DNA修复基因、MDR1基因、PTPRD基因多态性与肺癌患者化疗和预后的关系
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
【研究目的】肺癌是我国肿瘤死亡的第一位死因,目前手术和化疗的效果均不理想,关键是要根据患者的遗传背景进行个体化治疗。本研究目的是探讨DNA修复系统的五个重要基因包括X射线交叉互补基因1(x-ray repair cross-complementing group1,XRCC1)、切除修复交叉互补基因1(excision repair cross-complementing group1,ERCC1)、着色性干皮病基因D(xeroderma pigmentosum group D, XPD)、X射线交叉互补基因3(x-ray repair cross-complementing group3, XRCC3)、乳腺癌易感基因1(breast cancer susceptibility gene1, BRCA1)和多药耐药基因(multiple drug resistancegene1,MDR1)的单核苷酸多态性(single nucleotide polymorphisms, SNPs)分别与肺癌早期手术患者和晚期化疗患者治疗效果和生存时间的关系;探讨蛋白酪氨酸磷酸酶受体D基因(protein-tyrosine phosphatase receptor delta gene, PTPRD)多态性与肺癌易感性的关系,在此基础上进一步明确PTPRD SNP与肺癌预后的关系,从而为肺癌早期发现和预后预测提供依据。
     【研究方法】共收集377例肺癌患者和754例健康对照,提取外周血DNA,采用Taqman探针法检测XRCC1Arg399Gln (rs25487),ERCC1Asn118Asn (rs11615),XPDLys751Gln (rs13181),XRCC3A4541G (rs1799794),BRCA1Ser1613Gly (rs1799966),MDR1Ile1145Ile (rs1045642)和PTPRD G4254C (rs2279776)。对肺癌患者进行临床疗效评价和预后随访。以肿瘤完全缓解(CR)、部分缓解(PR)、病情稳定(SD)为治疗受益,以肿瘤增大或病情进展(PD)为非受益。采用χ2检验和非条件Logistic回归模型确定SNPs与肺癌易感性和化疗效果的关系,采用Kaplan-Meier方法Log-rank检验和Cox比例风险回归模型确定SNPs与肺癌患者生存时间的关系。
     【结果】
     1. BRCA1Ser1613Gly和MDR1Ile1145Ile与晚期非小细胞肺癌(non-small celllung cancer, NSCLC)化疗效果显著相关,BRCA1G等位基因(AG+GG)和MDR1T等位基因(CT+TT)的化疗受益率均高于野生型(P=0.013,0.045)。ERCC1Asn118Asn、XPD Lys751Gln、XRCC1Arg399Gln和XRCC3A4541G与化疗效果无关。这6个SNPs存在一定联合作用,携带变异等位基因(XRCC1A, ERCC1T, XPD C, XRCC3G,BRCA1G或MDR1T)越多,化疗受益率越高(P=0.024)。
     2. BRCA1Ser1613Gly是晚期NSCLC化疗患者生存时间的独立影响因素,BRCA1AG+GG比AA型生存时间更长(Hazard Ratio [HR]=0.617,95%CI=0.402-0.948,P=0.028)。按临床特征对晚期NSCLC化疗患者分层分析显示,在鳞癌、吸烟、PS评分=1和Ⅲ期化疗患者中BRCA1AG+GG生存时间比AA型更长(Log-rank P<0.05),在腺癌患者中XRCC1GA+AA生存时间比GG型更长(Log-rank P=0.038,HR=0.496,95%CI=0.246-0.997)。
     3. ERCC1Asn118Asn是早期NSCLC手术患者生存时间的独立影响因素,ERCC1TT型比CC+CT型生存时间短(HR=3.087,95%CI=1.197-7.961,P=0.020)。对早期NSCLC手术患者分层分析显示,在Ⅲ期手术患者和鳞癌手术患者中XPD AC型的生存时间明显少于AA型(Log-rank P=0.016,0.008);在Ⅲ期手术患者和接受辅助化疗的手术患者中XRCC1GA+AA型的生存时间明显长于GG型(Log-rank P=0.004,0.050)。
     4. PTPRD G4254C与肺癌易感性相关,GC+CC型比GG型患肺癌的风险更高(P=0.039, odds ratio [OR]=1.298,95%CI=1.013-1.663),在吸烟者中关系更为显著(校正OR=1.563,95%CI=1.013-2.412)。PTPRD G4254C与肺癌化疗效果和总体生存时间之间无明显关联。对肺癌早期手术患者分层分析显示,在女性手术患者、腺癌手术患者和I期手术患者中PTPRD CC型生存时间明显少于GG+GC型(Log-rank P=0.014,0.009,0.000)。
     【结论】 BRCA1Ser1613Gly和MDR1Ile1145Ile与晚期NSCLC化疗效果显著相关,联合分析多个DNA修复基因和MDR1基因的SNPs可能对指导化疗药物的选择更有帮助。BRCA1Ser1613Gly和ERCC1Asn118Asn分别与晚期NSCLC化疗患者和早期NSCLC手术患者生存时间明显相关,可作为肺癌预后预测指标。PTPRD G4254C与肺癌易感性相关,但与化疗效果和生存时间的关系不明显。
[Objective] Lung cancer is the first leading cause of cancer-related death in China.Currently, the outcome of resection or chemotherapy for lung cancer is not satisfactory.Individualized treatment according to specific genetic background is very important forimproving outcome. One aim of this study is to investigate the association of singlenucleotide polymorphism (SNP) of a group of important genes including x-ray repaircross-complementing group1(XRCC1), excision repair cross-complementing group1(ERCC1), xeroderma pigmentosum group D (XPD), x-ray repair cross-complementinggroup3(XRCC3), breast cancer susceptibility gene1(BRCA1) and multiple drugresistance gene1(MDR1) polymorphisms with therapeutic results of the chemotherapyand survivals of lung cancer patients. We also investigated the association ofprotein-tyrosine phosphatase receptor delta gene (PTPRD) polymorphism with thesusceptivity and the prognosis of lung cancer in Chinese population, providing evidencefor early detection and prognosis prediction of this malignancy.
