Ni(OH)_2/TiO_2复合光催化剂的制备与产氢活性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
能源与环境是二十一世纪人类面临和亟待解决的两大世界性的问题。由于化石燃料(煤、石油、天然气)的不断枯竭,以及燃烧化石燃料带来的日益严重的环境污染等全球性问题,开发新型的、环境友好的和可再生无污染的新能源引起世界各国的广泛关注。氢能源由于其高的燃烧值、燃烧产物是水以及无环境污染等优点,被看做是在未来的一种理想的替代能源。太阳能由于其取之不尽用之不竭、清洁无污染、可再生等优点,必将对未来新型能源的开发起着举足轻重的作用。自从1972年日本科学家Fujishima和Honda在Ti02电极上发现光催化分解水以来,太阳光诱导光催化反应被普遍认为是一种将太阳能转化为氢能源的有效途径。因此采用半导体化合物进行直接的光催化来分解水产氢受到了人们的普遍关注。本论文采用Ni(OH)2和CuO复合Ti02半导体来提高Ti02的光催化分解水产氢的活性。
     首先,以P25和硝酸镍为前驱体,通过一步简单的沉淀法成功制备了Ni(OH)2纳米簇改性Ti02的纳米复合光催化剂(Ni(OH)2-TiO2)。在甲醇溶液中,通过测试光催化分解水产氢的活性,研究了Ni(OH)2纳米簇的沉积量对催化剂分解水产氢活性的影响。这一研究结果表明在经过Ni(OH)2纳米簇的改性后,Ti02的光催化产氢活性得到了大大的提高。在试验中找出了Ni(OH)2的最佳沉积量为0.23mol%,这时的光催化产氢速率为3056μmolh-1g-1,对应的量子效率是12.4%,这一结果超过了纯Ti02的223倍。Ti02光催化产氢活性的明显提高是因为Ni(OH)2纳米簇在Ti02表面上的沉积。光催化活性提高的机理是因为Ni2+/Ni的电极电势的位置(Ni2++2e-=Ni,Eo=-0.23V)要比锐钛矿Ti02的导带位置(-0.26 V)稍微低一些,同时又要比H+/H2的电极电势的位置(2H++2e-=H2,Eo=-0.00V)高一些。这就使得Ti02导带的电子可以转移到Ni(OH)2上,将Ni2+的颗粒还原为Ni0,而Ni0的作用就是协助电荷的分离同时作为光催化产氢的助催化剂,从而提高了光催化分解水产氢的活性。
     CuO改性的TiO2 (CuO-TiO2)光催化剂在甘油的水溶液中成功实现了有效的光催化分解水产氢和甘油的降解。以P25(德国Degussa公司)和硝酸铜为前驱体,采用溶液浸渍法和煅烧法成功的将CuO纳米簇沉积在了Ti02的表面。对最后得到的CuO-TiO2纳米复合光催化剂做了以下的表征:X射线衍射分析、紫外-可见漫反射光谱分析、X射线光电子能谱分析、N2吸附脱附、投射电子显微分析和荧光光谱分析。采用低功率的紫外发光二激光(LED灯)作为光催化分解水产氢的光源。CuO对光催化产氢的影响做了较为详细的研究,结果表明CuO纳米簇可以作为有效的助催化剂来提高Ti02光催化分解水产氢的活性。CuO的最佳沉积为1.3 wt%,在0.1M甘油溶液中的产氢速率为2061μmol h-1g-1,此时的量子效率达到了13.4%,这一数值超过了纯的Ti02活性的129倍。CuO纳米簇的量子尺寸效应被认为是改变了CuO在CuO-TiO2复合光催化剂中导带和价带的能带位置,这将有助于电子的转移,从而提高了催化剂光催化产氢的活性。这一研究使用CuO纳米簇来代替贵金属做助催化剂用来光催化产氢的同时也提供了一种方法通过量子尺效应来提高催化剂的光催化产氢活性。
Energy and environment are two significant global issues to the humanity in 21st century. The exhaustion of fossil fuels (such as coal, oil and natural gas) and the global environmental contamination caused by fossil fuels encourage all the countries in the word to develop a novel, environmental-friendly and renewable energy resource. Hydrogen has been considered as an attractive and ideal candidate for the energy carrier of the future because of its high combustion energy and free environmental pollution. Because solar energy is greatly abundant, clean and especially renewable, it will play an important role in the development of new energy sources. Since Fujishima and Honda firstly reported the photoelectrochemical water splitting on a TiO2 electrode, sunlight induced the photocatalytic reactions are widely identified as one of the most promising routes for converting solar energy to hydrogen energy. In view of this, direct photocatalytic production of hydrogen via water splitting reaction over various kinds of oxide semiconductors has received much attention to develop the sustainable source of hydrogen energy. In this work, Ni(OH)2 and CuO facilitate the separation of photogenerated charge carriers and thus enhance the photocatalytic H2-production activity of TiO2.
