食管癌染色体易位和基因重排的鉴定
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
染色体易位和基因重排的形成是人类恶性肿瘤发生发展的重要机制之一,目前只在少数几种实体肿瘤中发现了一些融合基因,尚无食管癌中基因重排的报道。本研究通过筛选和鉴定食管癌中由染色体易位引起的融合基因、截短基因以及异常拼接基因,旨在进一步探索可能与食管癌发生发展相关的特异性基因重排。
     本实验室前期工作中,通过重复多色荧光原位杂交(M-FISH)分析在食管癌细胞系KYSE180和KYSE450中检测到一些染色体易位。本研究利用24色M-FISH技术对另外6个食管癌细胞系YES2、EC9706、KYSE30、KYSE140、KYSE150和KYSE510进行了检测。8个细胞系的M-FISH结果表明,各细胞系均存在众多染色体易位,涉及的染色体以1,2,3,5,7,8,9,11,12,13,15号居多,其中还包含一些复杂的多重易位,如KYSE30中的t(13;17;13;17)、YSE510中的t(8;9;18;9;8)等。
     对8个细胞系进行了4×44 K寡核苷酸比较基因组杂交芯片(Oligo arrayCGH)检测,根据基因内部片段之间拷贝数的差别,并结合M-FISH结果,初步筛选出可能同时涉及染色体易位和断裂的基因。利用其中30个基因两侧BAC探针进行FISH分析,验证出23个基因在对应细胞系中确实发生断裂。然后运用多种分子生物学方法对其融合和断裂连接点进行鉴定。
     利用3'RACE技术分别在KYSE450和KYSE30细胞系中鉴定出2个形成了融合转录本的基因和1个截短基因。序列比对结果表明,NTRK3基因(15q25.3)与5q32上的基因组DNA序列在KYSE450细胞系中由于t(5;15)从而发生拼接,BAC-FISH结果证实了二者的融合。形成的融合转录本5’端为NTRK3基因的Exonl-Exonl3,3’端由5q32上的两段序列拼接组成。进一步利用FISH技术验证了NTRK3在食管癌组织标本中的断裂频率为14.7%(10/68)。MYH10基因(17p13.1)与13q14.3上的序列在KYSE30细胞系中通过t(13;17;13;17)形成融合基因,包含2个融合转录本,二者5’端均为MYH10基因Exonl-Exon4,3’端来自于13q14.3的基因组DNA序列,在两个转录本中具有不同的长度,且与MYH 10 cDNA的连接点不同。MCTP1基因(5q14.4)在KYSE30细胞中形成了截短转录本,只具有Exon1-Exon17的部分。基因组DNA PCR结果显示,其3’端序列纯合缺失,断裂点位于Intronl7内一段505 bp的序列中。
     针对arrayCGH吉果显示断点两侧拷贝数差异比较明显的基因,我们首先采用多轮半定量PCR方法将其断裂点范围缩小至1 kb以内,然后利用基因组步移技术扩增跨越断裂连接点的序列。结果显示,KYSE150细胞中PTPRD基因发生自身拼接,断裂连接点区域由两段相距约78 kb的序列正向连接形成。
     以上结果表明,食管癌中存在众多染色体易位和基因重排,为进一步在食管癌组织中鉴定出特异的融合、截短以及异常拼接的基因提供了重要线索。
Chromosomal translocation is one of the most common genetic alterations in human malignant tumors. So far, a few gene rearrangements, especially fusion genes, have been identified in several solid tumors, but no such evidence was found in esophageal carcinoma. This research aims to identify specific fusion, truncated and abnormally joining genes caused by chromosomal translocations in esophageal tumors.
     Several chromosomal translocations have been observed from esophageal cell line KYSE180 and KYSE 450 in previous studies. Here, we tested another six cell lines, including YES2, EC9706, KYSE30, KYSE140, KYSE150 and KYSE510, by using 24-color multiplex-fluorescent in-situ hybridization (M-FISH). M-FISH results show that many chromosomal translocations exit in eight cell lines, and even more complex translocations, such as t(13; 17; 13; 17) and t(8;9;18;9;8), could also be detected.
     Gene breaks were analyzed according to the different copy numbers within the same gene, which could be tested by oligo array based comparative genomic hybridization (oligo array CGH). With the combination of M-FISH and array CGH, we screened genes with breakpoints which may caused by chromosomal translocations.
     Two fusion genes and one truncated gene were discovered from 3'RACE and its sequencing results. NTRK3 (15q25.3) in KYSE450 fused to 5q32 as a result of t(5;15), which was validated by BAC FISH. The 5'side of the fusion transcript includes Exonl-Exon13 of NTRK3, and 3'side was composed of two genomic DNA fragments in 5q32, which were apart from each other. FISH results indicated that break of NTRK3 exist in 14.7%(10/68) tissue samples of esophageal carcinoma. Another fusion gene was between MYH10 (17p13.1) and 13q14.3 in KYSE30, which was caused by t(13;17;13;17). The fusion gene formed two transcripts, with the same 5' fragment, which was Exonl-Exon4 of MYH10, while 3'sides come from two different fragments inl3q14.3.
     One truncated gene MCTPl (5q14.4) in KYSE30 was also identified by 3'RACE. The transcript contained only Exonl-Exon17, and subsequent genomic DNA PCR results indicated that the breakpoint was located in Intron17, with a homozygous deletion from the downstream of the breakpoint.
     Genome walking was used in this study to amplify the junctions. Sequencing results showed that PTPRD in KYSE150 formed an abnormal self-joining gene, composed of two fragments with 78 kb apart from each other.
     In conclusion, our studies indicated that the karyotypes of esophageal carcinoma cell lines were complex, and various gene rearrangements have been identified.
引文
Aguilera, A., and Gomez-Gonzalez, B. (2008). Genome instability:a mechanistic view of its causes and consequences. Nat Rev Genet 9,204-217.
    Akagi. I., Miyashita, M., Makino, H., Nomura, T., Hagiwara. N., Takahashi. K.. Cho, K., Mishima, T., Takizawa, T., and Tajiri, T. (2008). SnoN overexpression is predictive of poor survival in patients with esophageal squamous cell carcinoma. Ann Surg Oncol 15,2965-2975.
    Akbari, M. R., Malekzadeh, R., Nasrollahzadeh, D., Amanian, D., Islami, F., Li, S., Zandvakili, I., Shakeri, R., Sotoudeh, M., Aghcheli, K., et al. (2008). Germline BRCA2 mutations and the risk of esophageal squamous cell carcinoma. Oncogene 27, 1290-1296.
    Albertson, D. G., Collins, C., McCormick, F., and Gray, J. W. (2003). Chromosome aberrations in solid tumors. Nat Genet 34,369-376.
    Alvarez-Nunez, F., Mora, J., and Matias-Guiu, X. (2003). [Thyroid carcinomas of the follicular epithelium:tumor markers and oncogenes]. Med Clin (Barc) 121,264-269.