     [Methods] A total of377patients with lung cancer and754healthy controls wereenrolled in the study. DNA was isolated from peripheral bloods of the study subjects.Seven polymorphisms (XRCC1Arg399Gln,ERCC1Asn118Asn,XPD Lys751Gln,XRCC3A4541G,BRCA1Ser1613Gly,MDR1Ile1145Ile and PTPRD G4254C) weregenotyped by TaqMan method. The chemotherapeutic effect and overall survival (OS) inpatients with lung cancer were evaluated. Patients with complete response (CR), partialresponse (PR) and stable disease (SD) were defined as patients with clinical benefit, andpatients with progressive disease (PD) were defined as patients without clinical benefit.Associations between polymorphisms and lung cancer risk or chemotherapeutic effectwere estimated using χ2test and unconditional logistic regression model. Associationsbetween polymorphisms and OS were estimated using Kaplan-Meier methods andLog-rank test for univariate analysis and Cox proportional hazards model for multivariateanalysis.
     [Results]
     1. BRCA1Ser1613Gly and MDR1Ile1145Ile significantly correlated withchemotherapeutic effect in advanced non-small cell lung cancer (NSCLC) patients. TheBRCA1G allele carriers (AG+GG) and the MDR1T allele carriers (CT+TT) had betterclinical benefit than wild type carriers (P=0.013, P=0.045, respectively). No significantassociations were found between ERCC1Asn118Asn, XPD Lys751Gln, XRCC1 Arg399Gln or XRCC3A4541G and clinical benefit. Furthermore, we found that the6polymorphisms had interaction in the drug response, a greater number of variant alleles(XRCC1A, ERCC1T, XPD C, XRCC3G, BRCA1G or MDR1T) was associated withbetter clinical benefit (P=0.024).
     2. Advanced NSCLC patients treated with chemotherapy with BRCA1G allele (AG+GG)had a significantly better OS compared with advanced NSCLC patients with AA genotype(Hazard Ratio [HR]=0.617,95%CI=0.402-0.948, P=0.028). Stratified advanced NSCLCpatients according to clinical characters, BRCA1AG+GG genotype was significantlyassociated with better OS among advanced NSCLC patients with squamous cell carcinoma,smoking habit, performance status1, and stage III (Log-rank P<0.05); XRCC1GA+AAgenotype was significantly associated with better OS among advanced NSCLC patientswith adenocarcinoma (Log-rank P=0.038,HR=0.496,95%CI=0.246-0.997).
     3. Postoperative early-stage NSCLC patients with ERCC1TT genotype had a significantlyworse OS compared with early-stage NSCLC patients with CC+CT genotype (HR=3.087,95%CI=1.197-7.961,P=0.020). Stratified early-stage NSCLC patients according toclinical characters, XPD AC genotype was significantly associated with worse OS amongearly-stage NSCLC patients with stage III and squamous cell carcinoma (Log-rankP=0.016,0.008, respectively); XRCC1GA+AA genotype was significantly associated withbetter OS among early-stage NSCLC patients with stage III and adjuvant chemotherapy(Log-rank P=0.004,0.050, respectively).
     4. PTPRD G4254C was significantly associated with the risk of lung cancer, GC+CCgenotype had a significantly increased lung cancer risk compared with GG genotype(P=0.039, OR=1.298,95%CI=1.013-1.663). Similar association existed in smokers(ajusted OR=1.563,95%CI=1.013-2.412). In total, no significant associations were foundamong PTPRD G4254C and both chemotherapeutic effect and OS. Stratified postoperativeearly-stage NSCLC patients according to clinical characters, PTPRD CC genotype wassignificantly associated with worse OS among female patients, adenocarcinoma patientsand stage I patients (Log-rank P=0.014,0.009,0.000, respectively).
