交联型聚合物负载铂纳米簇催化膜的制备表征及其在肉桂醛选择性加氢反应中的探索研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高分子负载催化剂,因其可以简化实验操作过程,有利于贵金属催化剂的回收和再生,环境污染小并且催化效率高,符合当今绿色化学的主题,因此被广泛用于固相有机合成中。
     本文制备了不同类型的交联型负载铂的高分子催化膜,并对其性能进行表征。将其应用于肉桂醛选择性加氢制备肉桂醇的反应中,以探讨不同交联度对催化反应的催化性能,及其与肉桂醇选择性的关系。具体包括以下几方面内容:
     1、以乙二醇为还原剂,聚甲基吡咯烷酮为稳定剂,用微波加热辐射法制备铂纳米簇,用TEM,XRD对其进行表征。结果表明微波辐射法制备的铂纳米簇稳定且分散均匀,粒径仅为3.7nm。另外,探讨了不同氢气压力下铂纳米簇对肉桂醛加氢反应的催化效果,用GC-MS对结果进行表征,证明当氢气压力为3MPa时,肉桂醛的转化率最高。
     2、用紫外光交联的方法制备不同交联度的SBS负载Pt的催化膜并探讨其对肉桂醛选择性加氢制备肉桂醇的催化效果。其中催化剂Pt纳米簇用微波法制备,膜载催化剂的负载量、光交联剂三羟甲基丙烷三丙烯酸酯(TMPTA)和光引发剂二苯甲酮(BP)的用量均为3%。用色谱-质谱联用,XRD,紫外分光光度计对膜载催化剂和反应产物进行了表征,结果表明,随着交联度的增加,肉桂醇的催化选择性先增后减,紫外光光照80s时,负载膜交联度23.63%,肉桂醛转化率为91.46,肉桂醇选择性80.98%。质谱分析表明交联度大于30%后,催化产物中开始有膜分解产生的小分子杂质出现,并随交联度的进一步增大而增多;显微镜检测同时说明此时膜结构发生变化,造成肉桂醇选择性的降低。
     3、运用简单的包裹制备不同交联度的负载铂的壳聚糖/戊二醛交联催化膜,并探讨其对肉桂醛选择性加氢制备肉桂醇的催化效果。其中Pt纳米簇用微波法制备,催化膜的交联度由戊二醛(GA)含量来控制。XPS显示Pt与CS膜之间存在配位作用。紫外光谱表明GA和CS产生了交联,并且交联度随着GA含量的增加而增加。用气相色谱-质谱联用对实验结果进行表征,结果表明,随着交联度的增加,肉桂醛的转化率和肉桂醇的选择性均先增后降,这是因为交联后期催化膜中开始有游离戊二醛的存在,这点由GC-MS检测证实。戊二醛与壳聚糖的含量比为1:1.0时,交联度为57.32%,此时肉桂醛转化率为70.13%,肉桂醇选择性为84.27%。
Polymer-supported catalysts were used widely in recent years in organicsynthesis. This is because polymeric catalysts can make the reaction process simply, provide convenience of product purification, and provide for recovery and reuse of catalysts after reaction. They have low environmental hazards, recording the green chemistry now.
     In this work, we fabricated two kinds of Pt nano-cluster /crosslinking polymer catalysts (Pt/SBS, Pt/CS-GA) consisting of platinum group nano-clusters and crosslinking polymer (SBS, CS/GA) with the method of embedment. The structure and performance of hybrid membrane were characterized and analyzed. The catalytic membranes were used in the selective hydrogenation of cinnamaldehyde, finding the raletionship of crosslinking ratios and the selectivity for cinnamyl alcohol. The following three parts to be included in this paper:
     1. The stabile platinum nano-metal clusters were obtained with stabilizer Polyvinylpyrrolidone (PVP, K30) and reducing agent glycol by microwave irradiation (MW), which average diameter of particles was 3.7 nm. X-ray diffraction analysis showed the good crystalline form and stability of the platinum metal cluster. The characteristic of MW are short irradiation time and uniform heating. And MW can be applied to prepare a variety of nano-metal cluster.
