比较基因组杂交技术分析肾细胞癌中染色体基因组的变化及意义
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:运用比较基因组杂交技术(CGH)分析肾细胞癌的染色体基因组变化特征,并比较不同组织学亚型、分级以及不同临床分期的肾细胞癌之间的基因组变化差异及意义。
     方法:选用外科手术切除并经病理组织学证实的46例原发性肾细胞癌(其中透明细胞癌10例,乳头状肾细胞癌13例,嫌色细胞癌12例,Xp11.2易位/TFE3基因融合相关性肾癌9例,未分化癌2例)石蜡包埋组织,应用CGH技术分析肾细胞癌基因组的变化;并比较不同组织学亚型、分级和临床分期的肾细胞癌之间基因组变化差异。所有数据资料均运用SPSS 13.0软件包进行统计学分析。
     结果:CGH分析结果显示:1. 46例肾细胞癌染色体基因组均存在不同程度的变化,其中扩增最常见于7q(47.8%),16p(39.1%),20q(34.8%) ,最常累及的染色体区段为7q22-31(39.1%)16p 12-13(21.7%),20q12-13(21.7%) ;而缺失最常见的是1p(45.7%),3p(45.7%),13q(37.0%),14q(30.4), 8p(30.4%),最常累及的染色体区段为3p22(21.7%), 8p16-23(26.1%),14q22-32(26.1%)。2.不同亚型肾细胞癌染色体基因组的变化各具特点:(1) 10例透明细胞癌中,扩增最常见的是7q(90%),16p(80%),5q (60%),缺失最常见的是3p(90%),8p(80%),1p(70%),4p(60%),4q(60%),9p(60%);(2) 13例乳头状癌中,扩增最常见的是7p(61.5%),7q(61.5%),12q(61.5%),16q(53.8%), 20p(53.8%),20q(53.8%),缺失最常见的是14q(61.5%),18q(61.5%),13q(53.8%),3p(46.2%),4p(46.2%),6q(46.2%);(3) 12例嫌色细胞癌中,扩增最常见的是1q(58.3%),3q(50%),1p(41.7%),缺失最常见的是1p(66.7%),17p(66.7%),10p(58.3%),13p(5 8.3%),2q(50%),8p(50%)。1q21-23扩增多见于嫌色细胞癌肉瘤样变,与非肉瘤样变嫌色细胞癌具有显著差异(P=0.010);(4) 9例Xp11.2易位/TFE3基因融合相关性肾癌中,扩增最常见的是Xp (66.7%),7q(55.6%),12q(55.6%),8p(44.4%),8q(44.4%),16q(44.4%),17p(44.4%),17q(44.4%),20q(44.4%) ,缺失最常见的是3p(44.4%),9q(44.4%),14q(44.4%);(5) 2例未分化癌中,扩增最常见1p,1q,3q,8p,16q,缺失最常见的是2p,2q,3p, 5p,6p,11q,17p,17q,20p。3.在不同临床TNM分期中,5q及7q扩增多见于Ⅰ~Ⅱ期患者,与Ⅲ~Ⅳ期肾细胞癌患者间有显著差异(P=0.002和P=0.007);20q扩增及9q缺失多见于Ⅲ~Ⅳ期患者,与Ⅰ~Ⅱ期肾细胞癌患者间有显著差异(P=0.002和P=0.001)。4. 7q扩增在透明细胞癌与乳头状癌1-2级(Fuhrman核型分级系统)中高频发生,与3-4级者差异显著(P=0.045)。
     结论:(1)染色体7q,16p,20q扩增及1p,3p,13q,14q,8p缺失与肾细胞癌发生有相关性。(2)5q和7q扩增可能提示肾细胞癌预后较好,20q扩增与9q缺失可能提示肾细胞癌预后较差。(3)7q扩增与低级别透明细胞癌及乳头肾癌相关,提示与预后有关。
Objective: To characterize the profiles of chromosome imbalance of renal cell carcinoma by Comparative Genomic Hybridization (CGH).And compare the different alterations among the histological subtypes , grading and clinical staging.