     [Conclusion] BRCA1Ser1613Gly and MDR1Ile1145Ile may affect the response ofadvanced NSCLC patients to chemotherapy. It can be useful to research combinations ofSNPs for customizing chemotherapy. BRCA1Ser1613Gly may be important prognosticmarker in advanced NSCLC patients treated with chemotherapy, and ERCC1Asn118Asnmay be important prognostic marker in early-stage NSCLC patients treated with operation. PTPRD G4254C polymorphism is significantly associated with a higher risk of developinglung cancer, but does not significantly affect chemotherapeutic effect and OS in lungcancer patients.
引文
[1] http://www.who.int/zh/.
    [2]陈竺.全国第三次死因回顾抽样调查报告.北京:中国协和医科大学出版社,2008:22.
    [3] Sekine I, Yamamoto N, Nishio K, Saijo N. Emerging ethnic differences in lung cancer therapy. Br JCancer.2008;99:1757-1762.
    [4] Schiller JH, Harrington D, Belani CP, et al. Comparison of four chemotherapy regimens foradvanced non-small-cell lung cancer. N Engl J Med.2002;346:92-98.
    [5] Arriagada R, Bergman B, Dunant A, Le Chevalier T, Pignon JP, Vansteenkiste J. Cisplatin-basedadjuvant chemotherapy in patients with completely resected non-small-cell lung cancer. N Engl J Med.2004;350:351-360.
    [6] Yoo SS, Choi JE, Lee WK, et al. Polymorphisms in the CASPASE genes and survival in patientswith early-stage non-small-cell lung cancer. J Clin Oncol.2009;27:5823-5829.
    [7] Park JY, Lee WK, Jung DK, et al. Polymorphisms in the FAS and FASL genes and survival of earlystage non-small cell lung cancer. Clin Cancer Res.2009;15:1794-1800.
    [8] Zheng Z, Chen T, Li X, Haura E, Sharma A, Bepler G. DNA synthesis and repair genes RRM1andERCC1in lung cancer. N Engl J Med.2007;356:800-808.
    [9] Olaussen KA, Dunant A, Fouret P, et al. DNA repair by ERCC1in non-small-cell lung cancer andcisplatin-based adjuvant chemotherapy. N Engl J Med.2006;355:983-991.
    [10] Mok TS, Wu YL, Thongprasert S, et al. Gefitinib or carboplatin-paclitaxel in pulmonaryadenocarcinoma. N Engl J Med.2009;361:947-957.
    [11] Pirker R, Pereira JR, Szczesna A, et al. Cetuximab plus chemotherapy in patients with advancednon-small-cell lung cancer (FLEX): an open-label randomised phase III trial. Lancet.2009;373:1525-1531.
    [12] Rosell R, Cecere F, Santarpia M, Reguart N, Taron M. Predicting the outcome of chemotherapy forlung cancer. Curr Opin Pharmacol.2006;6:323-331.
    [13] Hirata H, Hinoda Y, Kikuno N, et al. MDM2SNP309polymorphism as risk factor forsusceptibility and poor prognosis in renal cell carcinoma. Clin Cancer Res.2007;13:4123-4129.
    [14] Zhu X, Chen MS, Tian LW, et al. Single nucleotide polymorphism of rs430397in the fifth intron ofGRP78gene and clinical relevance of primary hepatocellular carcinoma in Han Chinese: risk andprognosis. Int J Cancer.2009;125:1352-1357.
    [15] Rosell R, Cobo M, Isla D, Camps C, Massuti B. Pharmacogenomics and gemcitabine. Ann Oncol.2006;17Suppl5:v13-16.
    [16] Friedberg EC. DNA damage and repair. Nature.2003;421:436-440.
    [17] Rosella R, Cobo M, Isla D, et al. Applications of genomics in NSCLC. Lung Cancer.2005;50S2:S33-S40.
    [18] Simon GR, Ismail-Khan R, Bepler G. Nuclear excision repair-based personalized therapy fornon-small cell lung cancer: from hypothesis to reality. Int J Biochem Cell Biol.2007;39:1318-1328.
    [19] de las Penas R, Sanchez-Ronco M, Alberola V, et al. Polymorphisms in DNA repair genesmodulate survival in cisplatin/gemcitabine-treated non-small-cell lung cancer patients. Ann Oncol.2006;17:668-675.
    [20] Pellegrini L, Yu DS, Lo T, et al. Insights into DNA recombination from the structure of aRAD51-BRCA2complex. Nature.2002;420:287-293.
    [21] Masson JY, Tarsounas MC, Stasiak AZ, et al. Identification and purification of two distinctcomplexes containing the five RAD51paralogs. Genes Dev.2001;15:3296-3307.
    [22] Allingham-Hawkins D, Lea A, Levine S. ERCC1Expression Analysis to Guide Therapy inNon-Small Cell Lung Cancer. PLoS Curr.2010;2:RRN1202.
    [23] Rosell R, Taron M, Alberola V, Massuti B, Felip E. Genetic testing for chemotherapy in non-smallcell lung cancer. Lung Cancer.2003;41Suppl1:S97-102.
    [24] Takenaka T, Yoshino I, Kouso H, et al. Combined evaluation of Rad51and ERCC1expressions forsensitivity to platinum agents in non-small cell lung cancer. Int J Cancer.2007;121:895-900.