     Ni(OH)2 cluster-modified TiO2 (Ni(OH)2/TiO2) nanocomposite photocatalysts were fabrication by a simple precipitation method using Degussa P25 TiO2 powder (P25) as support and Ni(NO3)2 as precursor. The effect of Ni(OH)2 cluster loading content on the photocatalytic hydrogen production rates of the as-prepared samples in methanol aqueous solution was investigated. The results showed that the photocatalytic H2-production activity of TiO2 was significantly enhanced by loading Ni(OH)2 clusters. The optimal Ni(OH)2 loading content was found to be 0.23 mol%, giving H2-production rate of 3056μmolh-1g-1 with quantum efficiency (QE) of 12.4%, exceeding that on pure TiO2 by more than 223 times. This high photocatalytic H2-production activity is due to the deposition of Ni(OH)2 clusters on the surface of TiO2. The enhanced mechanism is because the potential of Ni2+/Ni (Ni2++2e-=Ni, E°=-0.23 V) is slightly lower than conduction band (CB) (-0.26 V) of anatase TiO2, meanwhile higher than the reduction potential of H+/H2 (2H++2e-= H2, E°=-0.00 V), which favors the electron transfer CB of TiO2 to Ni(OH)2 and the reduction of partial Ni2+to Ni0. The function of Ni0 is to help the charge separation and to act as co-catalyst for water reduction, thus enhancing the photocatalytic H2-production activity.
     Efficient hydrogen production and decomposition of glycerol were achieved on CuO-modified titania (CuO-TiO2) photocatalysts in glycerol aqueous solutions. CuO clusters were deposited on the titania surface by impregnation of Degussa P25 TiO2 powder (P25) with copper nitrate followed by calcination. The resulting CuO-TiO2 composite photocatalysts were characterized by X-ray diffraction (XRD), UV-visible spectrophotometry, X-ray photoelectron spectroscopy (XPS), N2 adsorption-desorption, transmission electron microscopy (TEM) and photoluminescence (PL) spectroscopy. The low-power ultraviolet light emitting diodes (UV-LED) were used as the light source for photocatalytic H2-production reaction. A detailed study of CuO effect on the photocatalytic H2-production rates showed that CuO clusters can act as an effective co-catalyst enhancing photocatalytic activity of TiO2. The optimal CuO content was found to be 1.3 wt%, giving H2-production rate of 2061μol h-1 g-1 (corresponding to the apparent quantum efficiency (QE) of 13.4% at 365 nm), which exceeded the rate on pure TiO2 by more than 129 times. The quantum size effect of CuO clusters is deemed to alter its energy levels of the conduction and valence band edges in the CuO-TiO2 semiconductor systems, which favors the electron transfer and enhances the photocatalytic activity. This work shows not only the possibility of using CuO clusters as a substitute for noble metals in the photocatalytic H2 production but also demonstrates a new way for enhancing hydrogen production activity by quantum size effect.
