuel Cells. J.Power Sources. 2002, 109(2): 439~445
    153 C. S. Kong, D. Y. Kim, H. K. Lee, et al. Influence of Pore-SizeDistribution of Diffusion Layer on Mass-Transport Problems of ProtonExchange Membrane Fuel Cells. J. Power Sources. 2002, 108(1-2):185~191
    154 T. V. Reshetenko, H. T. Kim, H. J. Kweon. Cathode StructureOptimization for Air-Breathing DMFC by Application ofPore-Forming Agents. J. Power Sources. 2007, 171(2): 433~440
    155 R. Chen, T. S. Zhao. A Novel Electrode Architecture for Passive DirectMethanol Fuel Cells. Electrochem. Commun. 2007, 9(4): 718~724
    156 S. C. Thomas, X. M. Ren, S. Gottesfeld. Direct Methanol Fuel Cells:Progress in Cell Performance and Cathode Research. Electrochim.Acta. 2002, 47(22-23): 3741~3748
    157 A. K. Shulka, P. A. Chritensen, A. J. Dickinson, et al. A Liquid-FeedSolid Polymer Electrolyte Direct Methanol Fuel Cell Operating atNear-ambient Conditions. J. Power Sources. 1998, 76(1): 54~59
    158 A. Oedegaard, C. Hebling, A. Schmitz. Influence of Diffusion LayerProperties on Low Temperature DMFC. J. Power Sources. 2004,127(1-2): 187~196
    159 P. Argyropoulos, K. Scott, W. M. Taama. Gas Evolution and PowerPerformance in Direct Methanol Fuel Cells. J. Appl. Electrochem.1999, 29(6): 663~671
    160 C. Xu, T. S. Zhao, Q. Ye. Effect of Anode Backing Layer on the CellPerformance of a Direct Methanol Fuel Cell. Electrochim. Acta. 2006,51(25): 5524~5531
    161曹楚南,张鉴清.电化学阻抗谱导论.科学出版社. 2002: 20~24
    162 J. T. Mueller, P. M. Urban. Characterization of Direct Methanol FuelCells by Ac Impedance Spectroscopy. J. Power Sources. 1998, 75(1):139~143
    163 W. M. Chen, G. Q. Sun, J. S. Guo, et al. Test on the Degradation ofDirect Methanol Fuel Cell. Electrochim. Acta. 2006, 51(12):2391~2399
    164朱科,陈延禧,韩佐青.质子交换膜燃料电池膜电极活化工艺及机理.电源技术. 2002, 26(4): 267~325
    165 A. Kuver, I. Vogel, W. Vielstich. Distinct Performance Evaluation of aDirect Methanol SPE Fuel Cell: A New Method Using a DynamicHydrogen Reference Electrode. J. Power Sources. 1994, 52(1): 77~80
    166 T. A. Zawodzinski, T. E. Springer, F. Uribe, et al. Characterization ofPolymer Electrolytes for Fuel Cell Applications. Solid State Ionics.1993, 60(1-3): 199~211
    167 S. C. Kelley, G. A. Deluga, W. H. Smyrl. A Miniature Methanol/AirPolymer Electrolyte Fuel Cell. Electrochem. Solid. State. Lett. 2000,3(9): 407~409
    168 J. X. Zhang, R. Datta. Online Monitoring of Anode Outlet COConcentration in PEM Fuel Cells. Electrochem. Solid. State. Lett. 2003,6(1): A5~A8
    169张军.液体进料直接甲醇燃料电池膜电极的研究.天津大学博士学位论文. 2002: 20~21
    170 C. Song, P. G. Pickup. Effect of Hot-Pressing on the Performance ofDirect Methanol Fuel Cell. J. Appl. Electrochem. 2004, 34(10):1065~1070
    171 K. Furukawa, K. Okajima, M. Sudoh. Structural Control andImpedance Analysis of Cathode for Direct Methanol Fuel Cell. J.Power Sources. 2005, 139(1-2): 9~14
    172张学伟.质子交换膜燃料电池膜电极的研究.哈尔滨工业大学博士学位论文. 2006: 31~33
    173 J. Xie, K. L. More, T. A. Zawodzinski, et al. Porosimetry of MEAsMade by“Thin Film Decal”Method and its Effect on Performance ofPEFCs. J. Electrochem. Soc. 2004, 151(11): A1841~1846
    174 H. Inoue, H. Daiguji, E. Hihara. The Structure of Catalyst Layers andCell Performance in Proton Exchange Membrane Fuel Cells. JSME Int.J. Series B-Fluids T. 2004, 47(2): 228~234
    175 K. Sundmacher, T. Schultz, S. Zhou, et al. Dynamics of the DirectMethanol Fuel Cell (DMFC): Experiments and Model-based Analysis.Chem. Eng. Sci. 2001, 56(2): 333~341
    176赵新生.直接甲醇燃料电池膜电极的电化学研究.中国科学院大连化学物理研究所博士论文. 2005: 49~50
    177 G. Q. Lu, C. Y. Wang. Electrochemical and Flow Characterization of aDirect Methanol Fuel Cell. J. Power Sources. 2004, 134(1): 33~40
    178 H. Yang, T. S. Zhao, Q. Ye. In Situ Visualization Study of CO2 GasBubble Behavior in DMFC Anode Flow Fields. J. Power Sources. 2005,139(1-2): 79~90
    179杨涛,史鹏飞.质子交换膜燃料电池自增湿研究进展.能源技术. 2006,27(3): 107~110