     Methods: Forty-six primary renal cell carcinoma for which formalin-fixed, paraffin-embedded samples were available were collected from the archives of the Department of Pathology. Including10 clear cell renal cell carcinoma cases, 13 papillary renal cell carcinoma cases, 12 chromophobe renal cell carcinoma cases, 9 renal carcinoma associated with Xp11.2 translocations/TFE3 gene fusions cases, and 2 undifferentiated renal carcinoma cases were collected for the study. A set of representative hematoxylin and eosin stained slides were marked with identifying numbers and reviewed individually by two pathologists blinded to all clinical information according to 2004 WHO Pathology and Genetics of Tumours of the Urinary System and Male Genital Organs.We screened DNA copy number changes in whole genomes by CGH in 46 primary renal cell carcinoma. Analyse according to histological type, grading,clinical staging, respectively. All data were analyzed using the SPSS 13.0 software package.
     Results: 1. 46 cases with renal cell carcinoma showed evidence of increased or decreased DNA sequence copy numbers involving one or more regions of the genome. The frequently gained chromosome arms of RCC were 7q,16p,20q, and the frequently lost chromosome arms of RCC were 1p,3p,13q,14q,8p. 2. Different histological type of RCC showed different abnormality of DNA copy number. (1) The frequently gained chromosome arms of CCRCC were 7q,16p,5q; the frequently lost chromosome arms were 3p,8p,1p, 4p,4q,9p. (2) The frequently gained chromosome arms of PRCC were 7p,7q,12q,16q,20p,20q; the frequently lost chromosome arms were 14q,18q,13q,3p,4p,6q. (3) The frequently gained chromosome arms of ChrRCC were 1q,3q,1p; the frequently lost chromosome arms were1p,17p,10p,13p,2q,8p. Gains of 1q21-23 significantly correlated with ChrRCC and sarcomatoid variants ChrRCC type (P=0.010). (4) The frequently gained chromosome arms of Xp11.2RCC were Xp,7q,12q,8p,8q,16q,17p,17q,20q; the frequently lost chromosome arms were3p, 9q,14q. (5) The frequently gained chromosome arms of UnRCC were 1p,1q,3q,8p,16q; the frequently lost chromosome arms were2p,2q,3p,5p,6p,11q,17p,17q,20p. 3. Gains of 5q,7q,20q and losses of 9q were significantly correlated with clinical staging (P=0.002, P=0.007). 4. 7q was frequently gained in grade 1-2 than 3-4 (nuclear grade of Fuhrman system) of CCRCC and PRCC (P=0.045).
     Conclusions:(1)7q,16p,2Qq gained and 1 p,3p,13q,14q,8p losses are correlated with RCC. (2) gains of Sq and 7q may indicated prognosis of RCC be favourable; gains of 20q and losses of 9q Enay indicated poor prognosis of RCC.(3)gains of 7q is correkated with low grade of CCRCC and PRCC,and indicated be correlated with prognosis.
引文
1 Eble J N, Sauter G, Epstein J I, et al. tumors of the kidney. In: WHO Classification of Tumours Pathology and Genetics of Tumours of the Urinary System and Male Genital Organs. Lyon: IARC Press, 2004,1-29
    2 HansenW J,Ohh M,Moslehi J,et al.Diverse effects of mutations in Exon II of the von Hippel-Lindau(VHL) tumor suppressor gene on the interaction of pVHL with the Cytosolic chaperonin and pVHL-dependent ubiquitin ligase activity. Mol Cell Biol, 2002, 22(6): 1947-1960
    3 Miyake H,Gleave M E, Arakawa S, et al. Introducing the clusterin gene into human renal cell carcinoma cells enhances their metastatic potential. J Urol, 2002, 167: 2203-2208
    4 Bockhorn M, Roberg S, Sousa C, et al. Differential Gene Expression in Metastasizing Cells Shed from Kidney Tumors. Cancer Res, 2004, 1:2469-2473