引文
[1]A. Fujishima, K. Honda. Electrochemical photolysis of water at a semiconductor electrode. Nature,1972,238:637~638
    [2]S.N. Frank, A.J. Bard. Heterogeneous photocatalytic oxidation of cyanide and sulfite in aqueous solutions at semiconductor powders. The Journal of Physical Chemistry,1977,81(15): 1484~1488
    [3]J.K. Leland, A.J. Bard. Photochemistry of colloidal semiconducting iron oxide polymorphs. The Journal of Physical Chemistry,1987,91(19):5076~5083
    [4]M. Ni, M.K.H. Leung, K. Sumathy, et al. Water electrolysis-a bridge between renewable resources and hydrogen. Proceedings of the International Hydrogen Energy Forum,2004, Beijing, PRC:475~480
    [5]K.T. Ranjit, I. Willner, S.B. Bossmann, et al. Iron (Ⅲ) phthalo-cyanine-modified titanium dioxide:a novel photocatalyst for the enhanced photodegradation of organic pollutants. Journal of Physical Chemistry B,1998,102(47):9397~9403
    [6]A.D. Paola, G.. Marei, L. Palmisano, et al. Preparation of polycrystalline TiO2 photocatalysts impregnated with various transition metal ions:characterization and photocatalytic activity for the degradation of 4-nitrophenol. Journal of Physical Chemistry B,2002,106(3):637~645
    [7]M. Ni, M.K.H. Leung, D.Y.C. Leung, et al. A review and recent development in photocatalytic water-splitting using TiO2 for hydrogen production. Renewable and Sustainable Energy Reviews, 2007,11(3):401~425
    [8]R. Asahi, T. Morikawa, T. Ohwaki, et al. Visible-light photocatalysis in nitrogen-doped titanium oxides. Science,2001,293:269~271
    [9]O. Khaselev, J.A. Turner, A monolithic photovoltaic-photo-electrochemical device for hydrogen production via water splitting. Science,1998:425~427
    [10]S.U.M Khan, J.M. Al-Shahry, W.B. Ingler, Efficient photochemical water splitting by a chemically modified n-TiO2. Science,2002,297(5590):2243~2245
    [11]Z.G. Zou, J.H. Ye, K. Sayama, et al. Direct splitting of water under visible light irradiation with an oxide semiconductor photocatalyst. Nature,2001,414:625~627
    [12]A. Mills, S.L. Hunte, An overview of semiconductor photocatalysis. Journal of Photochemistry and Photobiology A,1997,108(1):1-35
    [13]A. Fujishima, T.N. Rao, D.A. Tryk, Titanium dioxide photocatalysis. Journal of Photochemistry and Photobiology C,2000,1(1):1-21
    [14]I.K. Konstantinou, T.A. Albanis, TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution:kinetic and mechanistic investigations-a review. Applied Catalysis B,2004, 49(1):1~14
    [15]A.E. Cassano, O.M. Alfano, Reaction engineering of suspended solid heterogeneous photocatalytic reactors. Catalysis Today,2000,58(2-3):167~197
    [16]M. Ashokkumar, An overview on semiconductor particulate systems for photoproduction of hydrogen. International Journal of Hydrogen Energy,1998,23(6):427-438
    [17]J.M. Herrmann, Heterogeneous photocatalysis:fundamentals and applications to the removal of various types of aqueous pollutants. Catalysis Today,1999,53(1):115~129
    [18]K. Pirkanniemi, M. Sillanpaa, Heterogeneous water phase catalysis as an environmental application:a review. Chemosphere,2002,48(10):1047~1060
    [19]D.A. Tryk, A. Fujishima, K. Honda, Recent topics in photoelectrochemistry:achievements and future prospects. Electrochimica Acta,2000,45(15-16):2363~2376
    [20]L.Q. Jing, X.J. Sun, J. Shang, et al. Review of surface photovoltage spectra of nanosized semiconductor and its applications in heterogeneous photocatalysis. Solar Energy Materials and Solar Cells,2003,79(2):133~151
    [21]S. Malato, J. Blanco, A. Vidal, et al. Photocatalysis with solar energy at a pilot-plant scale:an overview. Applied Catalysis B,2002,37(1):1~15
    [22]M.R. Hoffmann, S.T. Martin, W.Y. Choi, et al. Environmental applications of semiconductor photocatalysis. Chemical Reviews,1995,95(1):69~96
    [23]D. Bahnemann, Photocatalytic water treatment:solar energy applications. Solar Energy,2004, 77(5):445~459