    Arai, H., Ueno, T., Tangoku, A., Yoshino, S., Abe, T., Kawauchi, S., Oga, A., Furuya, T., Oka, M., and Sasaki, K. (2003). Detection of amplified oncogenes by genome DNA microarrays in human primary esophageal squamous cell carcinoma:comparison with conventional comparative genomic hybridization analysis. Cancer Genet Cytogenet 146,16-21.
    Baptista, J., Mercer, C., Prigmore, E., Gribble, S. M., Carter, N. P., Maloney, V., Thomas, N. S., Jacobs, P. A., and Crolla, J. A. (2008). Breakpoint mapping and array CGH in translocations:comparison of a phenotypically normal and an abnormal cohort. Am J Hum Genet 82,927-936.
    Baro, C., Salido, M., Espinet, B., Astier, L., Domingo, A., Granada, I., Milla, F., Carrio, A., Costa, D., Luno, E., et al. (2008). New chromosomal alterations in a series of 23 splenic marginal zone lymphoma patients revealed by Spectral Karyotyping (SKY). Leuk Res 32,727-736.
    Bartkova, J., Horejsi, Z., Koed, K., Kramer, A., Tort, F., Zieger, K., Guldberg, P., Sehested, M., Nesland, J. M., Lukas, C, et al. (2005). DNA damage response as a candidate anti-cancer barrier in early human tumorigenesis. Nature 434,864-870.
    Ben-Neriah, Y., Daley, G. Q., Mes-Masson, A. M., Witte, O. N., and Baltimore, D. (1986). The chronic myelogenous leukemia-specific P210 protein is the product of the bcr/abl hybrid gene. Science 233,212-214.
    Betts, D. R., Stanchescu, R., Niggli, F. K., Cohen, N., Rechavi, G., Amariglio, N., and Trakhtenbrot, L. (2008). SKY reveals a high frequency of unbalanced translocations involving chromosome 6 in t(12;21)-positive acute lymphoblastic leukemia. Leuk Res 32,39-43.
    Bian, Y. S., Osterheld, M. C., Bosnian, F. T., Benhattar, J., and Fontolliet, C. (2001). p53 gene mutation and protein accumulation during neoplastic progression in Barrett's esophagus. Mod Pathol 14,397-403.
    Bitzer, M., Stahl, M., Arjumand, J., Rees, M., Klump, B., Heep, H., Gabbert, H. E., and Sarbia, M. (2003). C-myc gene amplification in different stages of oesophageal squamous cell carcinoma:prognostic value in relation to treatment modality. Anticancer Res 23,1489-1493.
    Blant, S. A., Ballini, J. P., Caron, C. T., Fontolliet, C, Monnier, P., and Laurini, N. R. (2001). Evolution of DNA ploidy during squamous cell carcinogenesis in the esophagus. Dis Esophagus 14,178-184.
    Boldog, F. L., Waggoner, B., Glover, T. W., Chumakov, I., Le Paslier, D., Cohen, D., Gemmill, R. M., and Drabkin, H. A. (1994). Integrated YAC contig containing the 3p14.2 hereditary renal carcinoma 3;8 translocation breakpoint and the fragile site FRA3B. Genes Chromosomes Cancer 11,216-221.
    Bourgeois, J. M., Knezevich, S. R., Mathers, J. A., and Sorensen, P. H. (2000). Molecular detection of the ETV6-NTRK3 gene fusion differentiates congenital fibrosarcoma from other childhood spindle cell tumors. Am J Surg Pathol 24,937-946.
    Burrow, A. A., Williams, L. E., Pierce, L. C., and Wang, Y. H. (2009). Over half of breakpoints in gene pairs involved in cancer-specific recurrent translocations are mapped to human chromosomal fragile sites. BMC Genomics 10,59.
    Cai, Y. C., So, C. K., Nie, A. Y., Song, Y., Yang, G. Y., Wang, L. D., Zhao, X., Kinzy, T. G., and Yang, C. S. (2007). Characterization of genetic alteration patterns in human esophageal squamous cell carcinoma using selected microsatellite markers spanning multiple loci. Int J Oncol 30,1059-1067.
    Calasanz, M. J., and Cigudosa, J. C. (2008). Molecular cytogenetics in translational oncology:when chromosomes meet genomics. Clin Transl Oncol 10,20-29.
    Cao, W., Chen, X., Dai, H., Wang, H., Shen, B., Chu, D., McAfee, T., and Zhang, Z. F. (2004). Mutational spectra of p53 in geographically localized esophageal squamous cell carcinoma groups in China. Cancer 101,834-844.
    Carneiro, A., Isinger, A., Karlsson, A., Johansson, J., Jonsson, G., Bendahl, P. O., Falkenback, D., Halvarsson, B., and Nilbert, M. (2008). Prognostic impact of array-based genomic profiles in esophageal squamous cell cancer. BMC Cancer 8, 98.
    Casper, A. M., Nghiem, P., Arlt, M. F., and Glover, T. W. (2002). ATR regulates fragile site stability. Cell 111,779-789.
    Chan, W. C., Tang, C. M., Lau, K. W., and Lung, M. L. (1997). p16 tumor suppressor gene mutations in Chinese esophageal carcinomas in Hong Kong. Cancer Lett 115, 201-206.
    Coquelle, A., Pipiras, E., Toledo, F., Buttin, G., and Debatisse, M. (1997). Expression of fragile sites triggers intrachromosomal mammalian gene amplification and sets boundaries to early amplicons. Cell 89,215-225.
    Dar, N. A., Mir, M. M., Salam, I., Malik, M. A., Gulzar, G. M., Yatoo, G. N., Ahmad, A., and Shah, A. (2008). Association between copper excess, zinc deficiency, and TP53 mutations in esophageal squamous cell carcinoma from Kashmir Valley, India--a high risk area. Nutr Cancer 60,585-591.
    Debacker, K., and Kooy, R. F. (2007). Fragile sites and human disease. Hum Mol Genet 16 Spec No.2, R150-158.
    Doki, Y., Shiozaki, H., Tahara, H., Kobayashi, K., Miyata, M., Oka, H., lihara, K., and Mori, T. (1993). Prognostic value of DNA ploidy in squamous cell carcinoma of esophagus. Analyzed with improved flow cytometric measurement. Cancer 72, 1813-1818.
    Durkin, S. G., and Glover, T. W. (2007). Chromosome fragile sites. Annu Rev Genet 41, 169-192.
    Egashira, A., Morita, M., Kakeji, Y., Sadanaga, N., Oki, E., Honbo, T., Ohta, M, and Maehara, Y. (2007). p53 gene mutations in esophageal squamous cell carcinoma and their relevance to etiology and pathogenesis:results in Japan and comparisons with other countries. Cancer Sci 98,1152-1156.
    Eguchi, M., Eguchi-Ishimae, M., Tojo, A., Morishita, K., Suzuki, K., Sato, Y., Kudoh, S., Tanaka, K., Setoyama, M., Nagamura, F., et al. (1999). Fusion of ETV6 to neurotrophin-3 receptor TRKC in acute myeloid leukemia with t(12;15)(p13;q25). Blood 93,1355-1363.