    [25] Tibaldi C, Giovannetti E, Vasile E, et al. Correlation of CDA, ERCC1, and XPD polymorphismswith response and survival in gemcitabine/cisplatin-treated advanced non-small cell lung cancer patients.Clin Cancer Res.2008;14:1797-1803.
    [26] Kim HT, Lee JE, Shin ES, et al. Effect of BRCA1haplotype on survival of non-small-cell lungcancer patients treated with platinum-based chemotherapy. J Clin Oncol.2008;26:5972-5979.
    [27] Pan JH, Han JX, Wu JM, Huang HN, Yu QZ, Sheng LJ. MDR1single nucleotide polymorphismG2677T/A and haplotype are correlated with response to docetaxel-cisplatin chemotherapy in patientswith non-small-cell lung cancer. Respiration.2009;78:49-55.
    [28] Hoffmeyer S, Burk O, von Richter O, et al. Functional polymorphisms of the humanmultidrug-resistance gene: multiple sequence variations and correlation of one allele withP-glycoprotein expression and activity in vivo. Proc Natl Acad Sci U S A.2000;97:3473-3478.
    [29] Vinolas N, Provencio M, Reguart N, et al. Single nucleotide polymorphisms in MDR1gencorrelates with outcome in advanced non-small-cell lung cancer patients treated with cisplatin plusvinorelbine. Lung Cancer.2011;71:191-198.
    [30] Ashariati A. Polymorphism C3435T of the MDR-1gene predict response to preoperativechemotherapy in locally advanced breast cancer with Her2/neu expression. Acta Med Indones.2008;40:187-191.
    [31] Isla D, Sarries C, Rosell R, et al. Single nucleotide polymorphisms and outcome indocetaxel-cisplatin-treated advanced non-small-cell lung cancer. Ann Oncol.2004;15:1194-1203.
    [32] Yan PW, Huang XE, Yan F, Xu L, Jiang Y. Influence of MDR1Gene Codon3435Polymorphismson Outcome of Platinum-based Chemotherapy for Advanced Non Small Cell Lung Cancer. Asian Pac JCancer Prev.2011;12:2291-2294.
    [33] Sakaeda T, Nakamura T, Okumura K. MDR1genotype-related pharmacokinetics andpharmacodynamics. Biol Pharm Bull.2002;25:1391-1400.
    [34] Dong Q, Xu B, Tan Y, et al. The genetic variability of MDR1C3435T polymorphisms in fourSouthern Chinese populations. Biomed Pharmacother.2009;63:658-662.
    [35] Stallings RL, Nair P, Maris JM, et al. High-resolution analysis of chromosomal breakpoints andgenomic instability identifies PTPRD as a candidate tumor suppressor gene in neuroblastoma. CancerRes.2006;66:3673-3680.
    [36] Giefing M, Zemke N, Brauze D, et al. High resolution ArrayCGH and expression profilingidentifies PTPRD and PCDH17/PCH68as tumor suppressor gene candidates in laryngeal squamous cellcarcinoma. Genes Chromosomes Cancer.2011;50:154-166.
    [37] Veeriah S, Brennan C, Meng S, et al. The tyrosine phosphatase PTPRD is a tumor suppressor thatis frequently inactivated and mutated in glioblastoma and other human cancers. Proc Natl Acad Sci U SA.2009;106:9435-9440.
    [38] Tada M, Kanai F, Tanaka Y, et al. Prognostic significance of genetic alterations detected byhigh-density single nucleotide polymorphism array in gastric cancer. Cancer Sci.2010;101:1261-1269.
    [39] Kohno T, Otsuka A, Girard L, et al. A catalog of genes homozygously deleted in human lungcancer and the candidacy of PTPRD as a tumor suppressor gene. Genes Chromosomes Cancer.2010;49:342-352.
    [1] Gallagher PE, Cook K, Soto-Pantoja D, Menon J, Tallant EA. Angiotensin peptides and lung cancer.Curr Cancer Drug Targets.2011;11:394-404.
    [2] Schiller JH, Harrington D, Belani CP, et al. Comparison of four chemotherapy regimens foradvanced non-small-cell lung cancer. N Engl J Med.2002;346:92-98.
    [3] Arriagada R, Bergman B, Dunant A, Le Chevalier T, Pignon JP, Vansteenkiste J. Cisplatin-basedadjuvant chemotherapy in patients with completely resected non-small-cell lung cancer. N Engl J Med.2004;350:351-360.
    [4] Sekine I, Yamamoto N, Nishio K, Saijo N. Emerging ethnic differences in lung cancer therapy. Br JCancer.2008;99:1757-1762.
    [5] Rosell R, Cobo M, Isla D, Camps C, Massuti B. Pharmacogenomics and gemcitabine. Ann Oncol.2006;17Suppl5:v13-16.
    [6] Rosella R, Cobo M, Isla D, et al. Applications of genomics in NSCLC. Lung Cancer.2005;50S2:S33-S40.