    [24]O.M. Alfano, D. Bahnemann, A.E. Cassano, et al. Photocatalysis in water environments using artificial and solar light. Catalysis Today,2000,58(2-3):199~230
    [25]M.A. Fox, M. Dulay, Heterogeneous photocatalysis. Chemical Reviews,1993,93(1): 341~357
    [26]A.A. Nada, M.H. Barakat, H.A. Hamed, Studies on the photocatalytic hydrogen production using suspended modified TiO2 photocatalysts. International Journal of Hydrogen Energy,2005, 30(7):687~691
    [27]Y.X. Li, G.X. Lu, S.B. Li, Photocatalytic production of hydrogen in single component and mixture systems of electron donors and monitoring adsorption of donors by in situ infrared spectroscopy. Chemosphere,2003,52(5):843~850
    [28]S.G. Lee, S.W. Lee, H.I. Lee, Photocatalytic production of hydrogen from aqueous solution containing CN- as a hole scavenger. Applied Catalysis B,2001,207(1-2):173~181
    [29]T. Kida, G.Q. Guan, N. Yamada, et al. Hydrogen production from sewage sludge solubilized in hot-compressed water using photocatalyst under light irradiation. International Journal of Hydrogen Energy,2004,29(3):269~274
    [30]K. Gurunathan, P. Maruthamuthu, V.C. Sastri, Photocatalytic hydrogen production by dye-sensitized Pt/SnO2 and Pt/SnO2/RuO2 in aqueous methyl viologen solution. International Journal of Hydrogen Energy,1997,22(1):57~62
    [31]G.R. Bamwenda, S. Tsubota, T. Nakamura, et al. Photoassisted hydrogen production from a water ethanol solution:a comparison of activities of Au-TiO2 and Pt-TiO2. Journal of Photochemistry and Photobiology A,1995,89(2):177~189
    [32]A. Koca, M. Sahin, Photocatalytic hydrogen production by direct sun light from sulfide/sulfite solution. International Journal of Hydrogen Energy,2002,27(4):363~367
    [33]R. Abe, K. Sayama, K. Domen, A new type of water splitting system composed of two different TiO2 photocatalysts (anatase, rutile) and a IO3-/I- shuttle redox mediator. Chemical Physics Letters,2001,344(3-4):339~344
    [34]K. Lee, W.S. Nam, G.Y. Han, Photocatalytic water-splitting in alkaline solution using redox mediator. International Journal of Hydrogen Energy,2004,29(13):1343~1347
    [35]G.R. Bamwenda, H. Arakawa, The photoinduced evolution of suspension O2 and H2 from a WO3 aqueous suspension in the presence of Ce4+/Ce3+. Solar Energy Materials and Solar Cells, 2001,70(1):1~14
    [36]K. Sayama, K. Yase, H. Arakawa, et al. Photocatalytic activity and reaction mechanism of Pt-intercalated K4Nb6O17 catalyst on the water-splitting in carbonate salt aqueous solution. Journal of Photochemistry and Photobiology A,1998,114(2):125~135
    [37]K. Sayama, H. Arakawa, Effect of carbonate addition on the photocatalytic decomposition of liquid water over a ZrO2 catalyst. Journal of Photochemistry and Photobiology A,1996,94(1): 67~76
    [38]K. Sayama, H. Arakawa, Significant effect of carbonate addition on stoichiometric photodecomposition of liquid water into hydrogen and oxygen from platinum-titanium (Ⅳ) oxide suspension. Journal of the Chemical Society, Chemical Communications,1992,2:150~152
    [39]K. Sayama, H. Arakawa, K. Domen, Photocatalytic water splitting on nickel intercalated A4TaxNb6-xO17 (A=K, Rb). Catalysis Today,1996,28(1-2):175~182
    [40]A.L. Linsebigler, G. Lu, J.T. Yates. Photocatalysis on TiO2 surfaces:principles, mechanisms, and selected results. Chemical Reviews,1995.95:735~758
    [41]S. Kim, W. Choi, Dual photocatalytic pathways of trichloroacetate degradation on TiO2: effects of nanosized platinum deposition on kinetics and mechanism. The Journal of Physical Chemistry B,2002,106(51):13311~11317
    [42]P.V. Kamat, M. Flumiani, A. Dawson, Metal-metal and metal-semiconductor composite nanoclusters. Colloids and Surfaces A,2002,202(11):269~279
    [43]S. Jin, F. Shiraishi, Photocatalytic activities enhanced for decompositions of organic compounds over metal photo depositing titanium dioxide. Chemical Engineering Journal,2004, 97(2-3):203~211