    5 Slaton W J, Inonue K, Perrotte P, et al. Expression levels of genes that regulate metastasis and angiogenesis correlate with advances pathological stage of renal cell carcinoma. Am J Pathol, 2001,158(2): 735-743
    6 Kanakami T,Okamoto K,Ogawao O,et al. Multipoint methylation and expression analysis of tumor suppressor genes in human renal cancer cells[J ].Urology ,2003 ,61 :226– 230
    7 Graff J R.Methylation patterns of the E-cadherin 5’CpG island are unstable and reflect the dynamic, heterogeneous loss of E-cadherin expression during metastatic progression. J Biol Chem, 2000, 275(4): 2727-2732
    8 Gonzalez M C L , Lorenzo M R , Lorente G J , et al. Chromophobe renal carcinoma : immuneohisto chemical study of 7 cases. Actas Ureol Esp ,1997 , 21 (6) : 563– 588
    9 Argani P, Antonescu C R, Illei P B, et al. Primary renal neoplasms with the ASPL-TFE3 gene fusion of alveolar soft part sarcoma:A distinctive tumor entity previously included among renal cell carcinomas of children and adolescents.Am J Pathol.2001;159:179–192
    10 Argani P, Antonescu C R, Couturier J, et al. PRCC-TFE3 renal carcinomas. Morphologic, immunohis- tochemical, ultrastructural, and molecular analysis of an entity associated with the t(X;1)(p11.2;q21). Am J Surg Pathol. 2002;26:1553–1566
    11 Brunelli M, Gobbo S, Cossu R P, et al.Chromosomal gains in the sarcomatoid transform- ation of chromophobe renal cell carcinoma. Mod Pathol, 2007 ,20(3): 303-309
    12 Wilhelm M, Veltman J A, Olshen A B, et al. Array-based comparative genomic hybridiz- ation for the differential diagnosis of renal cell cancer.Cancer Res,2002,62 : 957-960
    13 Yoshimoto T, Matsuura K, Karnan S,et al.High-resolution analysis of DNA copy number alterations and gene expression in renal clear cell carcinoma.JPathol.2007;213(4):392-401
    14 Presti JCJr, Moch H, Reuter VE, et al. Comparative genomic hybridization for genetic analysis of renal oncocytomas.Genes Chromosomes Cancer. 1996;17: 199-204
    15 Argani P, Lal P, Hutchinson B, et al. Aberrant nuclear immunoreactivity for TFE3 in neoplasms with TFE3 gene fusions: a sensitive and specific immunohistochemical assay. Am J Surg Pathol. 2003; 27: 750–761
    16 Joseph S, David W R. Moleculor cloning: a laboratory manual, 3rd ed, 461-485
    17 Wilhelm M, Veltman JA , Olshen AB, et al. Array-based comparative genomic hybridi- zation for the differential diagnosis of renal cell cancer. Cancer Res ,2002 ,62 : 957-960
    18 Kallio JP,Mahlamaki EH, Helinh, et al. Chromosomal gains and losses detected by comparative genomic hybridization and proliferation activity in renal cell carcinoma. Scand J Urol Nephrol, 2004, 38(3): 225-230
    19 Yoshimoto T, Matsuura K, Karnan S, et al. High-resolution analysis of DNA copy number alterations and gene expression in renal clear cell carcinoma.J Pathol, December 2007; 213(4): 392-401
    20 Arai E, Ushijima S, Tsuda H, et al.Genetic Clustering of Clear Cell Renal Cell Carcinoma Based on Array-Comparative Genomic Hybridization: Its Association with DNA Methylation Alteration and Patient Outcome. Clin Cancer Res, 2008, 14: 5531-5539
    21 Fukunaga K, Wada T, Matsumoto H, et al. Renal cell carcinoma allelic loss at chromosome 9 using the fluorescent multiplex–polymerase chain reaction technique. Hum Pathol, 2002, 33: 910-914
    22 Bodmer D, Janssen I, Jonkers Y, et al. Molecular cytogeneti canalysis of clustered sporadic and familial renal cell carcinoma–associated 3q13 approximately q22 breakpoints. Cancer Genet Cytogenet, 2002, 136:95-100