     2. Photocrosslinked SBS membrane supported nano platinum catalysts were prepared and their catalytic activity on the selective hydrogenation of cinnamaldehyde was investigated. The platinum nanoclusters with an average diameter of c.a. 3.7 nm were obtained by reaction of H2PtCl6 with polyols, assisted by microwave irradiation (MW). The SBS membrane was loaded with 3.0 wt. % of Pt,BP, and TMPTA, respectively,and varing crosslinking ratios were achieved by adjusting the radiation time. The hydrogenation products were investigated by GC-MS and UV. As the crosslinking ratio increases, the selectivity for cinnamyl alcohol first increases, reaches 80.98% at a crosslinking ratio of 23.63%, and then decreases. Decomposition products of the SBS meambrane itself begin to appear as the radiaton time is over 30mins (corresponding to a crosslinking ratio of slghtly above 30%). The deterioration of the membrane structure is also evidenced by TEM measurement.
     3. The different crosslinking ratio glutaraldehyde/chitosan (GA/CS) membranes supported nano platinum catalysts were prepared and their catalytic activity on the selective hydrogenation of cinnamaldehyde was investigated. The stabile platinum metal clusters were obtained by microwave irradiation (MW). The CS membrane having different crosslink ratios were loaded with 6.0 wt. % Pt, and varing crosslinking ratios were achieved by adjusting the content of GA. There is reciprocity between Pt and GA/CS membrane by XPS measurement. As the crosslinking ratio increases, the selectivity for cinnamyl alcohol first increases, reaches 84.27% at a crosslinking ratio of 57.32%, and then decreases. This is because that the dissociative GA existed, same as the conversion of cinnamaldahyde.
引文
[1] Merritield, R.B.J.Am. Chem.Soe. 1963, 85, 2149-2154
    [2] Merrifield B. Science, 1986, 232: 341-347
    [3]赵文元,王亦军编著,功能高分子材料化学[M],化学工业出版社,1998
    [4]金关泰编著,高分子化学的理论和应用进展[M],中国石化出版社,1995
    [5] D. Meissner, R. Memming, B. Kastening. Light-induced generation of hydrogen at CdS-monogtain membranes [J]. Chem. Phys. Lett., 1983, 96(1):34-37
    [6]何炳林,宗芳,马建标.交联聚丙烯酸固载化氧化β-环糊精的合成及其对尿素的吸附性能[J].中国科学,1993,(3):2
    [7]董芬,高分子负载催化剂的制备及其催化性能研究.暨南大学硕士毕业论文,2007
    [8]将挺大.壳聚糖[M].北京:化学工业出版社,2001
    [9]将挺大.甲壳素[M].北京:中国环境科学出版社,1996,18
    [10]谢雅明.可溶性甲壳素的制造和用途[J].化学世界.1983,(4):118
    [11]严俊.甲壳素的化学和应用[J].化学通报.1984,(11):26
    [12] Boutigand Y. Copm. Rend. 1965, 261: 3665
    [13]野口顺藏,户念清一,猪俣素子.工业化学杂志.1965,68:904
    [14] Kazuya O, Yoshiaki K, Hivoshi Y. Bull. Chem.Sci.Jpn. 1987, 60(1): 444
    [15] Eur Pat, 28914[P].1981
    [16]徐羽梧,倪才华.螯合树脂研究·XVI以壳聚糖为母体的螯合树脂的合成及其吸附性能[J].高分子学报.1991,1:5
    [17]胡运华,徐羽梧,冯翠萍,董世华.螯合树脂研究·XIX以壳聚糖为母体的螯合树脂的合成及其吸附性能[J].离子交换与吸附.1992,8(3):229
    [18]李秀,杨溥臣.全国高分子学术论文报告会预印集.武汉.1987,409
    [19]曲荣军,刘庆俭.天然高分子吸附剂研究[J].环境化学.1996,15(1):41
    [20]汪玉庭,高松奇,唐玉蓉等.新型冠醚交联壳聚糖的吸附性能[J].环境污染与防治.2000,22(1):8
    [21]杨智宽,袁扬,汪玉庭,谭功荣.氮杂冠醚壳聚糖研究(Ⅲ)—双羟基中环二胺交联壳聚糖的制备[J].化学试剂.2000,2:68
    [22]陈士朝,王仰东编著.橡胶技术与制造概论[M].中国石化出版社,2002,第一版
    [23] Sadhan K. De, Jim R. White. Rubber Technologist’s Handbook [M]. Rapra Technology Limited, 2001
    [24]徐国财,张立德.纳米复合材料[M].北京:化学工业出版社,2002
    [25]中国合成橡胶工业协会.中国合成橡胶工业总览.中国计量出版社,2005
    [26] Vladimir A.Escobar Barrios, Rafael Herrera Najera, Alain Petit. Selective hydrogenation of butadiene-styrene copolymers using a Ziegler-Natta type catalyst 1. Kinetic study. European Polymer Journal, 2000, 36: 1817-1834
    [27]郑仰才.官能化SBS的合成及其应用.大连理工大学硕士论文,2007
    [28]阎子峰.纳米催化技术[M].北京:化学工业出版社,2003,第一版
    [29] Wang Y., Mahler W. Degenerate four-wave of CdS/polylmer composite [J]. Opt. Commun. 1987, 61(3): 23-236.