    [44]E.S. Bardos, H. Czili, A. Horvath, Photocatalytic oxidation of oxalic acid enhanced by silver deposition on a TiO2 surface. Journal of Photochemistry and Photobiology A,2003,154(2-3): 195-201
    [45]M.R. John, A.J. Furgals, A.F. Sammells, Hydrogen generation by photocatalytic oxidation of glucose by platinized n-TiO2 powder. The Journal of Physical Chemistry,1983,87:801-805
    [46]S. Sakthivel, M.V. Shankar, M. Palanichamy, et al. Enhancement of photocatalytic activity by metal deposition:characterization and photonic efficiency of Pt, Au and Pd deposited on TiO2 catalyst. Water Research,2004,38(13):3001~3008
    [47]F.B. Li, X.Z. Li, The enhancement of photodegradation efficiency using Pt-TiO2 catalyst. Chemosphere,2002,48(10):1103~1111
    [48]V. Subramanian, E.E. Wolf, P. Kamat, Catalysis with TiO2/gold nanocomposites:effect of metal particle size on the fermi level equilibration. Journal of the American Chemical Society, 2004,126(15):4943~4950
    [49]S.X. Liu, Z.P. Qu, X.W. Han, et al. A mechanism for enhanced photocatalytic activity of silver-loaded titanium dioxide. Catalysis Today,2004,93-95:877~884
    [50]M. Anpo, M. Takeuchi, The design and development of highly reactive titanium oxide photocatalysts operating under visible light irradiation. Journal of Catalysis,2003,216(1-2): 505~516
    [51]M.I. Litter, Heterogeneous photocatalysis transition metal ions in photocatalytic systems. Applied Catalysis B,1999,23(2-3):89~114
    [52]W.Y. Choi, A. Termin, M.R. Hoffmann, The role of metal ion dopants in quantum-sized TiO2: correlation between photoreactivity and charge carrier recombination dynamics. The Journal of Physical Chemistry,1994,84(51):13669~13679
    [53]A.D. Paola, G. Marci, L. Palmisano, et al. Preparation of polycrystalline TiO2 photocatalysts impregnated with various transition metal ions:characterization and photocatalytic activity for degradation of 4-nitrophenol. The Journal of Physical Chemistry B,2002,106(3):637~645
    [54]J.C. Xu, Y.L. Shi, J.E. Huang, et al. Doping metal ions only onto the catalyst surface. Journal of Molecular Catalysis,2004,219(2):351~355
    [55]A. Hameed, M.A. Gondal, Z.H. Yamani, Effect of transition metal doping on photocatalytic activity of WO3 for water splitting under laser illumination:role of 3d-orbitals. Catalysis Communications,2004,5(11):715~719
    [56]A.W. Xu, Y. Gao, H.Q. Liu, The preparation characterization and their photocatalytic activities of rare-earth doped TiO2 nanoparticles. Journal of Catalysis,2002,207(2):151~157
    [57]K. Wilke, H.D. Breuer, The influence of transition metal doping on the physical and photocatalytic properties of titania. Journal of Photochemistry and Photobiology A,1999,121(1): 49~53
    [58]M.A. Gondal, A. Hameed, Z.H. Yamani, et al. Production of hydrogen and oxygen by water splitting using laser induced photo-catalysis over Fe2O3. Applied Catalysis A,2004,268(1-2): 159~167
    [59]S.Q. Peng, Y.X. Li, F.Y. Jiang, et al. Effect of Be2+ doping TiO2 on its photocatalytic activity. Chemical Physics Letters,2004,398(1-3):235~239
    [60]K. Kobayakawa, K. Murakami, Y. Sato, Visible-light active N-doped TiO2 prepared by heating of titanium hydroxide and urea. Journal of Photochemistry and Photobiology A,2004, 170(2):177~179
    [61]J.L. Gole, J.D. Stout, C. Burda, et al. Highly efficient formation of visible light tunable TiO2-xNx photocatalysts and their transformation at the nanoscale. Journal of Physical Chemistry B,2004,108(50):1230~1240
    [62]T. Umebayashi, T. Yamaki, H. Itoh, et al. Band gap narrowing of titanium dioxide by sulfur doping. Applied Physics Letters,2002,81(3):454~456
    [63]T. Lindgren, J.M. Mwabora, E. Avendano, et al. Photoelectrochemical and optical properties of nitrogen doped titanium dioxide films prepared by reactive DC magnetron sputtering. The Journal of Physical Chemistry B,2003,107(24):5709~5716