    Ersfeld. K. (2004). Fiber-FISH:fluorescence in situ hybridization on stretched DNA. Methods Mol Biol 270,395-402.
    Fang, M. Z., Chen, D., Sun, Y., Jin, Z., Christman, J. K., and Yang, C. S. (2005a). Reversal of hypermethylation and reactivation of pl6INK4a, RARbeta, and MGMT genes by genistein and other isoflavones from soy. Clin Cancer Res 11,7033-7041.
    Fang, M. Z., Jin, Z., Wang, Y., Liao, J., Yang, G. Y., Wang, L. D., and Yang, C. S. (2005b). Promoter hypermethylation and inactivation of O(6)-methyIguanine-DNA methyltransferase in esophageal squamous cell carcinomas and its reactivation in cell lines. Int J Oncol 26,615-622.
    Fu, L., Qin, Y. R., Xie, D., Hu, L., Kwong, D. L., Srivastava, G., Tsao, S. W., and Guan, X. Y. (2007). Characterization of a novel tumor-suppressor gene PLC delta 1 at 3p22 in esophageal squamous cell carcinoma. Cancer Res 67,10720-10726.
    Gibson, M. K., Abraham, S. C., Wu, T. T., Burtness, B., Heitmiller, R. F., Heath, E., and Forastiere, A. (2003). Epidermal growth factor receptor, p53 mutation, and pathological response predict survival in patients with locally advanced esophageal cancer treated with preoperative chemoradiotherapy. Clin Cancer Res 9,6461-6468.
    Glover, T. W., Arlt, M. F., Casper, A. M., and Durkin, S. G. (2005). Mechanisms of common fragile site instability. Hum Mol Genet 14 Spec No.2, R197-205.
    Gorgoulis, V. G., Vassiliou, L. V., Karakaidos, P., Zacharatos, P., Kotsinas, A., Liloglou, T., Venere, M., Ditullio, R. A., Jr., Kastrinakis, N. G., Levy, B., et al. (2005). Activation of the DNA damage checkpoint and genomic instability in human precancerous lesions. Nature 434,907-913.
    Gramlich, T. L., Fritsch, C. R., Maurer, D., Eberle, M., and Gansler, T. S. (1994). Differential polymerase chain reaction assay of cyclin Dl gene amplification in esophageal carcinoma. Diagn Mol Pathol 3,255-259.
    Grigorova, M., Lyman, R. C., Caldas, C., and Edwards, P. A. (2005). Chromosome abnormalities in 10 lung cancer cell lines of the NCI-H series analyzed with spectral karyotyping. Cancer Genet Cytogenet 162,1-9.
    Guo, G. M., Huang, X. P., Dong, J. T., Caia, Y., Xu, X., Han, Y. L., Wu, M., Zhan, Q. M., and Wang, M. R. (2005). A novel region of deletion on 13q33-q34 in esophageal squamous cell carcinoma. Oncol Rep 14,1639-1646.
    Guo, M., Ren, J., Brock, M. V., Herman, J. G., and Carraway, H. E. (2008). Promoter methylation of HIN-1 in the progression to esophageal squamous cancer. Epigenetics 3,336-341.
    Guo, X. Q., Wang, S. J., Zhang, L. W., Wang, X. L., Zhang, J. H., and Guo, W. (2007). DNA methylation and loss of protein expression in esophageal squamous cell carcinogenesis of high-risk area. J Exp Clin Cancer Res 26,587-594.
    Hanawa, M., Suzuki, S., Dobashi, Y., Yamane, T., Kono, K., Enomoto, N., and Ooi, A. (2006). EGFR protein overexpression and gene amplification in squamous cell carcinomas of the esophagus. Int J Cancer 118,1173-1180.
    Harada, H., Uchida, N., Shimada, Y., Kumimoto, H., Shinoda, M., Imamura, M., and Ishizaki, K. (2001). Polymorphism and allelic loss at the AS3 locus on 13q 12-13 in esophageal squamous cell carcinoma. Int J Oncol 18,1003-1007.
    Harding, M. A., Arden, K. C., Gildea, J. W., Gildea, J. J., Perlman, E. J., Viars, C., and Theodorescu, D. (2002). Functional genomic comparison of lineage-related human bladder cancer cell lines with differing tumorigenic and metastatic potentials by spectral karyotyping, comparative genomic hybridization, and a novel method of positional expression profiling. Cancer Res 62,6981-6989.
    Hattori, K., Kajiyama, Y., and Tsurumaru, M. (2003). Mutation of the p53 gene predicts lymph node metastases in Japanese patients with esophageal carcinoma:DNA and immunohistochemical analyses. Dis Esophagus 16,301-306.
    Heller, A., Starke, H., Trifonov, V., Rubtsov, N., Wedding, U., Loncarevic, I., Bleck, C. Claussen, U., and Liehr, T. (2002). A complex translocation event between the two homologues of chromosomes 5 leading to a del(5)(q21q33) as a sole aberration in a case clinically diagnosed as CML:characterization of the aberration by multicolor banding. Int J Oncol 20,1179-1181.
    Hellman, A., Zlotorynski, E., Scherer, S. W., Cheung, J., Vincent, J. B., Smith, D. I., Trakhtenbrot, L., and Kerem, B. (2002). A role for common fragile site induction in amplification of human oncogenes. Cancer Cell1,89-97.
    Howarth, K. D., Blood, K. A., Ng, B. L., Beavis, J. C., Chua, Y., Cooke, S. L., Raby, S., Ichimura, K., Collins. V. P., Carter. N. P., and Edwards. P. A. (2008). Array painting reveals a high frequency of balanced translocations in breast cancer cell lines that break in cancer-relevant genes. Oncogene 27,3345-3359.
    Hu, N., Huang, J., Emmert-Buck, M. R., Tang, Z. Z., Roth. M. J., Wang, C., Dawsey, S. M., Li, G., Li, W. J., Wang, Q. H.. el al. (2001). Frequent inactivation of the TP53 gene in esophageal squamous cell carcinoma from a high-risk population in China. Clin Cancer Res 7,883-891.
    Hu, N., Li, G., Li, W. J., Wang, C., Goldstein, A. M., Tang, Z. Z., Roth, M. J., Dawsey, S. M., Huang, J., Wang, Q. H., et al. (2002). Infrequent mutation in the BRCA2 gene in esophageal squamous cell carcinoma. Clin Cancer Res 8,1121-1126.
    Hu, N., Su, H., Li, W. J., Giffen, C., Goldstein, A. M., Hu, Y., Wang, C., Roth, M. J., Li, G., Dawsey, S. M., et al. (2005). Allelotyping of esophageal squamous-cell carcinoma on chromosome 13 defines deletions related to family history. Genes Chromosomes Cancer 44,271-278.
    Hu, N., Wang, C., Han, X. Y., He, L. J., Tang, Z. Z., Giffen, C., Emmert-Buck, M. R., Goldstein, A. M., and Taylor, P. R. (2004a). Evaluation of BRCA2 in the genetic susceptibility of familial esophageal cancer. Oncogene 23,852-858.