    [30] Hilinski E., Lucas P., Wang Y. A picosecond bleaching study of quantum- con fined cadmium sulfide microcrystallites in a polymer film [J]. Chem. Phys. 1988, 89 (6): 3435-3441.
    [31] Auer S., Frenkel D. Suppression of crystal nucleation in polydisperse colloids due to increase of the surface free energy [J]. Nature, 2001, 413: 711-713
    [32]张立德,牟季美,纳米材料和纳米结构[M].科学出版社.2001
    [33] Halperin W.P. Quantum size effects in metal particles [J]. Rev.Modern Phys., 1986, 58(3): 533-606
    [34] Henglein A. Small-particle research: physicochemical properties of extremely small colloidal metal and semiconductor particles [J].Chem.Rev.,1989, 89: 1861-1873
    [35] Matsumoto T., Suzuki J., Ohnuma M., Kanemittsu Y., Masumoto Y. Direct Evidence of Quantum Size Effect in Nanocrystalline Silieon [J]. Phys Rev. B, 2001, 63: 195322/1-195322/5
    [36] Barbara B., Wernsdorfer W.TI quanttum tunneling Effect in Magnetic particles SO [J]. Curr. Opin.Solid State.Mater Sci., 1997, 2: 220-225
    [37] A. Roucoux, J. Schulz, H. Patin. Reduced Transition Metal Colloids:A Novel Family of Reusable Catalysts? [J]. Chemical Review. 2002, 102 (10): 3757-3778
    [38] Borsla A., Wilhelm A.M, Delmas H. Hydrogenation of olefins in aqueous phase catalyzed by polymer-protected rhodium colloids: kinetic study [J]. Cathl.Today. 2001, 66: 389
    [39] Teranishi T, Miyake M. Size control of palladium nanoparticles and their crystal structures [J]. Chem.Mater. 1998, 10 (2): 594–600
    [40] Bonet F,Delmas V, Grugeon S,Herrera Urbina R, Silvert P Y,Tekaia-Elhsissen K. Nanostruct.Mater. 2000,11: 1277-1284
    [41] Manhong Liu, Weiyong Yu and Hanfan Liu. Selective hydrogenation of o-chloronitrobenzene over polymer-stabilized ruthenium colloidal catalysts [J]. Journal of Molecular Catalysis A: Chemical, 1999, 138 (2): 295-303
    [42] Louis D, Rampino F.F.Nord. J. Am.Chem.Soc.1941,63(12): 3268
    [43] Boutonnet M, Kizling J, Stenius P, Maire G.. Colloids Surfaces .1982, 5: 209
    [44] Weiyong Yu, Weixia Tu, and Hanfan Liu. Synthesis of Nanoscale Platinum Colloids by Microwave Dielectric Heating [J]. Langmuir, 1999, 15 (1): 6–9
    [45] J D Aiken III, Finke R G, J.Am. Polyoxoanion-andtetrabutylammonium-stabilized Rh (0) n nanoclusters: unprecedented nanocluster catalytic lifetime in solution [J]. Chem.Soc. 1999, 121(38): 8803–8810
    [46] Jairton Dupont, Gledison S. Fonseca, Alexandre P. Umpierre, Transition-Metal Nanoparticles in Imidazolium Ionic Liquids:Recycable Catalysts for Biphasic Hydrogenation Reactions [J]. J. Am. Chem. Soc. 2002, 124 (16): 4228–4229
    [47] Mucalo M R, Cooney R P. J. Chem.Soc. Chem.Commum. 1989, 15: 94
    [48] Hirai H, Wakabayashi H, Komiyama M, Bull Chem Soc, Jpn, 1986, 59: 367
    [49]安家驹.实用精细化工辞典(第二版)[M].北京:中国轻工业出版社,2000:472-473
    [50]徐克勋.精细有机化工原料及中间体手册[M].北京:化学工业出版社,1998
    [51]朱广用,谢峰.Imperial Leather Original皂用香精的仿制[J].中国香料与化妆品.2007,2:40-42
    [52]宋传东.桅子型香精的调配及应用问题探讨[J].福建轻纺,2002,10:5-8
    [53]任勇,刘静,华维一等.3-氯-1-苯丙稀合成工艺研究[J].中国药物化学杂志.1997,7(3):215-217