    [64]M. Okada, Y. Yamada, P. Jin, et al. Fabrication of multifunctional coating which combines low-e property and visible-light-responsive photocatalytic activity. Thin Solid Films,2003, 442(1-2):217~221
    [65]S. Z. Chen, P.Y. Zhang, D.M. Zhuang, et al. Investigation of nitrogen doped TiO2 photocatalytic films prepared by reactive magnetron sputtering. Catalysis Communications,2004, 5(11):677~680
    [66]GR. Torres, T. Lindgren, J. Lu, et al. Photoelectrochemical study of nitrogen-doped titanium dioxide for water oxidation. The Journal of Physical Chemistry B,2004,108(19):5995~6003
    [67]X.B. Chen, C. Burda, Photoelectron spectroscopic investigation of nitrogen-doped titania nanoparticles. Journal of Physical Chemistry B,2004,108(40):15446~15449
    [68]Z.C. Bi, H.T. Tien, Photoproduction of hydrogen by dye-sensitized systems. International Journal of Hydrogen Energy,1984,9(8):717~722
    [69]J.M. Rehm, G.L. Mclendon, Y. Nagasawa, et al. Femtosecond electron-transfer dynamics at a sensitizing dye-semiconductor (TiO2) interface. Journal of Physical Chemistry,1996,100(23): 9577~9578
    [70]R. Argazzi, N.Y.M. Iha, H. Zabri, et al. Design of molecular dyes for application in photoelectrochemical and electrochromic devices based on nanocrystalline metal oxide semiconductors. Coordination Chemistry Reviews,2004,248(13-14):1299~1316
    [71]I. Martini, J.H. Hodak, G.V. Hartland, Effect of water on the electron transfer dynamics of 9-anthracenecarboxylic acid bound to TiO2 nanoparticles:demonstration of the Marcus inverted region. Journal of Physical Chemistry B,1998,102(3):607~614
    [72]K. Gurunathan, Photobiocatalytic production of hydrogen using sensitized TiO2-MV2+ system coupled rhodopseudomonas capsulata. Journal of Molecular Catalysis,2000,156(1-2): 59~67
    [73]B. Burfeindt, T. Hannappel, W. Storck, et al. Measurement of temperature-independent femtosecond interfacial electron transfer from an anchored molecular electron donor to a semiconductor as acceptor. Journal of Physical Chemistry,1996,100(41):16461~16465
    [74]A.K. Jana, Solar cells based on dyes. Journal of Photochemistry and Photobiology A,2000, 132(1):1~17
    [75]A.S. Polo, M.K. Itokazu, N.Y.M. Iha, Metal complex sensitizers in dye-sensitized solar cells. Coordination Chemistry Reviews,2004,248(13-14):1343~1361
    [76]R. Abe, K. Sayama, H. Arakawa. Efficient hydrogen evolution from aqueous mixture of I-and acetonitrile using a merocyanine dye-sensitized Pt/TiO2 photocatalyst under visible light irradiation. Chemical Physics Letters,2002,362(5-6):441~444
    [77]S.G. Yan, J.T. Hupp, Semiconductor-based interfacial electron-transfer reactivity:decoupling kinetics from pH-dependent band energetics in a dye-sensitized titanium dioxide/aqueous solution system. Journal of Physical Chemistry,1996,100(17):6867~6870
    [78]T. Hannappel, B. Burfeindt, W. Storck, Measurement of ultrafast photoinduced electron transfer from chemically anchored Ru-dye molecules into empty electronic states in a colloidal anatase TiO2 film. Journal of Physical Chemistry B,1997,101(35):6799-6802
    [79]Z.L. Jin, X.J. Zhang, Y.X. Li, et al.5.1%apparent quantum efficiency for stable hydrogen generation over eosin-sensitized CuO/TiO2 photocatalyst under visible light irradiation. Catalysis Communications,2007,8(8):1267~1273
    [80]K.B. Dhanalakshmi, S. Latha, S. Anandan, et al. Dye sensitized hydrogen evolution from water. International Journal of Hydrogen Energy,2001,26(7):669~674
    [81]T.V. Nguyen, S.S. Kim, O.B. Yang, Water decomposition on TiO2-SiO2 and RuS2/TiO2-SiO2 photocatalysts:the effect of electronic characteristics. Catalysis Communications,2004,5(2): 59~62
    [82]D. Li, H. Haneda, N. Ohashi, et al. Synthesis of nanosized nitrogen-containing MOx-ZnO (M=W, V, Fe) composite powders by spray pyrolysis and their visible-light-driven photocatalysis in gasphase acetaldehyde decomposition. Catalysis Today,2004,93-95:895-901