    [7] Pan JH, Han JX, Wu JM, Huang HN, Yu QZ, Sheng LJ. MDR1single nucleotide polymorphismG2677T/A and haplotype are correlated with response to docetaxel-cisplatin chemotherapy in patientswith non-small-cell lung cancer. Respiration.2009;78:49-55.
    [8] Simon GR, Ismail-Khan R, Bepler G. Nuclear excision repair-based personalized therapy fornon-small cell lung cancer: from hypothesis to reality. Int J Biochem Cell Biol.2007;39:1318-1328.
    [9] Rosell R, Felip E, Paz-Ares L. How could pharmacogenomics help improve patient survival? LungCancer.2007;57Suppl2:S35-41.
    [10] Tibaldi C, Giovannetti E, Vasile E, et al. Correlation of CDA, ERCC1, and XPD polymorphismswith response and survival in gemcitabine/cisplatin-treated advanced non-small cell lung cancer patients.Clin Cancer Res.2008;14:1797-1803.
    [11] Tan C, Xu HY, Zhang CY, et al. Effect of CYP1A1MSPI Polymorphism on the RelationshipBetween TP53Mutation and CDKN2A Hypermethylation in Chinese Patients with Non-small CellLung Cancer. Arch Med Res.2011.
    [12] Rajasekaran R, Sudandiradoss C, Doss CG, Sethumadhavan R. Identification and in silico analysisof functional SNPs of the BRCA1gene. Genomics.2007;90:447-452.
    [13] Tommasi S, Pilato B, Pinto R, et al. Molecular and in silico analysis of BRCA1and BRCA2variants. Mutat Res.2008;644:64-70.
    [14] Hoffmeyer S, Burk O, von Richter O, et al. Functional polymorphisms of the humanmultidrug-resistance gene: multiple sequence variations and correlation of one allele withP-glycoprotein expression and activity in vivo. Proc Natl Acad Sci U S A.2000;97:3473-3478.
    [15] Yan PW, Huang XE, Yan F, Xu L, Jiang Y. Influence of MDR1Gene Codon3435Polymorphismson Outcome of Platinum-based Chemotherapy for Advanced Non Small Cell Lung Cancer. Asian Pac JCancer Prev.2011;12:2291-2294.
    [16] Chen S, Huo X, Lin Y, et al. Association of MDR1and ERCC1polymorphisms with response andtoxicity to cisplatin-based chemotherapy in non-small-cell lung cancer patients. Int J Hyg EnvironHealth.2010;213:140-145.
    [17] Dong Q, Xu B, Tan Y, et al. The genetic variability of MDR1C3435T polymorphisms in fourSouthern Chinese populations. Biomed Pharmacother.2009;63:658-662.
    [18] Wei HB, Lu XS, Shang LH, et al. Polymorphisms of ERCC1C118T/C8092A and MDR1C3435Tpredict outcome of platinum-based chemotherapies in advanced non-small cell lung cancer: ameta-analysis. Arch Med Res.2011;42:412-420.
    [19] Hartman AR, Ford JM. BRCA1induces DNA damage recognition factors and enhances nucleotideexcision repair. Nat Genet.2002;32:180-184.
    [20] de las Penas R, Sanchez-Ronco M, Alberola V, et al. Polymorphisms in DNA repair genesmodulate survival in cisplatin/gemcitabine-treated non-small-cell lung cancer patients. Ann Oncol.2006;17:668-675.
    [21] Pellegrini L, Yu DS, Lo T, et al. Insights into DNA recombination from the structure of aRAD51-BRCA2complex. Nature.2002;420:287-293.
    [22] Masson JY, Tarsounas MC, Stasiak AZ, et al. Identification and purification of two distinctcomplexes containing the five RAD51paralogs. Genes Dev.2001;15:3296-3307.
    [23] Stoehlmacher J, Park DJ, Zhang W, et al. A multivariate analysis of genomic polymorphisms:prediction of clinical outcome to5-FU/oxaliplatin combination chemotherapy in refractory colorectalcancer. Br J Cancer.2004;91:344-354.
    [24] Gurubhagavatula S, Liu G, Park S, et al. XPD and XRCC1genetic polymorphisms are prognosticfactors in advanced non-small-cell lung cancer patients treated with platinum chemotherapy. J ClinOncol.2004;22:2594-2601.
    [25] Kim HT, Lee JE, Shin ES, et al. Effect of BRCA1haplotype on survival of non-small-cell lungcancer patients treated with platinum-based chemotherapy. J Clin Oncol.2008;26:5972-5979.
    [26] Okuda K, Sasaki H, Hikosaka Y, et al. Excision repair cross complementation group1polymorphisms predict overall survival after platinum-based chemotherapy for completely resectednon-small-cell lung cancer. J Surg Res.2011;168:206-212.
    [27] Mathiaux J, Le Morvan V, Pulido M, Jougon J, Begueret H, Robert J. Role of DNA repair genepolymorphisms in the efficiency of platinum-based adjuvant chemotherapy for non-small cell lungcancer. Mol Diagn Ther.2011;15:159-166.
    [28] Huang ZH, Hua D, Du X, et al. ERCC1polymorphism, expression and clinical outcome ofoxaliplatin-based adjuvant chemotherapy in gastric cancer. World J Gastroenterol.2008;14:6401-6407.