    [54] DengL, MiaiQ, CuiX, etal. A Practical Synthesis of Key ChiralIntermediate for (S,S)Reboxetine [J].合成化学, 2001, 9(2): 93-95
    [55]吴周和,吴传茂,徐燕.肉桂中天然防腐物质的提取及其抑菌作用[J].食品工业,2003,24(5):28-29
    [56]阮海燕,肖霄.肉桂醛的应用[J].牙膏工业,2006,2: 32-33
    [57]章思规,章伟.精细化学品及中间体手册(上卷)[M].北京:化学工业出社,2004
    [58] Zhao-Tie Liu, Chun-Xia Wang. Selective hydrogenation of cinnamaldehyde over Pt-supported multi-walled carbon nanotubes: Insights into the tube-size effects [J]. Applied Catalysis A: General. 2008, 344: 114–123
    [59]陈兴凡,徐叶平,蔡霞等.Co-B非晶态合金催化肉桂醛液相选择性加氢制备肉桂醇的研究[J].化学研究与应用.2002,14(3):269-273
    [60]武文涛,贾颖萍,尹静梅等.肉桂醛选择性加氢合成肉桂醇的研究进展[J].化工中间体,2009,4:1-5
    [61] Lashdaf M, Lahtinen J, Lindblad M. Platinum catalysts on alumina and silica prepared by gas - phase and liquid- phase deposition in cinnamaldehyde hydrogenation [J]. Applied Catalysis A: General. 2004, 276: l29-137
    [62] Hajek J, Kumar N, Francova D, Paseka I, Maki Arvela P. Hydrogenation of ciannamaldehyde over Pt-Modifled molecular sieve catalysts [J]. Chem. Eng. Technol. 2004, 27(12): 1290-1295
    [63] Vu H, Gencalves F, Philippe R. Bimetallic catalysis on carbon nan otubes for the selective hydrogenation of cinnamaldehyde[J]. Journal of Catalysis, 2006,240: 18-22
    [64] Samant P V, Pereira M F R, Figueiredo J L. Mesoporous carbon supported Pt and Pt/Sn catalysts for hydrogenation of cinnamaldehyde[J].Catalysis Today,2005, 102-103:183-188
    [65] Ramos—Fernandez E V, Ferreira A F P, Sepulveda-Escribano A, Kapteijn F, Rodriguez—Reinoso F. Enhancing the catalytic performan ce of Pt/ZnO in the selective hydrogenation of cinnamaldehyde by Cr addition to the support [J]. Journal of Catalysis. 2008.258:52-60
    [66] Manikandan D, Divakar D, Rupa A V, Revathi S, Preethi M E L, Sivakumar T. Synthesis of platinum nan opartieles in montmorillonite and their catalytic behavior [J]. Applied Clay Science, 2007,37:193-200
    [67] Ma H X,Wang L C,Chen L Y,Dong C,Yu W C,Huang T, Qian Y T.Pt nanoparticles deposited over carbon nanotubes for selective hydrogenation of cinnamaldehyde [J]. Catalysis Communications,2007,8:452-456
    [68] Hajek J,Kumar N,Francova D,Paseka I,Maki—Arvela P,Salmi T, Murzin D Y. Hydrogenation of ciannamaldehyde over Pt-Modifled molecular sieve catalysts [J].Chem.Eng.Technol,2004,27(12):1290-1295
    [69] Arie J. Plomp, Heli Vuori, A. Outi I. Particle size effects for carbon nanofiber supported platinum and ruthenium catalysts for the selective hydrogenation of cinnamaldehyde [J]. Applied Catalysis A: General. 2008, 351 (1):9-15
    [70] Jan Hájek, Narendra Kumar, P?ivi M?ki-Arvela.Selective hydrogenation of cinnamaldehyde over Ru/Y zeolite [J]. Journal of Molecular Catalysis A: Chemical, 2004, 217 (1-2):145-154
    [71] J. Barrault, A. Derouault, G.Courtois. On the catalytic properties of mixed oxides obtained from the Cu-Mg-Al LDH precursors in the process of hydrogenation of the cinnamaldehyde [J]. Applied Catalysis A: General.2004, 262 (1-2): 43-51
    [72] Alberto J.Marchi, Diego A. Gordo, Andrés F. Trasarti.Liquid phase hydrogenation of cinnamaldehyde on Cu-based catalysts [J]. Applied Catalysis A: General, 2003, 249 (1-2):53-67