    Hu, N., Wang, C., Ng, D., Clifford, R., Yang, H. H., Tang, Z. Z., Wang, Q. H., Han, X. Y., Giffen, C., Goldstein, A. M., el al. (2009). Genomic characterization of esophageal squamous cell carcinoma from a high-risk population in China. Cancer Res 69, 5908-5917.
    Hu, N., Wang, C., Su, H., Li, W. J., Emmert-Buck, M. R., Li, G., Roth, M. J., Tang, Z. Z., Lu, N., Giffen, C., et al. (2004b). High frequency of CDKN2A alterations in esophageal squamous cell carcinoma from a high-risk Chinese population. Genes Chromosomes Cancer 39,205-216.
    Huang, J., Hu, N., Goldstein, A. M., Emmert-Buck, M. R., Tang, Z. Z., Roth, M. J., Wang, Q. H., Dawsey, S. M., Han, X. Y., Ding, T., et al. (2000). High frequency allelic loss on chromosome 17p 13.3-p11.1 in esophageal squamous cell carcinomas from a high incidence area in northern China. Carcinogenesis 21,2019-2026.
    Huang, X. P., Wei, F., Liu, X. Y., Xu, X., Hu, H., Chen, B. S., Xia, S. H., Han, Y. S., Han, Y. L.. Cai. Y., et al. (2002). Allelic loss on 13q in esophageal squamous cell carcinomas from northern China. Cancer Lett 755,87-94.
    Imoto, I., Yuki, Y., Sonoda, I., Ito, T., Shimada, Y., Imamura, M., and Inazawa, J. (2003). Identification of ZASCl encoding a Kruppel-like zinc finger protein as a novel target for 3q26 amplification in esophageal squamous cell carcinomas. Cancer Res 63, 5691-5696.
    Ishii, T., Murakami, J., Notohara, K., Cullings, H. M., Sasamoto, H., Kambara, T, Shirakawa, Y., Naomoto, Y., Ouchida, M., Shimizu, K., et al. (2007). Oesophageal squamous cell carcinoma may develop within a background of accumulating DNA methylation in normal and dysplastic mucosa. Gut 56,13-19.
    Ishizuka, T., Tanabe, C., Sakamoto, H., Aoyagi, K., Maekawa, M., Matsukura, N., Tokunaga, A., Tajiri, T., Yoshida, T., Terada, M., and Sasaki, H. (2002). Gene amplification profiling of esophageal squamous cell carcinomas by DNA array CGH. Biochem Biophys Res Commun 296,152-155.
    Ito, S., Ohga, T., Saeki, H., Watanabe, M., Kakeji, Y., Morita, M., Yamada, T., and Maehara, Y. (2007). Promoter hypermethylation and quantitative expression analysis of CDK.N2A (p14ARF and p16INK4a) gene in esophageal squamous cell carcinoma. Anticancer Res 27,3345-3353.
    Janssen, J. W., Imoto, I., Inoue, J., Shimada, Y., Ueda, M., Imamura, M., Bartram, C. R., and Inazawa, J. (2002). MYEOV, a gene at 11q13, is coamplified with CCND1, but epigenetically inactivated in a subset of esophageal squamous cell carcinomas. J Hum Genet 47,460-464.
    Jiang, J., and Gill, B. S. (2006). Current status and the future of fluorescence in situ hybridization (FISH) in plant genome research. Genome 49,1057-1068.
    Jin, Y., Jin, C., Law, S., Chu, K. M., Zhang, H., Strombeck, B., Yuen, A. P., and Kwong, Y. L. (2004). Cytogenetic and fluorescence in situ hybridization characterization of clonal chromosomal aberrations and CCND1 amplification in esophageal carcinomas. Cancer Genet Cytogenet 148,21-28.
    Jin, Z., Olaru, A., Yang, J., Sato, F., Cheng, Y., Kan, T., Mori, Y., Mantzur, C., Paun, B., Hamilton, J. P., et al. (2007). Hypermethylation of tachykinin-1 is a potential biomarker in human esophageal cancer. Clin Cancer Res 13.6293-6300.
    Kang, W., Yao, H. Q., Fang, L. L., Cai, Y., Han, Y. L., Xu, X., Zhang, Y., Jia, X. M., and Wang, M. R. (2009). [Aneuploid analysis of chromosomes 3,8,10,20 and Y in esophageal squamous cell carcinoma]. Yi Chuan 31,255-260.
    Kaushal, M., Chattopadhyay, I., Phukan, R., Purkayastha, J., Mahanta, J., Kapur, S., and Saxena, S. (2009). Contribution of germ line BRCA2 sequence alterations to risk of familial esophageal cancer in a high-risk area of India. Dis Esophagus.
    Kim, D. H., Muto, M., Kuwahara, Y., Nakanishi, Y., Watanabe, H., Aoyagi, K., Ogawa, K., Yoshida, T., and Sasaki, H. (2006). Array-based comparative genomic hybridization of circulating esophageal tumor cells. Oncol Rep 16,1053-1059.
    Kitagawa, Y., Ueda, M., Ando, N., Ozawa, S., Shimizu, N., and Kitajima, M. (1996). Further evidence for prognostic significance of epidermal growth factor receptor gene amplification in patients with esophageal squamous cell carcinoma. Clin Cancer Res 2,909-914.
    Knezevich, S. R., McFadden, D. E., Tao, W., Lim, J. F., and Sorensen, P. H. (1998). A novel ETV6-NTRK3 gene fusion in congenital fibrosarcoma. Nat Genet 18,184-187.
    Kuo, M. T., Vyas, R. C., Jiang, L. X., and Hittelman, W. N. (1994). Chromosome breakage at a major fragile site associated with P-glycoprotein gene amplification in multidrug-resistant CHO cells. Mol Cell Biol 14,5202-5211.
    Kuroki, T., Trapasso, F., Yendamuri, S., Matsuyama, A., Alder, H., Mori, M., and Croce, C. M. (2003). Allele loss and promoter hypermethylation of VHL, RAR-beta, RASSF1A, and FHIT tumor suppressor genes on chromosome 3p in esophageal squamous cell carcinoma. Cancer Res 63,3724-3728.
    Kwong, D., Lam, A., Guan, X., Law, S., Tai, A., Wong, J., and Sham, J. (2004). Chromosomal aberrations in esophageal squamous cell carcinoma among Chinese: gain of 12p predicts poor prognosis after surgery. Hum Pathol 35,309-316.
    Lambros, M. B., Tan, D. S., Jones, R. L., Vatcheva, R., Savage, K., Tamber, N., Fenwick, K., Mackay, A., Ashworth, A., and Reis-Filho, J. S. (2009). Genomic profile of a secretory breast cancer with an ETV6-NTRK3 duplication. J Clin Pathol 62,604-612.
    Landegent, J. E., Jansen in de Wal, N., Dirks. R. W.. Baao. F.. and van der Ploeg. M. (1987). Use of whole cosmid cloned genomic sequences for chromosomal localization by non-radioactive in situ hybridization. Hum Genet 77,366-370.