    [29] Kim M, Kang HG, Lee SY, et al. Comprehensive analysis of DNA repair gene polymorphisms andsurvival in patients with early stage non-small-cell lung cancer. Cancer Sci.2010;101:2436-2442.
    [1] Stallings RL, Nair P, Maris JM, et al. High-resolution analysis of chromosomal breakpoints andgenomic instability identifies PTPRD as a candidate tumor suppressor gene in neuroblastoma. CancerRes.2006;66:3673-3680.
    [2] Giefing M, Zemke N, Brauze D, et al. High resolution ArrayCGH and expression profiling identifiesPTPRD and PCDH17/PCH68as tumor suppressor gene candidates in laryngeal squamous cellcarcinoma. Genes Chromosomes Cancer.2011;50:154-166.
    [3] Veeriah S, Brennan C, Meng S, et al. The tyrosine phosphatase PTPRD is a tumor suppressor that isfrequently inactivated and mutated in glioblastoma and other human cancers. Proc Natl Acad Sci U S A.2009;106:9435-9440.
    [4] Sato M, Takahashi K, Nagayama K, et al. Identification of chromosome arm9p as the most frequenttarget of homozygous deletions in lung cancer. Genes Chromosomes Cancer.2005;44:405-414.
    [5] Chan TA, Heguy A. The protein tyrosine phosphatase receptor D, a broadly inactivated tumorsuppressor regulating STAT function. Cell Cycle.2009;8:3063-3064.
    [6] Zhao X, Weir BA, LaFramboise T, et al. Homozygous deletions and chromosome amplifications inhuman lung carcinomas revealed by single nucleotide polymorphism array analysis. Cancer Res.2005;65:5561-5570.
    [7] Tada M, Kanai F, Tanaka Y, et al. Prognostic significance of genetic alterations detected byhigh-density single nucleotide polymorphism array in gastric cancer. Cancer Sci.2010;101:1261-1269.
    [8] Stark M, Hayward N. Genome-wide loss of heterozygosity and copy number analysis in melanomausing high-density single-nucleotide polymorphism arrays. Cancer Res.2007;67:2632-2642.
    [9] Purdie KJ, Lambert SR, Teh MT, et al. Allelic imbalances and microdeletions affecting the PTPRDgene in cutaneous squamous cell carcinomas detected using single nucleotide polymorphism microarrayanalysis. Genes Chromosomes Cancer.2007;46:661-669.
    [10] Purdie KJ, Harwood CA, Gulati A, et al. Single nucleotide polymorphism array analysis defines aspecific genetic fingerprint for well-differentiated cutaneous SCCs. J Invest Dermatol.2009;129:1562-1568.
    [11] Ding L, Getz G, Wheeler DA, et al. Somatic mutations affect key pathways in lung adenocarcinoma.Nature.2008;455:1069-1075.
    [12] Kim M, Kang HG, Lee SY, et al. Comprehensive analysis of DNA repair gene polymorphisms andsurvival in patients with early stage non-small-cell lung cancer. Cancer Sci.2010;101:2436-2442.
    [13] Heist RS, Zhou W, Chirieac LR, et al. MDM2polymorphism, survival, and histology in early-stagenon-small-cell lung cancer. J Clin Oncol.2007;25:2243-2247.
    [14] Yoo SS, Choi JE, Lee WK, et al. Polymorphisms in the CASPASE genes and survival in patientswith early-stage non-small-cell lung cancer. J Clin Oncol.2009;27:5823-5829.
    [15] de las Penas R, Sanchez-Ronco M, Alberola V, et al. Polymorphisms in DNA repair genesmodulate survival in cisplatin/gemcitabine-treated non-small-cell lung cancer patients. Ann Oncol.2006;17:668-675.
    [16] Park JY, Lee WK, Jung DK, et al. Polymorphisms in the FAS and FASL genes and survival of earlystage non-small cell lung cancer. Clin Cancer Res.2009;15:1794-1800.
    [17] Sreeja L, Syamala V, Raveendran PB, Santhi S, Madhavan J, Ankathil R. p53Arg72Propolymorphism predicts survival outcome in lung cancer patients in Indian population. Cancer Invest.2008;26:41-46.
    [1] Sekine I, Yamamoto N, Nishio K, Saijo N. Emerging ethnic differences in lung cancer therapy. Br JCancer.2008;99:1757-1762.
    [2] Arriagada R, Bergman B, Dunant A, Le Chevalier T, Pignon JP, Vansteenkiste J. Cisplatin-basedadjuvant chemotherapy in patients with completely resected non-small-cell lung cancer. N Engl J Med.2004;350:351-360.
    [3] Rosell R, Cobo M, Isla D, Camps C, Massuti B. Pharmacogenomics and gemcitabine. Ann Oncol.2006;17Suppl5:v13-16.
    [4] Rosella R, Cobo M, Isla D, et al. Applications of genomics in NSCLC. Lung Cancer.2005;50S2:S33-S40.