    [73] C. Milone, M.C. Trapani, S. Galvagno.Synthesis of cinnamyl ethyl ether in thehydrogenation of cinnamaldehyde on Au/TiO2 catalysts [J]. Applied Catalysis A: General, 2008, 337 (2): 163-167
    [74] Eveline Bus, Roel Prins, Jeroen A.van Bokhoven. Origin of the cluster-size effect in the hydrogenation of cinnamaldehyde over supported Au catalysts [J]. Catalysis Communications, 2007, 9(8): 1397-1402
    [75] Xingfan Chen, Hexing Li, Weilin Dai. Selective hydrogenation of cinnamaldehyde to cinnamyl alcohol over the Co-La-B/SiO2 amorphous catalyst and the promoting effect of La-dopant [J]. Applied Catalysis A: General, 2003, 253 (2): 359-369
    [76] Zhijie Wu, Jingshi Zhao, Minghui Zhang.Synthesis of a stable and porous Co–B nanoparticle catalyst for selective hydrogenation of cinnamaldehyde to cinnamic alcohol [J]. Catalysis Communications, 2010,11: 973-976
    [77] Jean-Philippe Tessonnier, Laurie Pesant, Gabrielle Ehret. Pd nanoparticles introduced inside multi-walled carbon nanotubes for selective hydrogenation of cinnamaldehyde into hydrocinnamaldehyde [J] .Applied Catalysis A: General, 2005, 288 (1-2): 203-210
    [78] Arie J. Plomp, Heli Vuori, A. Outi I. Krause.Particle size effects for carbon nanofiber supported platinum and ruthenium catalysts for the selective hydrogenation of cinnamaldehyde[J] .Applied Catalysis A: General, 2008, 351 (1): 9-15
    [79] A. Jung, A. Jess, T. Schubert, W. Schütz.Performance of carbon nanomaterial (nanotubes and nanofibres) supported platinum and palladium catalysts for the hydrogenation of cinnamaldehyde and of 1-octyne [J] .Applied Catalysis A: General, 2009, 362 (1):95-105
    [80] Marjolein L. Toebes, Yihua Zhang, Jan Hájek, T.Support effects in the hydrogenation of cinnamaldehyde over carbon nanofiber-supported platinum catalysts: characterization and catalysis [J]. Journal of Catalysis, 2004, 226 (1): 215-225
    [81] Hongxia Ma, Licheng Wang, Luyang Chen. Pt nanoparticles deposited over carbon nanotubes for selective hydrogenation of cinnamaldehyde [J]. Catalysis Communications, 2007, 8 (3): 452-456
    [82] Nagendranath Mahata, Filomena Gonc?alves, Manuel Fernando R. Pereira, Jose′Lu?′s Figueiredo.Selective hydrogenation of cinnamaldehyde to cinnamyl alcohol over mesoporous carbon supported Fe and Zn promoted Pt catalyst. Applied Catalysis A: General. 2008, 339:159–168
    [83]龙帅.铂纳米簇/感光性聚酰亚胺杂化膜的制备表征及其在苯催化氢化反应中的探索研究.中南民族大学硕士论文.2009
    [84]王秀娜,张红兵,韩红梅等.肉桂醛催化加氢产物的GC-MS分析[J].分析测试学报.2001,7(20),增刊
    [85] Shiliang Qua, Yinglin Song, Hanfan Liu. A theoretical and experimental study on optical limiting in platinum nanoparticles [J]. Optics Communications, 2002 ,203: 283-288
    [86] Weiyong Yu, Manhong, Liu, Hanfan Liu.Preparation of Polymer-Stabilized Noble Metal Colloid [J]. Journal of Colloid and Interface Science. 1999, 210 :218–221
    [87] Vanessa R. Landaeta, Francisco Lopez-Linares. Synthesis and characterization of new rhodium and iridium complexes with trianisylphosphine, PAn3, and evaluation of their catalytic behavior in thehomogeneous hydrogenation of cinnamaldehyde. Journal of Molecular Catalysis A: Chemical. 2009, 301 :1–10