    [83]V. Keller, F. Garin, Photocatalytic behavior of a new composite ternary system: WO3/SiC-TiO2 effect of the coupling of semiconductors and oxides in photocatalytic oxidation of methylethylketone in the gas phase. Catalysis Communications,2003,4(8):377-383
    [84]M.G. Kang, H.E. Han, K.J. Kim, Enhanced photodecomposition of 4-chlorophenol in aqueous solution by deposition of CdS on TiO2. Journal of Photochemistry and Photobiology A, 1999,125(1-3):119~125
    [85]R.A. Doong, C.H. Chen, R.A. Maithreepala, et al. The influence of pH and cadmium sulfide on the photocatalytic degradation of 2-chlorophenol in titanium dioxide suspensions. Water Research,2001,35(12):2873~2280
    [86]W.W. So, K.J. Kim, S.J. Moon, Photo-production of hydrogen over the CdS-TiO2 nano-composite particulate films treated with TiCl4. International Journal of Hydrogen Energy, 2004,29(3):229~234
    [87]G.C. De, A.M. Roy, S.S. Bhattacharya, Effect of n-Si on the photocatalytic production of hydrogen by Pt-loaded CdS and CdS/ZnS catalyst. International Journal of Hydrogen Energy, 1996,21(1):19~23
    [88]K. Tennakone, J. Bandara, Photocatalytic activity of dye-sensitized tin(IV) oxide nanocrystalline particles attached to zinc oxide particles:long distance electron transfer via ballistic transport of electrons across nanocrystallites. Applied Catalysis A,2001,208(1-2): 335-341
    [89]Y.X. Li, Y.Z. Me, S.Q. Peng, et al. Photocatalytic hydrogen generation in the presence of chloroacetic acids over Pt/TiO2. Chemosphere,2006,63(8):1312~1318
    [90]A. Kudo, Y. Miseki, Heterogeneous photocatalyst materials for water splitting. Chemical Society Reviews,2009,38(1):253~278
    [91]J.G. Yu, J. Zhang, M. Jaroniec, Preparation and enhanced visible-light photocatalytic H2-production activity of CdS quantum dots-sensitized Zn1-xCdxS solid solution. Greem Chemistry,2010,12(9):1611~1614
    [92]J.G Yu, L.F. Qi, M. Jaroniec, Hydrogen production by photocatalytic water splitting over Pt/TiO2 nanosheets with exposed (001) facets. Journal of Physical Chemistry C,2010,114(30): 13118~13125.
    [93]J.G. Yu, J.C. Yu, M.K.P. Leung, et al. Effects of acidic and basic hydrolysis catalysts on the photocatalytic activity and microstructures of bimodal mesoporous titania. Journal of Catalysis, 2003,217(1):69~78
    [94]J.G. Yu, W.G. Wang, B. Cheng, Synthesis and enhanced photocatalytic activity of a hierarchical porous flowerlike p-n junction NiO/TiO2 photocatalyst. Chemistry-AN Asian Journal, 2010,5(12):2499~2506
    [95]T. Sreethawong, Y. Suzuki, S. Yoshikawa, Photocatalytic evolution of hydrogen over mesoporous TiO2 supported NiO photocatalyst prepared by single-step sol-gel process with surfactant template. International Journal of Hydrogen Energy,2005,30(10):1053~1062
    [96]S.P. Xu, D.D. Sun, Significant improvement of photocatalytic hydrogen generation rate over TiO2 with deposited CuO. International Journal of Hydrogen Energy,2009,34(15):6096~6104
    [97]D.W. Jing, Y.J. Zhang, L.J. Guo, Study on the synthesis of Ni doped mesoporous TiO2 and its photocatalytic activity for hydrogen evolution in aqueous methanol solution. Chemical Physics Letters,2005,415(1-3):74~78
    [98]J.S. Jang, S.H. Choi, D.H. Kim, et al. Enhanced photocatalytic hydrogen production from water-methanol solution by nickel intercalated into titanate nanotube. Journal of Physical Chemistry C,2009,113(20):8990~8996
    [99]J.G. Yu, B. Wang, Effect of calcination temperature on morphology and photoelectrochemical properties of anodized titanium dioxide nanotube arrays. Applied Catalysis B,2010,94(3-4): 295-302
    [100]J.G. Yu, S.W. Liu, M.H. Zhou, Enhanced photocalytic activity of hollow anatase microspheres by Sn4+ incorporation. Journal of Physical Chemistry C,2008,112(6):2050-2057
    [101]H. Yu, H. Irie, K. Hashimoto, Conduction band energy level control of titanium dioxide: toward an efficient visible-light-sensitive photocatalyst. Journal of the American Chemical Society,2010,132(20):6898~6899