    [5] Cheng J, Ha M, Wang Y, Sun J, Chen J, Tong C. A C118T polymorphism of ERCC1and response tocisplatin chemotherapy in patients with late-stage non-small cell lung cancer. J Cancer Res Clin Oncol.2012;138:231-238.
    [6] Isla D, Sarries C, Rosell R, et al. Single nucleotide polymorphisms and outcome indocetaxel-cisplatin-treated advanced non-small-cell lung cancer. Ann Oncol.2004;15:1194-1203.
    [7] de las Penas R, Sanchez-Ronco M, Alberola V, et al. Polymorphisms in DNA repair genes modulatesurvival in cisplatin/gemcitabine-treated non-small-cell lung cancer patients. Ann Oncol.2006;17:668-675.
    [8] Ludovini V, Floriani I, Pistola L, et al. Association of cytidine deaminase and xerodermapigmentosum group D polymorphisms with response, toxicity, and survival incisplatin/gemcitabine-treated advanced non-small cell lung cancer patients. J Thorac Oncol.2011;6:2018-2026.
    [9] Gurubhagavatula S, Liu G, Park S, et al. XPD and XRCC1genetic polymorphisms are prognosticfactors in advanced non-small-cell lung cancer patients treated with platinum chemotherapy. J ClinOncol.2004;22:2594-2601.
    [10] Tibaldi C, Giovannetti E, Vasile E, et al. Correlation of CDA, ERCC1, and XPD polymorphismswith response and survival in gemcitabine/cisplatin-treated advanced non-small cell lung cancer patients.Clin Cancer Res.2008;14:1797-1803.
    [11] Wei SZ, Zhan P, Shi MQ, et al. Predictive value of ERCC1and XPD polymorphism in patientswith advanced non-small cell lung cancer receiving platinum-based chemotherapy: a systematic reviewand meta-analysis. Med Oncol.2011;28:315-321.
    [12] Yin M, Yan J, Voutsina A, et al. No evidence of an association of ERCC1and ERCC2polymorphisms with clinical outcomes of platinum-based chemotherapies in non-small cell lung cancer:a meta-analysis. Lung Cancer.2011;72:370-377.
    [13] Wei HB, Lu XS, Shang LH, et al. Polymorphisms of ERCC1C118T/C8092A and MDR1C3435Tpredict outcome of platinum-based chemotherapies in advanced non-small cell lung cancer: ameta-analysis. Arch Med Res.2011;42:412-420.
    [14] Rosell R, Perez-Roca L, Sanchez JJ, et al. Customized treatment in non-small-cell lung cancerbased on EGFR mutations and BRCA1mRNA expression. PLoS One.2009;4:e5133.
    [15] Carvalho MA, Marsillac SM, Karchin R, et al. Determination of cancer risk associated with germline BRCA1missense variants by functional analysis. Cancer Res.2007;67:1494-1501.
    [16] Rajasekaran R, Sudandiradoss C, Doss CG, Sethumadhavan R. Identification and in silico analysisof functional SNPs of the BRCA1gene. Genomics.2007;90:447-452.
    [17] Tommasi S, Pilato B, Pinto R, et al. Molecular and in silico analysis of BRCA1and BRCA2variants. Mutat Res.2008;644:64-70.
    [18] Kim HT, Lee JE, Shin ES, et al. Effect of BRCA1haplotype on survival of non-small-cell lungcancer patients treated with platinum-based chemotherapy. J Clin Oncol.2008;26:5972-5979.
    [19] Kim M, Kang HG, Lee SY, et al. Comprehensive analysis of DNA repair gene polymorphisms andsurvival in patients with early stage non-small-cell lung cancer. Cancer Sci.2010;101:2436-2442.
    [20] Butkiewicz D, Rusin M, Sikora B, Lach A, Chorazy M. An association between DNA repair genepolymorphisms and survival in patients with resected non-small cell lung cancer. Mol Biol Rep.2010.
    [21] Hoffmeyer S, Burk O, von Richter O, et al. Functional polymorphisms of the humanmultidrug-resistance gene: multiple sequence variations and correlation of one allele withP-glycoprotein expression and activity in vivo. Proc Natl Acad Sci U S A.2000;97:3473-3478.
    [22] Chen J, Chen L, Mao N, Liu Y. Association of the MDR13435polymorphism in patients withrefractory rheumatoid arthritis in a Chinese population. Rheumatol Int.2011.
    [23] Traynor AM, Lee JW, Bayer GK, et al. A phase II trial of triapine (NSC#663249) and gemcitabineas second line treatment of advanced non-small cell lung cancer: Eastern Cooperative Oncology GroupStudy1503. Invest New Drugs.2010;28:91-97.
    [24] Takakuwa O, Oguri T, Ozasa H, et al. Over-expression of MDR1in amrubicinol-resistant lungcancer cells. Cancer Chemother Pharmacol.2011;68:669-676.
    [25] Pan JH, Han JX, Wu JM, Huang HN, Yu QZ, Sheng LJ. MDR1single nucleotide polymorphismG2677T/A and haplotype are correlated with response to docetaxel-cisplatin chemotherapy in patientswith non-small-cell lung cancer. Respiration.2009;78:49-55.