    180 L. R. Jordan, A. K. Shukla, T. Behrsing, et al. Diffusion LayerParameters Influencing Optimal Fuel Cell Performance. J. PowerSources. 2000, 86(1-2): 250~254
    181周兆云,王华平,王朝生等.用于燃料电池碳纤维纸的研究进展.材料导报. 2007, 21(7): 108~110
    182 G. Dlubek, K. Saarinen, H. M. Fretwell. The Temperature Dependenceof the Local Free Volume in Polyethylene and Polytetrafluoroethylene:A Positron Lifetime Study. J. Poly. Sci.: Part B: Polymer Physics. 1998,36(9): 1513~1528
    183 Z. Guo, A. Faghri. Miniature DMFCs with Passive Thermal-FluidsManagement System. J. Power Sources. 2006, 160(2): 1142~1155
    184 H. N. Dinh, X. M. Ren, F. H. Garzon, et al. Electrocatalysis in DirectMethanol Fuel Cell: in-situ Probing of PtRu Anode Catalyst Surfaces. J.Electroanal. Chem. 2000, 491(1-2): 222~233
    185 Z. G. Qi, A. Kaufman. Activation of Low Temperature PEM Fuel Cells.J. Power Sources. 2002, 111(1): 181~184
    186 Z. G. Qi, A. Kaufman. Quick and Effective Activation ofProton-exchange Membrane Fuel Cells. J. Power Sources. 2003, 114(1):21~31
    187 Z. G. Qi, A. Kaufman. Enhancement of PEM Fuel Cell Performance bySteaming or Boiling the Electrode. J. Power Sources. 2002, 109(1):227~229
    188 S. Ha, C. A. Rice, R. I. Masel, et al. Methanol Conditioning forImproved Performance of Formic Acid Fuel Cells. J. Power Sources.2002, 112(2): 655~659
    189朱科,陈延禧,韩佐青等.质子交换膜燃料电池膜电极活化工艺及机理.电源技术. 2002, 26(4): 267~325
    190 V. Radmilovic, H. A. Gasteiger, P. N. Ross. Structure andChemical-Compostion of a Supported Pt-Ru Electrocatalyst forMethanol Oxidation. J. Catal. 1995, 154(1): 98~106
    191 Z. B. Wang, G. P. Yin, P. F. Shi. Stable Pt-Ru/C Catalysts Preparedfrom New Precursors by Thermal Reduction for Direct Methanol FuelCell. J. Electrochem. Soc. 2005, 152(12): A2406~A2412
    192 J. G. Liu, Z. H. Zhou, X. X. Zhao, et al. Studies on PerformanceDegradation of a Direct Methanol Fuel Cell (DMFC) in Life Test. Phys.Chem. Chem. Phys. 2004, 6(1): 134~137
    193 A. Pozio, M. De Francesco, A. Cemmi, et al. Comparison of HighSurface Pt/C Catalysts by Cyclic Voltammetry. J. Power Sources. 2002,105(1): 13~19
    194 A. S. Arico, P. Creti, P. L. Antonucci, et al. Optimization of OperatingParameters of a Direct Methanol Fuel Cell and Physico-ChemicalInvestigation of Catalyst-Electrolyte Interface. Electrochim. Acta.1998, 43(24): 3719~3729
    195 Y. H. Pan. Advanced Air-breathing Direct Methanol Fuel Cells forPortable Applications. J. Power Sources. 2006, 161(1): 282~289
    196朱恂,郑雪艳,丁玉栋等.直接甲醇燃料电池阳极两相流动可视化实验.电源技术. 2007, 31(11): 856~860
    197 J. B. Ge, H. T. Liu. Experimental Studies of a Direct Methanol FuelCell. J. Power Sources. 2005, 142(1-2): 56~69
    198 C. Y. Chen, P. Yang, Y. S. Lee, et al. Fabrication of ElectrocatalystLayers for Direct Methanol Fuel Cells. J. Power Sources. 2005, 141(1):24~29
    199 T. V. Reshetenko, H. T. Kim, H. J. Kweon. Modification of CathodeStructure by Introduction of CNT for Air-Breathing DMFC.Electrochim. Acta. 2008, 53(7): 3043~3049
    200王晓丽.质子交换膜燃料电池膜电极结构研究.中国科学院大连化学物理研究所博士论文. 2006: 16~20
    201王诚,毛宗强,徐景明等.新型自增湿膜电极的制备及其燃料电池性能.高等学校化学学报. 2003, 24(1): 140~142
    202 M. Maja , C. Orecchia, M. Strano, et al. Effect of Structure of theElectrical Performance of Gas Diffusion Electrodes for Metal AirBatteries. Electrochim. Acta. 2000, 46(2-3): 423~432
    203 G. M. An, P. Yu, L. Q. Mao, et al. Synthesis of PtRu/Carbon NanotubeComposites in Supercritical Fluid and Their Application as anElectrocatalyst for Direct Methanol Fuel Cells. Carbon. 2007, 45(3):536~542
    204 J. H. Nam, M. Kaviany. Effective Diffusivity and Water-SaturationDistribution in Single and Two-Layer PEMFC Diffusion Medium. Int.J. Heat Mass Tran. 2003, 46(24): 4595~4611
    205 Z. Guo, A. Faghri. Development of Planar Air Breathing DirectMethanol Fuel Cell Stacks. J. Power Sources. 2006, 160(2): 1183~1194

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700