    Lee, E. J., Lee, B. B., Han, J., Cho, E. Y., Shim, Y. M., Park, J., and Kim, D. H. (2008). CpG island hypermethylation of E-cadherin (CDH1) and integrin alpha4 is associated with recurrence of early stage esophageal squamous cell carcinoma. Int J Cancer 123, 2073-2079.
    Lee, E. J., Lee, B. B., Kim, J. W., Shim, Y. M., Hoseok, I., Han, J., Cho, E. Y., Park, J., and Kim, D. H. (2006). Aberrant methylation of Fragile Histidine Triad gene is associated with poor prognosis in early stage esophageal squamous cell carcinoma. Eur J Cancer 42,972-980.
    Lestou, V. S., Gascoyne, R. D., Salski, C., Connors, J. M., and Horsman, D. E. (2002). Uncovering novel inter-and intrachromosomal chromosome 1 aberrations in follicular lymphomas by using an innovative multicolor banding technique. Genes Chromosomes Cancer 34,201-210.
    Lestou, V. S., Ludkovski, O., Connors, J. M., Gascoyne, R. D., Lam, W. L., and Horsman, D. E. (2003). Characterization of the recurrent translocation t(1;1)(p36.3;q21.1-2) in non-Hodgkin lymphoma by multicolor banding and fluorescence in situ hybridization analysis. Genes Chromosomes Cancer 36,375-381.
    Li, G., Hu, N., Goldstein, A. M., Tang, Z. Z., Roth, M. J., Wang, Q. H.. Dawsey, S. M., Han, X. Y., Ding, T., Huang, J., et al. (2001). Allelic loss on chromosome bands 13q 11-q 13 in esophageal squamous cell carcinoma. Genes Chromosomes Cancer 31, 390-397.
    Li, M. M., Nimmakayalu, M. A., Mercer, D., Andersson, H. C., and Emanuel, B. S. (2008). Characterization of a cryptic 3.3 Mb deletion in a patient with a "balanced t(15;22) translocation" using high density oligo array CGH and gene expression arrays. Am J Med Genet A 146,368-375.
    Li, W. J., Hu, N., Su, H., Wang, C., Goldstein, A. M., Wang, Y., Emmert-Buck, M. R., Roth, M. J., Guo, W. J., and Taylor, P. R. (2003). Allelic loss on chromosome 13q14 and mutation in deleted in cancer 1 gene in esophageal squamous cell carcinoma. Oncogene 22,314-318.
    Li. Z., Tognon. C. E., Godinho, F. J., Yasaitis. L., Hock. H., Herschkowitz. J. I., Lannon. C. L., Cho, E., Kim, S. J., Bronson, R. T., el al. (2007). ETV6-NTRK3 fusion oncogene initiates breast cancer from committed mammary progenitors via activation of API complex. Cancer Cell 12,542-558.
    Liu, Q., Schwaller, J., Kutok, J., Cain, D., Aster, J. C., Williams, I. R., and Gilliland, D. G. (2000). Signal transduction and transforming properties of the TEL-TRKC fusions associated with t(12;15)(p13;q25) in congenital fibrosarcoma and acute myelogenous leukemia. EMBO J 19,1827-1838.
    Long, C., Yin, B., Lu, Q., Zhou, X., Hu, J., Yang, Y., Yu, F., and Yuan, Y. (2007). Promoter hypermethylation of the RUNX3 gene in esophageal squamous cell carcinoma. Cancer Invest 25,685-690.
    Luo, M. L., Shen, X. M., Zhang, Y., Wei, F., Xu, X., Cai, Y., Zhang, X., Sun, Y. T., Zhan, Q. M., Wu, M., and Wang, M. R. (2006). Amplification and overexpression of CTTN (EMS1) contribute to the metastasis of esophageal squamous cell carcinoma by promoting cell migration and anoikis resistance. Cancer Res 66,11690-11699.
    Lyronis, I. D., Baritaki, S., Bizakis,1., Krambovitis, E., and Spandidos, D. A. (2008). K-ras mutation, HPV infection and smoking or alcohol abuse positively correlate with esophageal squamous carcinoma. Pathol Oncol Res 14,267-273.
    Macville, M., Schrock, E., Padilla-Nash, H., Keck, C., Ghadimi, B. M., Zimonjic, D., Popescu, N., and Ried, T. (1999). Comprehensive and definitive molecular cytogenetic characterization of HeLa cells by spectral karyotyping. Cancer Res 59, 141-150.
    Maesawa, C., Tamura, G., Nishizuka, S., Ogasawara, S., Ishida, K., Terashima, M., Sakata, K., Sato, N., Saito, K., and Satodate, R. (1996). Inactivation of the CDKN2 gene by homozygous deletion and de novo methylation is associated with advanced stage esophageal squamous cell carcinoma. Cancer Res 56,3875-3878.
    Mao, X., James, S. Y., Yanez-Munoz, R. J., Chaplin, T., Molloy, G., Oliver, R. T., Young, B. D., and Lu, Y. J. (2007). Rapid high-resolution karyotyping with precise identification of chromosome breakpoints. Genes Chromosomes Cancer 46,675-683.
    Matsuura, H., Kuwano. H., Morita, M., Tsutsui. S., Kido, Y., Mori. M., and Sugimachi, K. (1991). Predicting recurrence time of esophageal carcinoma through assessment of histologic factors and DNA ploidy. Cancer 67,1406-1411.
    Mayama, T., Fukushige, S., Shineha, R., Nishihira, T., Satomi, S., and Horii, A. (2000). Frequent loss of copy number on the long arm of chromosome 21 in human esophageal squamous cell carcinoma. Int J Oncol 17,245-252.
    Melcher, R., Koehler, S., Steinlein, C., Schmid, M., Mueller, C. R., Luehrs, H., Menzel, T., Scheppach, W., Moerk, H., Scheurlen, M., et al. (2002). Spectral karyotype analysis of colon cancer cell lines of the tumor suppressor and mutator pathway. Cytogenet Genome Res 98,22-28.
    Menin, C., Santacatterina, M., Zambon, A., Montagna, M., Parenti, A., Ruol, A., and D'Andrea, E. (2000). Anomalous transcripts and allelic deletions of the FHIT gene in human esophageal cancer. Cancer Genet Cytogenet 119,56-61.
    Michael, D., Beer, D. G., Wilke, C. W., Miller, D. E., and Glover, T. W. (1997). Frequent deletions of FHIT and FRA3B in Barrett's metaplasia and esophageal adenocarcinomas. Oncogene 15,1653-1659.
    Mimori, K., Inoue, H., Shiraishi, T., Matsuyama, A., Mafune, K., Tanaka, Y., and Mori, M. (2003). Microsatellite instability is often observed in esophageal carcinoma patients with allelic loss in the FHIT/FRA3B locus. Oncology 64,275-279.
    Mir, M. M., Dar, N. A., Gochhait, S., Zargar, S. A., Ahangar, A. G., and Bamezai, R. N. (2005). p53 mutation profile of squamous cell carcinomas of the esophagus in Kashmir (India):a high-incidence area. Int J Cancer 116,62-68.