    23 Mitsumori K, Kittleson J M, Itoh N, et al. Chromosome 14q LOH in localized clear cell renal cell carcinoma. J Pathol, 2002, 26: 1533-1566
    24 Argani P, Antonescu C R, Couturier J, et al. PRCC-TFE3 renal carcinomas: morphologic, immunohistochemical, ultrastructural, and molecular analysis of an entity associated with the t(X; 1) (p11.2; q21). Am J Surg Pathol, 2002, 26:1553-1565
    25 Gunawan B, Huber W, Holtrup M, et al. Prognostic impacts of cytogenetic findings in clear cell renal cell carcinoma: gain of 5q31-qter predicts a distinct clinical phenotype with favorable prognosis. Cancer Res, 2001, 61: 7731-7738
    26 Balmain A. Cancer as a complex genetic trait: tumor susceptibility in human and mouse models. Cell, 2002, 108: 145-152
    27 Wilhelm M, Veltman J A, Olshen A B, et al. Array-based comparative genomic hybridiz-ation for the differential diagnosis of renal cell cancer. Cancer Res ,2002 ,62 : 957-960
    28 Yoshimoto T, Matsuura K, Karnan S, et al. High-resolution analysis of DNA copy number alterations and gene expression in renal clear cell carcinoma. J Pathol, December 2007; 213(4): 392-401
    29 Brunelli M, Eble J N, Zhang S, et al. Eosinophilic and classic chromophobe renal cell carcinomas have similar frequent losses of multiple chromosomes from among chromosomes 1, 2, 6, 10, and 17,and this pattern of genetic abnormality is not present in renal oncocytoma. Mod Pathol,2005,18(2):161– 169
    30 Peyromaure M, Misrai V, Thiounn N, et al. Chromophobe renal cell carcinoma: Analysis of 61 cases. Cancer, 2004, 100 (7) :1406– 1410
    31 Mancilla J R,Stanley R J,Blath R A. Papillary renal cell carcinoma: a clinical, radiologic, and pathologic study of 34 cases.Cancer,1976,38(6):2469-2480
    32 Mejean A,Hopirtean V,Bazin J P,et al.Prognostic factors for the survival of patient swith papillary renal cell carcinoma: meaning of histological typing and multifocality. JUrol, 2003, 170(3):764-767
    33 Altinok G, Kattar M M, Mohamed A, et al. Pediatric Renal Carcinoma Associated With Xp11.2 Translocations/TFE3 Gene Fusions and Clinicopathologic Associations. Pediatr Dev Pathol. 2005 8(2):168-80
    34 Parast M M, Eudy G, Gow K W, et al. A unique case of renal carcinoma with Xp11.2 translocations/TFE3 gene fusions in a 3-year-old child, with coexistent von Hippel-Lindau gene mutation.Pediatr Dev Pathol. 2004;7(4):403-406
    35肖立,陆孝禹,殷于磊,等. 229例肾细胞肿瘤的临床病理学分析.临床与实验病理学杂志, 2006, 22(2):158-164
    36朱圣亮,廖兆林.巨大肾结石并发未分化癌1例并结合文献复习.实用医技杂志,2006,13(3):476-477
    37 Onishi T, Machida T, Masuda F, et al. Clinical study of undifferentiated renal cell carcinoma in comparison with well differentiated cases. Nippon Gan Chiryo Gakkai Shi, 1989, 24 (6): 1223-1228
    38高江平,宋涛,雷建平,等.肾癌MDM2和p53蛋白的表达及意义.中华泌尿外科杂志, 2001,22(3): 177
    39邹泓,庞丽娟,胡文浩,等.肾细胞癌的临床病理与免疫表型研究.中华病理学杂志, 2008, 37(11):726-731
    40 Qin L X. Chromosomal aberrations related to metastasis of human. Gastroenterol, 2002 ,8 (5): 769– 776
    1 Vogelstein B, Kinzler K W. Cancer genes and the pathways they control. Nat Med, 2004, 10(8):789-799
    2 Kallioniemi A, Kallioniemi O P, Sudar D, et al. Comparative genomic hybridization for molecular cytogenetic analysis of solid tumors. Science ,1992 ,258 :818-822
    3 Houldsworth J, Chaganti R S. Comparative genomic hybridization : an overview. Am J Pathol,1994, 145 : 1301-1308
    4 Ylstra B, van den Ijssel P, Carvalho B, et al. BAC to the future or oligonucleotides: a per- spective for microarray comparative genomic hybridization ( array CGH). Nucleic Acids Research,2006, 34(2): 445-450