    [26] Yan PW, Huang XE, Yan F, Xu L, Jiang Y. Influence of MDR1Gene Codon3435Polymorphismson Outcome of Platinum-based Chemotherapy for Advanced Non Small Cell Lung Cancer. Asian Pac JCancer Prev.2011;12:2291-2294.
    [27] Vinolas N, Provencio M, Reguart N, et al. Single nucleotide polymorphisms in MDR1gencorrelates with outcome in advanced non-small-cell lung cancer patients treated with cisplatin plusvinorelbine. Lung Cancer.2011;71:191-198.
    [28] Sohn JW, Lee SY, Lee SJ, et al. MDR1polymorphisms predict the response to etoposide-cisplatincombination chemotherapy in small cell lung cancer. Jpn J Clin Oncol.2006;36:137-141.
    [29] Pan JH, Han JX, Wu JM, Sheng LJ, Huang HN, Yu QZ. MDR1single nucleotide polymorphismspredict response to vinorelbine-based chemotherapy in patients with non-small cell lung cancer.Respiration.2008;75:380-385.
    [30] Sakaeda T, Nakamura T, Okumura K. MDR1genotype-related pharmacokinetics andpharmacodynamics. Biol Pharm Bull.2002;25:1391-1400.
    [31] Dong Q, Xu B, Tan Y, et al. The genetic variability of MDR1C3435T polymorphisms in fourSouthern Chinese populations. Biomed Pharmacother.2009;63:658-662.
    [32] Chan TA, Heguy A. The protein tyrosine phosphatase receptor D, a broadly inactivated tumorsuppressor regulating STAT function. Cell Cycle.2009;8:3063-3064.
    [33] Stallings RL, Nair P, Maris JM, et al. High-resolution analysis of chromosomal breakpoints andgenomic instability identifies PTPRD as a candidate tumor suppressor gene in neuroblastoma. CancerRes.2006;66:3673-3680.
    [34] Giefing M, Zemke N, Brauze D, et al. High resolution ArrayCGH and expression profilingidentifies PTPRD and PCDH17/PCH68as tumor suppressor gene candidates in laryngeal squamous cellcarcinoma. Genes Chromosomes Cancer.2011;50:154-166.
    [35] Veeriah S, Brennan C, Meng S, et al. The tyrosine phosphatase PTPRD is a tumor suppressor thatis frequently inactivated and mutated in glioblastoma and other human cancers. Proc Natl Acad Sci U SA.2009;106:9435-9440.
    [36] Tada M, Kanai F, Tanaka Y, et al. Prognostic significance of genetic alterations detected byhigh-density single nucleotide polymorphism array in gastric cancer. Cancer Sci.2010;101:1261-1269.
    [37] Kohno T, Otsuka A, Girard L, et al. A catalog of genes homozygously deleted in human lungcancer and the candidacy of PTPRD as a tumor suppressor gene. Genes Chromosomes Cancer.2010;49:342-352.
    [38] Sato M, Takahashi K, Nagayama K, et al. Identification of chromosome arm9p as the mostfrequent target of homozygous deletions in lung cancer. Genes Chromosomes Cancer.2005;44:405-414.
    [39] Ding L, Getz G, Wheeler DA, et al. Somatic mutations affect key pathways in lung adenocarcinoma.Nature.2008;455:1069-1075.
    [40] Zhao X, Weir BA, LaFramboise T, et al. Homozygous deletions and chromosome amplifications inhuman lung carcinomas revealed by single nucleotide polymorphism array analysis. Cancer Res.2005;65:5561-5570.
    [41] Stark M, Hayward N. Genome-wide loss of heterozygosity and copy number analysis in melanomausing high-density single-nucleotide polymorphism arrays. Cancer Res.2007;67:2632-2642.
    [42] Purdie KJ, Lambert SR, Teh MT, et al. Allelic imbalances and microdeletions affecting the PTPRDgene in cutaneous squamous cell carcinomas detected using single nucleotide polymorphism microarrayanalysis. Genes Chromosomes Cancer.2007;46:661-669.
    [43] Purdie KJ, Harwood CA, Gulati A, et al. Single nucleotide polymorphism array analysis defines aspecific genetic fingerprint for well-differentiated cutaneous SCCs. J Invest Dermatol.2009;129:1562-1568.
    [44]么鸿雁,施侣元.中国人群肺癌发病危险因素的Meta分析.中华流行病学杂志.2003;24(1):45-49.
    [45]贺琴,吴森林,许芬,段纪俊,聂绍发,曹玉广.武汉市空气污染与肺癌潜在减寿年数的关系.中华流行病学杂志.2007;28(12):1175-1178.
    [46]刘炬,徐兵河.单核苷酸多态性与肺癌化疗疗效及预后相关研究进展.中国癌症杂志.2007;17(12):976-982.
    [47]韩宝惠.药物基因组学研究与肺癌个体化治疗.中华肿瘤防治杂志.2007;14(11):801-804.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700