    Mitelman, F., Johansson, B., and Mertens, F. (2007). The impact of translocations and gene fusions on cancer causation. Nat Rev Cancer 7,233-245.
    Mizuiri, H., Yoshida, K., Toge, T., Oue, N., Aung, P. P., Noguchi, T., and Yasui, W. (2005). DNA methylation of genes linked to retinoid signaling in squamous cell carcinoma of the esophagus:DNA methylation of CRBP1 and TIG1 is associated with tumor stage. Cancer Sci 96,571-577.
    Muzeau, F., Flejou, J. F., Thomas, G., and Hamelin, R. (1997). Loss of heterozygosity on chromosome 9 and p16 (MTS1, CDKN2) gene mutations in esophageal cancers. Int J Cancer 72,27-30.
    Nikiforova, M. N.. and Nikiforov. Y. E. (2008). Molecular genetics of thyroid cancer: implications for diagnosis, treatment and prognosis. Expert Rev Mol Diagn 8,83-95.
    Ninomiya, I., Kawakami, K., Fushida, S., Fujimura, T., Funaki, H., Takamura, H., Kitagawa, H., Nakagawara, H., Tajima, H., Kayahara, M., and Ohta, T. (2008). Quantitative detection of TIMP-3 promoter hypermethylation and its prognostic significance in esophageal squamous cell carcinoma. Oncol Rep 20,1489-1495.
    Nishikura, K., ar-Rushdi, A., Erikson, J., Watt, R., Rovera, G., and Croce, C. M. (1983). Differential expression of the normal and of the translocated human c-myc oncogenes in B cells. Proc Natl Acad Sci U S A 80,4822-4826.
    Noguchi, T., Kimura, Y., Takeno, S., Chujo, M., Uchida, Y., Mueller, W., and Gabbert, H. E. (2003). Chromosomal imbalance in esophageal squamous cell carcinoma:3q gain correlates with tumor progression but not prognostic significance. Oncol Rep 10, 1393-1400.
    Pasello, G., Agata, S., Bonaldi, L., Corradin, A., Montagna, M., Zamarchi, R., Parenti, A., Cagol, M., Zaninotto, G., Ruol, A., et al. (2009). DNA copy number alterations correlate with survival of esophageal adenocarcinoma patients. Mod Pathol 22, 58-65.
    Porschen, R., Bevers, G., Remy, U., Schauseil, S., and Borchard, F. (1993). Influence of preoperative radiotherapy on DNA ploidy in squamous cell carcinomas of the oesophagus. Gut 34,1086-1090.
    Qin, Y. R., Fu, L., Sham, P. C., Kwong, D. L., Zhu, C. L., Chu, K. K., Li, Y., and Guan, X. Y. (2008a). Single-nucleotide polymorphism-mass array reveals commonly deleted regions at 3p22 and 3pl4.2 associate with poor clinical outcome in esophageal squamous cell carcinoma. Int J Cancer 123,826-830.
    Qin, Y. R., Wang, L. D., Fan, Z. M., Kwong, D., and Guan, X. Y. (2008b). Comparative genomic hybridization analysis of genetic aberrations associated with development of esophageal squamous cell carcinoma in Henan, China. World J Gastroenterol 14, 1828-1835.
    Rabbitts, T. H., and Stocks, M. R. (2003). Chromosomal translocation products engender new intracellular therapeutic technologies. Nat Med 9,383-386.
    Rao, P. H., Harris, C. P.. Yan Lu, X., Li, X. N., Mok, S. C., and Lau. C. C. (2002). Multicolor spectral karyotyping of serous ovarian adenocarcinoma. Genes Chromosomes Cancer 33,123-132.
    Rosenblum-Vos, L. S., Meltzer, S. J., Leana-Cox, J., and Schwartz, S. (1993). Cytogenetic studies of primary cultures of esophageal squamous cell carcinoma. Cancer Genet Cytogenet 70,127-131.
    Roth, M. J., Abnet, C. C., Hu, N., Wang, Q. H., Wei, W. Q., Green, L., D'Alelio, M., Qiao, Y. L., Dawsey, S. M., Taylor, P. R., and Woodson, K. (2006). p16, MGMT, RARbeta2, CLDN3, CRBP and MT1G gene methylation in esophageal squamous cell carcinoma and its precursor lesions. Oncol Rep 15,1591-1597.
    Rowley, J. D. (1973). Letter:A new consistent chromosomal abnormality in chronic myelogenous leukaemia identified by quinacrine fluorescence and Giemsa staining. Nature 243,290-293.
    Rowley, J. D. (2001). Chromosome translocations:dangerous liaisons revisited. Nat Rev Cancer 1,245-250.
    Ruan, Y., Ooi, H. S., Choo, S. W., Chiu, K. P., Zhao, X. D., Srinivasan, K. G., Yao, F., Choo, C. Y., Liu, J., Ariyaratne, P., el al. (2007). Fusion transcripts and transcribed retrotransposed loci discovered through comprehensive transcriptome analysis using Paired-End diTags (PETs). Genome Res 17,828-838.
    Rubin, B. P., Chen, C. J., Morgan, T. W., Xiao, S., Grier, H. E., Kozakewich, H. P., Perez-Atayde, A. R., and Fletcher, J. A. (1998). Congenital mesoblastic nephroma t(12;15) is associated with ETV6-NTRK3 gene fusion:cytogenetic and molecular relationship to congenital (infantile) fibrosarcoma. Am J Pathol 153,1451-1458.
    Ruol, A., Segalin, A., Panozzo, M., Stephens, J. K., Dalla Palma, P., Skinner, D. B., Peracchia, A., and Little, A. G. (1990). Flow cytometric DNA analysis of squamous cell carcinoma of the esophagus. Cancer 65,1185-1188.
    Salam, I., Hussain, S., Mir, M. M., Dar, N. A., Abdullah, S., Siddiqi, M. A., Lone, R. A., Zargar, S. A., Sharma, S., Hedau, S., et al. (2009). Aberrant promoter methylation and reduced expression of p 16 gene in esophageal squamous cell carcinoma from Kashmir valley:a high-risk area. Mol Cell Biochem.
    Saracoglu, K., Brown, J., Kearney. L., Uhrig. S., Azofeifa. J., Fauth. C., Speicher. M. R., and Eils, R. (2001). New concepts to improve resolution and sensitivity of molecular cytogenetic diagnostics by multicolor fluorescence in situ hybridization. Cytometry 44,7-15.
    Sasaki, K., Murakami, T., Murakami, T., and Nakamura, M. (1991). Intratumoral heterogeneity in DNA ploidy of esophageal squamous cell carcinomas. Cancer 68, 2403-2406.
    Schrock, E., du Manoir, S., Veldman, T., Schoell, B., Wienberg, J., Ferguson-Smith, M. A., Ning, Y., Ledbetter, D. H., Bar-Am, I., Soenksen, D., et al. (1996). Multicolor spectral karyotyping of human chromosomes. Science 273,494-497.