    5 Pinkel D, Albertson D G. Array comparative genomic hybridization and its app lications in cancer. Nat Genet, 2005,37 ( Supp l) : S11-S17
    6 Wessendorf S , Fritz B , Wrobel G, et al. Automated screening for genomic imbalances using matrix-based comparative genomic hybridization.Lab Invest , 2000 , 82 : 47-60
    7 Heiskanen M A, Bittner M L, Chen Y, et al. Detection of gene amplification by genomic hybridization to cDNA microarrays. Cancer Res ,2000 , 60 : 799-802
    8 Solinas-Toldo S, Lampel S, Stilgenbauer S, et al . Matrix-based comparative genomic hybridization : biochips to screen for genomic imbalance. Genes Chromosomes Cancer ,1997 , 20 ( 4 ) : 399-407
    9 Pinkel D, Segraves R, Sudar D, et al. High resolution analysis of DNA copy number variation using comparative genomic hybridization to microarrays. Nat Genet , 1998 , 20 : 207-11
    10 Pollack J R , Perou C M, Alizadeh A A , et al. Genome-wide analysis of DNA copy-number changes using cDNA microarrays. Nat Genet , 1999,23 : 41-46
    11 Ishkanian A S, Malloff C A, Watson S K, et al.A tiling resolution DNA microarray with complete coverage of the human genome. Nat Genet, 2004, 36 (3) : 299-303
    12 Carvalho B, Ouwerkerk E, Meijer G A, et al.High resolution microarray comparative gen- omic hybridisation analysis using spotted oligonucleotides. J Clin Pathol, 2004, 57 ( 6) : 644-646
    13 van den Ijssel P, Tijssen M, Chin S F, et al.Human and mouse oligonucleotide-based array CGH. Nucleic Acids Res,2005, 33 (22) : 192
    14 Zhao X, Li C, Paez J G, et al.An integrated view of copy number and allelic alterations in the cancer genome using single nucleotide polymorphism arrays. Cancer Res, 2004, 64( 9) : 3060-3071
    15 Zhao X, Weir B A, LaFramboise T, et al.Homozygousdeletions and chromosome amplific- ations in human lungcarcinomas revealed by single nucleotide polymorphism array analysis. Cancer Res, 2005, 65 (13) : 5561-5570
    16 Raghavan M, Lillington D M, Skoulakis S, et al.Genome-wide single nucleotide polymerp- hism analysis reveals frequent partial uniparental disomy due to somatic recombination in acute myeloid leukemias. Cancer Res, 2005, 65 (2) : 375-378
    17 Irving J A, Bloodworth L, Bown N P, et al.Loss of heterozygosity in childhood acute lymp- hoblastic leukemia detected by genome-wide microarray single nucleotide polymorphism analysis. Cancer Res, 2005, 65 ( 8 ) : 3053 -3058
    18 Barrett M T, Scheffer A, Ben-Dor A, et al.Comparative genomic hybridization using oligo- nucleotide microarrays and total genomic DNA. Proc Natl Acad Sci U S A, 2004, 101 (51) : 17765-17770
    19 Davies J J, Wilson I M, Lam W L. Array CGH technologies and their app lications to cancer genomes. Chromosome Res,2005, 13 (3) : 237-248
    20 Urban A E, Korbel J O, Selzer R, et al.High-resolution mapping of DNA copy alterations in human chromosome 22using high-density tiling oligonucleotide arrays. Proc Natl Acad Sci USA, 2006, 103 (12) : 4534-4539
    21 Stallings R L, Nair P, Maris J M, et al.High-resolution analysis of chromosomal breakpoin- ts and genomic instability identifies PTPRD as a candidate tumor supp ressor gene in neur- oblastoma. Cancer Res, 2006, 66 (7) : 3673-3680
    22 Selzer R R, Richmond T A, Pofahl N J, et al.Analysis of chromosome breakpoints in neur- oblastoma at subkilobase resolution using fine-tiling oligonucleotide array CGH. Genes Chromosomes Cancer, 2005, 44 (3) : 305-319