    [88] A. Jung, A. Jess. Performance of carbon nanomaterial (nanotubes and nanofibres) supported platinum and palladium catalysts for the hydrogenation of cinnamaldehyde and of 1-octyne. Applied Catalysis A: General. 2009, 362: 95–105
    [89] Yan Li, Zhen-Guo Li, Ren-Xian Zhou. Bimetallic Pt-Co catalysis on carbon nanotubes for the selective hydrogenation of cinnamaldehyde to cinnamyl alcohol: Preparation and characterization. Journal of Molecular Catalysis A: Chemical, 2008, 279: 140–146
    [90] A.J. Plomp, D.M.P. van Asten. Catalysts based on platinum–tin and platinum-gallium in close contact for the selective hydrogenation of cinnamaldehyde. Journal of Catalysis. 2009, 263:146–154
    [91] Kou Yan, Wang Jinyan. Preparation and evaluation of epoxy methacrylate UV-curable coatings containing phthalazinone. Polymer International, 2010, 59 (1): 107-111
    [92] L. Lecamp, C. Pavillon, P. Lebaudy .Influence of temperature and nature of photoinitiator on the formation kinetics of an interpenetrating network photocured from an epoxide/methacrylate system. European Polymer Journal,2005, 41 (1): 169-176
    [93] C.Decker etal. Photocrosslinking of functionalized rubbers IX. Thiol-ene polymerization of styrene-butadiene-block-copolymers. Polymer. 2000, 41: 3905-3912
    [94] J.L. Mateo, P. Bosch. Sorption and di.usion of organic solvents throughphoto-crosslinked SBS block copolymers. European Polymer Journal. 2000,36:1903-1910
    [95] Arie J. Plomp a, Heli Vuori a, b, A. Outi I. Krause. Particle size effects for carbon nanofiber supported platinum and ruthenium catalysts for the selective hydrogenation of cinnamaldehyde [J]. Applied Catalysis A: General .2008,351: 9-15
    [96] Gallezot P, Richard D. Selective Hydrogenation of a,β-Unsaturated Aldehydes [J]. Catalysis Reviews Science and Engineering, 1998, 40 (1-2): 81-126
    [97] Maki A P, Hajek J, Salmi T, et al. Chemoselective hydrogenation of carbonyl compounds over heterogeneous catalysts [J]. Applied Catalysis A: General, 2005, 292: 1-49
    [98]范青明,严巍,刘迎新.离子液体中负载型纳米催化剂的制备及其α-β不饱和醛选择性加氢性能研究.浙江工业大学博士学位论文
    [99] Nagendranath Mahata, Filomena Gonc?alves, Manuel Fernando R. Pereira, Jose′Lu?′s Figueiredo.Selective hydrogenation of cinnamaldehyde to cinnamyl alcohol over mesoporous carbon supported Fe and Zn promoted Pt catalyst [J]. Applied Catalysis A: General. 2008,339:159–168
    [100] Vanessa R. Landaeta, Francisco Lopez-Linares. Synthesis and characterization of new rhodium and iridium complexes with trianisylphosphine, PAn3, and evaluation of their catalytic behavior in thehomogeneous hydrogenation of cinnamaldehyde [J]. Journal of Molecular Catalysis A: Chemical. 2009, 301: 1–10
    [101]赵涛,廖萍,代鹏等.光交联壳聚糖-(PVA-SbQ)共混膜的制备与性能表征[J].功能材料.2009, 40 (7):1204-1207
    [102]刘汉范,靳包平.铂纳米金属簇催化氢化不饱和醛以制备不饱和醇[J].化学研究与应用.1999,11(5):533-534
    [103]杨树武.α-β不饱和醛中C=C和C=O键选择加氢的研究进展[J].分子催化.1998, 12(2):152-160

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700