    Sengpiel, C., Konig, I. R., Rades, D., Noack, F., Duchrow, M., Schild, S. E., Ludwig, D., and Homann, N. (2009). p53 Mutations in carcinoma of the esophagus and gastroesophageal junction. Cancer Invest 27,96-104.
    Sepehr, A., Taniere, P., Martel-Planche, G., Zia'ee, A. A., Rastgar-Jazii, F., Yazdanbod, M., Etemad-Moghadam, G., Kamangar, F., Saidi, F., and Hainaut, P. (2001). Distinct pattern of TP53 mutations in squamous cell carcinoma of the esophagus in Iran. Oncogene 20,7368-7374.
    Sheng, W. Q., Hisaoka, M., Okamoto, S., Tanaka, A., Meis-Kindblom, J. M., Kindblom, L. G., Ishida, T., Nojima, T., and Hashimoto, H. (2001). Congenital-infantile fibrosarcoma. A clinicopathologic study of 10 cases and molecular detection of the ETV6-NTRK3 fusion transcripts using paraffin-embedded tissues. Am J Clin Pathol 115,348-355.
    Sherbenou, D. W., and Druker. B. J. (2007). Applying the discovery of the Philadelphia chromosome. J Clin Invest 117,2067-2074.
    Shimada, M., Yanagisawa, A., Kato, Y., Inoue, M., Shiozaki, H., Monden, M., and Nakamura, Y. (1996). Genetic mechanisms in esophageal carcinogenesis:frequent deletion of 3p and 17p in premalignant lesions. Genes Chromosomes Cancer 15, 165-169.
    Shinomiya, T., Mori, T., Ariyama, Y., Sakabe, T., Fukuda, Y., Murakami, Y., Nakamura, Y., and Inazawa. J. (1999). Comparative genomic hybridization of squamous cell carcinoma of the esophagus:the possible involvement of the DPI gene in the 13q34 amplicon. Genes Chromosomes Cancer 24,337-344.
    Shinozaki, H., Ozawa, S., Ando, N., Tsuruta, H., Terada, M., Ueda, M., and Kitajima, M. (1996). Cyclin D1 amplification as a new predictive classification for squamous cell carcinoma of the esophagus, adding gene information. Clin Cancer Res 2,1155-1161.
    Shiomi, H., Sugihara, H., Kamitani, S., Tokugawa, T., Tsubosa, Y., Okada, K., Tamura, H., Tani, T., Kodama, M., and Hattori, T. (2003). Cytogenetic heterogeneity and progression of esophageal squamous cell carcinoma. Cancer Genet Cytogenet 147, 50-61.
    Shiraishi, H., Mikami, T., Yoshida, T., Tanabe, S., Kobayashi, N., Watanabe, M., and Okayasu, I. (2006). Early genetic instability of both epithelial and stromal cells in esophageal squamous cell carcinomas, contrasted with Barrett's adenocarcinomas. J Gastroenterol 41,1186-1196.
    Si, H. X., Tsao, S. W., Lam, K. Y., Srivastava, G., Liu, Y, Wong, Y. C., Shen, Z. Y., and Cheung, A. L. (2001). E-cadherin expression is commonly downregulated by CpG island hypermethylation in esophageal carcinoma cells. Cancer Lett 173,71-78.
    Sirivatanauksom, V., Sirivatanauksorn, Y., Gorman, P. A., Davidson, J. M., Sheer, D., Moore, P. S., Scarpa, A., Edwards, P. A., and Lemoine, N. R. (2001). Non-random chromosomal rearrangements in pancreatic cancer cell lines identified by spectral karyotyping. Int J Cancer 91,350-358.
    Soma, T., Kaganoi, J., Kawabe, A., Kondo, K., Imamura, M., and Shimada, Y. (2006). Nicotine induces the fragile histidine triad methylation in human esophageal squamous epithelial cells. Int J Cancer 119,1023-1027.
    Speicher, M. R., Gwyn Ballard, S., and Ward, D. C. (1996). Karyotyping human chromosomes by combinatorial multi-fluor FISH. Nat Genet 12,368-375.
    Speicher, M. R., Petersen, S., Uhrig, S., Jentsch, I., Fauth, C., Eils, R., and Petersen, I. (2000). Analysis of chromosomal alterations in non-small cell lung cancer by multiplex-FISH, comparative genomic hybridization, and multicolor bar coding. Lab Invest 80,1031-1041.
    Stamouli, M. I., Ferti, A. D., Panani, A. D., Raftakis, J., Consoli, C., Raptis, S. A., and Young. B. D. (2002). Application of multiplex fluorescence in situ hybridization in the cytogenetic analysis of primary gastric carcinoma. Cancer Genet Cytogenet 135, 23-27.
    Strefford, J. C., Lillington, D. M., Young, B. D., and Oliver, R. T. (2001). The use of multicolor fluorescence technologies in the characterization of prostate carcinoma cell lines:a comparison of multiplex fluorescence in situ hybridization and spectral karyotyping data. Cancer Genet Cytogenet 124,112-121.
    Tada, K., Oka, M., Tangoku, A., Hayashi, H., Oga, A., and Sasaki, K. (2000). Gains of 8q23-qter and 20q and loss of Ilq22-qter in esophageal squamous cell carcinoma associated with lymph node metastasis. Cancer 88,268-273.
    Tan, D. J., Chang, J., Liu, L. L., Bai, R. K., Wang, Y. F., Yeh, K. T., and Wong, L. J. (2006). Significance of somatic mutations and content alteration of mitochondrial DNA in esophageal cancer. BMC Cancer 6,93.
    Tanaka, H., Shimada, Y., Harada, H., Shinoda, M., Hatooka, S., Imamura, M., and Ishizaki, K. (1998). Methylation of the 5'CpG island of the FHIT gene is closely associated with transcriptional inactivation in esophageal squamous cell carcinomas. Cancer Res 58,3429-3434.
    Tognon, C., Garnett, M., Kenward, E., Kay, R., Morrison, K., and Sorensen, P. H. (2001). The chimeric protein tyrosine kinase ETV6-NTRK3 requires both Ras-Erkl/2 and PI3-kinase-Akt signaling for fibroblast transformation. Cancer Res 61,8909-8916.
    Tognon, C., Knezevich, S. R., Huntsman, D., Roskelley, C. D., Melnyk, N., Mathers, J. A., Becker, L., Carneiro, F., MacPherson, N., Horsman, D., et al. (2002). Expression of the ETV6-NTRK3 gene fusion as a primary event in human secretory breast carcinoma. Cancer Cell 2,367-376.
    Tognon, C. E., Mackereth, C. D., Somasiri, A. M., McIntosh, L. P., and Sorensen, P. H. (2004). Mutations in the SAM domain of the ETV6-NTRK3 chimeric tyrosine kinase block polymerization and transformation activity. Mol Cell Biol 24,4636-4650.
    Tokugawa, T., Sugihara, H., Tani, T., and Hattori, T. (2002). Modes of silencing of p 16 in development of esophageal squamous cell carcinoma. Cancer Res 62,4938-4944.