    23 Brennan C, Zhang Y, Leo C, et al.High-resolution global profiling of genomic alterations with long oligonucleotide microarray. Cancer Res, 2004, 64 (14) : 4744-4748
    24 Conrad D F, Andrews T D, Carter N P, et al.A high-resolution survey of deletion polymer- phism in the human genome. Nat Genet, 2006, 38 (1) : 75-81
    25 Sebat J, Lakshmi B, Troge J, et al. Large-scale copy number polymorphism in the human genome. Science, 2004, 305(5683) : 525-528
    26 Dhami P, Coffey A J, Abbs S, et al. Exon array CGH: detection of copy2number changes at the resolution of individual exons in the human genome. Am J Hum Genet, 2005, 76 (5) :750-762
    27 Egeland R D, Southern E M. Electrochemically directed synthesis of oligonucleotides forDNA microarray fabrication. Nucleic Acids Res, 2005, 33 (14) : e125
    28 Baldocchi R A, Glynne R J, Chin K, et al. Design considerations for array CGH to oligonucleotide arrays.Cytometry A, 2005, 67 (2) : 129-136
    29 Tsubosa Y, Sugihara H, Mukaisho K, et al. Effects of degenerate oligonucleotide-primed polymerase chain reaction amplification and labeling methods on the sensitivity and specificity of metaphase and array2based comparative genomic hybridization. Cancer Genet Cytogenet, 2005, 158 (2) : 156-166
    30 Devries S, Nyante S, Korkola J, et al. Array2based comparative genomic hybridization from formalin-fixed, paraffin-embedded breast tumors. J Mol Diagn, 2005, 7 (1) : 65-71
    31 Natrajan R, Williams R D, Grigoriadis A , et al.Delineation of a 1Mb breakpoint region at
    1p13 in Wilms tumors by fine-tiling oligonucleotide array CGH.Genes Chromosomes Can- cer, 2007,46(6): 607-615
    32 Tyybakinoja A, Vilpo J, Knuutila S. High-resolution oligonucleotide array-CGH pinpoints genes involved in cryptic losses in chronic lymphocytic leukemia.Cytogenet Genome Res, 2007,118(1): 8-12
    33 Vekony H, Leemans C R, Ylstra B, et al.Salivary gland carcinosarcoma: Oligonucleotide array CGH reveals similar genomic profiles in epithelial and mesenchymal components. Oral Oncol, 2009,45(3):259-265
    34 Arai E, Ushijima S, Tsuda H, et al. Genetic Clustering of Clear Cell Renal Cell Carcinoma Based on Array-Comparative Genomic Hybridization: Its Association with DNA Methylation Alteration and Patient Outcome. Clin Cancer Res, 2008, 14: 5531-5539
    35 Altinok G, Kattar MM, Mohamed A, et al. Pediatric Renal Carcinoma Associated With Xp11.2 Translocations/TFE3 Gene Fusions and Clinicopathologic Associations. Pediatr Dev Pathol. 2005 8(2):168-180
    36 Parast MM, Eudy G, Gow KW, et al. A unique case of renal carcinoma with Xp11.2 translocations/ TFE3 gene fusions in a 3-year-old child, with coexistent von Hippel-Lindau gene mutation.Pediatr Dev Pathol. 2004;7(4):403-6. Epub 2004 Jul 15
    37 Brunelli M, Gobbo S, Cossu R P, et al.Chromosomal gains in the sarcomatoid transform- ation of chromophobe renal cell carcinoma. Mod Pathol, 2007 ,20(3): 303-309
    38 Ramaswamy S, Ken N, Eric S, et al. A molecular signature of metastasis in primary solid tumors. Nat Genet, 2003, 33: 49-54
    39 van de Wiel M A, Costa J L, Smid K, et al.Expression microarray analysis and oligo array comparative genomic hybridization of acquired gemcitabine resistance in mouse colon rev- eals selection for chromosomal aberrations. Cancer Res,2005, 65 (22) : 10208-10213
    40 Lazar V, AndréF, Liedtke C, et al.High resolution oligonucleotide array-CGH to identify therapeutic targets in breast cancer.ASCO Meeting Abstracts, 2008,26: 547

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700