    Ueno, T., Tangoku, A., Yoshino, S., Abe, T., Toshimitsu, H., Furuya, T., Kawauchi, S., Oga. A., Oka, M., and Sasaki. K. (2002). Gain of 5p 15 detected by comparative genomic hybridization as an independent marker of poor prognosis in patients with esophageal squamous cell carcinoma. Clin Cancer Res 8,526-533.
    van Dekken, H., Wink, J. C., Vissers, K. J., van Marion, R., Koppert, L. B., Tilanus, H. W., Siersema, P. D., Tanke, H. J., Szuhai, K., and Hop, W. C. (2006). Genomic analysis of early adenocarcinoma of the esophagus or gastroesophageal junction: tumor progression is associated with alteration of 1q and 8p sequences. Genes Chromosomes Cancer 45,516-525.
    Wai, D. H., Knezevich, S. R., Lucas, T., Jansen, B., Kay, R. J., and Sorensen, P. H. (2000). The ETV6-NTRK3 gene fusion encodes a chimeric protein tyrosine kinase that transforms NIH3T3 cells. Oncogene 19,906-915.
    Watson, M. B., Bahia, H., Ashman, J. N., Berrieman, H. K., Drew, P., Lind, M. J., Greenman, J., and Cawkwell, L. (2004). Chromosomal alterations in breast cancer revealed by multicolour fluorescence in situ hybridization. Int J Oncol 25, 277-283.
    Weerkamp, F., Dekking, E., Ng, Y. Y., van der Velden, V. H., Wai, H., Bottcher, S., Bruggemann, M., van der Sluijs, A. J., Koning, A., Boeckx, N., et al. (2009). Flow cytometric immunobead assay for the detection of BCR-ABL fusion proteins in leukemia patients. Leukemia 23,1106-1117.
    Wei, F., Ni, J., Wu, S. S., Liu, H., Xu, X., Han, Y. L., Cai, Y., Zhang, J. W., Chen, X. J., Pang, H., et al. (2002). Cytogenetic studies of esophageal squamous cell carcinomas in the northern Chinese population by comparative genomic hybridization. Cancer Genet Cytogenet 138,38-43.
    Weier, H. U. (2001). DNA fiber mapping techniques for the assembly of high-resolution physical maps. J Histochem Cytochem 49,939-948.
    Wilke, C. M., Guo, S. W., Hall, B. K., Boldog, F., Gemmill, R. M., Chandrasekharappa, S. C., Barcroft, C. L., Drabkin, H. A., and Glover, T. W. (1994). Multicolor FISH mapping of YAC clones in 3p14 and identification of a YAC spanning both FRA3B and the t(3;8) associated with hereditary renal cell carcinoma. Genomics 22,319-326.
    Willem, P., Brown, J., and Schouten, J. (2006). A novel approach to simultaneously scan genes at fragile sites. BMC Cancer 6,205.
    Wu, Y. P., Yang. Y. L., Yang, G. Z., Wang, X. Y., Luo. M. L.. Zhang. Y., Feng, Y. B., Xu. X., Han, Y. L., Cai, Y., et al. (2006). Identification of chromosome aberrations in esophageal cancer cell line KYSE180 by multicolor fluorescence in situ hybridization. Cancer Genet Cytogenet 170,102-107.
    Xing, E. P., Nie, Y., Wang, L. D., Yang, G. Y., and Yang, C. S. (1999). Aberrant methylation of p16INK4a and deletion of p151NK4b are frequent events in human esophageal cancer in Linxian, China. Carcinogenesis 20,77-84.
    Yamashita, K., Kim, M. S., Park, H. L., Tokumaru, Y., Osada, M., Inoue, H., Mori, M., and Sidransky, D. (2008). HOP/OBI/NECC1 promoter DNA is frequently hypermethylated and involved in tumorigenic ability in esophageal squamous cell carcinoma. Mol Cancer Res 6,31-41.
    Yang, Y., Chu, J., Wu, Y., Luo, M., Xu, X., Han, Y., Cai, Y., Zhan, Q., and Wang, M. (2008a). Chromosome analysis of esophageal squamous cell carcinoma cell line KYSE 410-4 by repetitive multicolor fluorescence in situ hybridization. J Genet Genomics 35,11-16.
    Yang, Y. L., Chu, J. Y., Luo, M. L., Wu, Y. P., Zhang, Y., Feng, Y. B., Shi, Z. Z., Xu, X., Han, Y. L., Cai, Y., et al. (2008b). Amplification of PRKCI, located in 3q26, is associated with lymph node metastasis in esophageal squamous cell carcinoma. Genes Chromosomes Cancer 47,127-136.
    Yen, C. C., Chen, Y. J., Chen, J. T., Hsia, J. Y., Chen, P. M., Liu, J. H., Fan, F. S., Chiou, T. J., Wang, W. S., and Lin, C. H. (2001). Comparative genomic hybridization of esophageal squamous cell carcinoma:correlations between chromosomal aberrations and disease progression/prognosis. Cancer 92,2769-2777.
    Yen, C. C., Chen, Y. J., Lu, K. H., Hsia, J. Y., Chen, J. T., Hu, C. P., Chen, P. M., Liu, J. H., Chiou, T. J., Wang, W. S., et al. (2003). Genotypic analysis of esophageal squamous cell carcinoma by molecular cytogenetics and real-time quantitative polymerase chain reaction. Int J Oncol 23,871-881.
    Yen, C. C., Chen, Y. J., Pan, C. C., Lu, K. H., Chen, P. C., Hsia, J. Y., Chen, J. T., Wu, Y. C., Hsu, W. H., Wang, L. S., et al. (2005). Copy number changes of target genes in chromosome 3q25.3-qter of esophageal squamous cell carcinoma:TP63 is amplified in early carcinogenesis but down-regulated as disease progressed. World J Gastroenterol 11,1267-1272.
    Yeung, K., Seitz, T., Li, S., Janosch, P., McFerran, B., Kaiser, C., Fee, F., Katsanakis, K. D., Rose, D. W., Mischak, H., et al. (1999). Suppression of Raf-1 kinase activity and MAP kinase signalling by RKIP. Nature 401,173-177.
    Yu, C., Zhang, X., Huang, Q., Klein, M., and Goyal, R. K. (2007). High-fidelity DNA histograms in neoplastic progression in Barrett's esophagus. Lab Invest 87,466-472.
    Zech, L., Haglund, U., Nilsson, K., and Klein, G. (1976). Characteristic chromosomal abnormalities in biopsies and lymphoid-cell lines from patients with Burkitt and non-Burkitt lymphomas. Int J Cancer 17,47-56.
    Zhang, C., Li, K., Wei, L., Li, Z., Yu, P., Teng, L., Wu, K., and Zhu, J. (2007). p300 expression repression by hypermethylation associated with tumour invasion and metastasis in oesophageal squamous cell carcinoma. J Clin Pathol 60,1249-1253.
    Zhang, X., Huang, Q., Goyal, R. K., and Odze, R. D. (2008). DNA ploidy abnormalities in basal and superficial regions of the crypts in Barrett's esophagus and associated neoplastic lesions. Am J Surg Pathol 32,1327-1335.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700