    [102]H. Irie, K. Kamiya, T. Shibanuma, et al. Visible light-sensitive Cu(Ⅱ)-grafted TiO2 photocatalysts:activities and x-ray absorption fine structure analyses. Journal of Physical Chemistry C,2009,113(24):10761~10766
    [103]X. Qiu, M. Miyauchi, H. Yu, et al. Visible-light-driven Cu(Ⅱ)-(Sr1-yNay)(Ti1-xMox)O3 photocatalysts based on conduction band control and surface ion modification. Journal of the American Chemical Society,2010,132(43):15259~15267
    [104]H. Irie, S. Miura, K. Kamiya, et al. Efficient visible light-sensitive photocatalysts:grafting Cu(II) ions onto TiO2 and WO3 photocatalysts. Chemical Physics Letters,2008,457(1-3): 202-205
    [105]J.G. Yu, G.H. Wang, B. Cheng, et al. Effects of hydrothermal temperature and time on the photocatalytic activity and microstructures of bimodal mesoporous TiO2 powders. Applied Physics B,2007,69(3-4):171~180
    [106]J.G. Yu, L.J. Zhang, B. Cheng, et al. Hydrothermal preparation and photocatalytic activity of hierarchically sponge-like macro-/mesoporous titania. Journal of Physical Chemistry C,2007, 111(28):10582~10598
    [107]J.G. Yu, J.J. Fan, K.L. Lv, Anatase TiO2 nanosheets with exposed (001) facets:improved photoelectric conversion efficiency in dye-sensitized solar cells. Nanoscale,2010,2(10): 2144~2149
    [108]J.G. Yu, J. Zhang, A simple template-free approach to TiO2 hollow spheres with enhanced photocatalytic activity. Dalton Transactions,2010,39(25):5860~5867
    [109]S.W. Liu, J.G. Yu, M. Jaroniec, Tunable photocatalytic selectivity of hollow TiO2 microspheres composed of anatase polyhedra with exposed{001} facets. Journal of the American Chemical Society,2010,132(34):11914~11916
    [110]M.H. Zhou, J.G. Yu, H.G. Yu, Effects of urea on the microstructure and photocatalytic activity of bimodal mesoporous titania microspheres. Journal of Molecular Catalysis A,2009, 313(1-2):107~113
    [111]J.F. Moulder, W.F. Stickle, P.E. Sobol, et al. Handbook of X-ray Photoelectron Spectroscopy, Physical Electronics, Inc.:Eden Prairie, MN,1992
    [112]Y. Takahashi, T. Tatsuma, Oxidative energy storage ability of a TiO2-Ni(OH)2 bilayer photocatalyst. Langmuir,2005,21(26):12357~12361
    [113]I. Porqueras, E. Bertran, Eelctrochromic behaviour of nickel oxide thin films deposited by thermal evaporation. Thin Solid Films,2001,398:41~44
    [114]F.B. Li, X.Z. Li, Photocatalytic properties of gold/gold ion-modified titanium dioxide for wastewater treatment. Applied Catalysis A,2002,228(1-2):15-27
    [115]J.C. Yu, J.G Yu, W.K. Ho, et al. Effects of F- doping on the photocatalytic activity and microstructures of nanocrystalline TiO2 powders. Chemistry of Materials,2002,14(9): 3808-3816
    [116]J.G. Yu, L. Yue, S.W. Liu, et al. Hydrothermal preparation and photocatalytic activity of mesoporous Au-TiO2 nanocomposite microspheres. Journal of Colloid and Interface Science, 2009,334(1):58~64
    [117]J.G. Yu, J.R. Ran, Facile preparation and enhanced photocatalytic H2-production activity of Cu(OH)2 cluster modified TiO2. Energy & Environmental Science,2011,4(4):1364~1371
    [118]J.G Yu, T.T. Ma, S.W. Liu, Enhanced photocatalytic activity of mesoporous TiO2 aggregates by embedding carbon nanotubes as electron-transfer channel. Physical Chemistry Chemical Physics,13(8):3491~3501
    [119]W.K. Ho, J.C. Yu, J. Lin, et al. Preparation and photocatalytic behavior of MoS2 and WS2 nanocluster sensitized TiO2. Langmuir,2004,20(14):5865~5869
    [120]J.G Yu, X.J. Zhao, Q.N. Zhao, Effect of surface structure on photocatalytic activity of TiO2 thin films prepared by sol-gel method. Thin Solid Films,2000,379(1-2):7-14
    [121]B. ORegan, M. Gratzel, A low-Cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature,1991,353:737~740
    [122]M. Ksibi, S. Rossignol, J.M. Tatibouet, Synthesis and solid characterization of nitrogen and sulfur-doped TiO2 photocatalysts active under near visible light. Materials Letters,2008,62(26): 4204~4206
    [123]S.I In, YD. Hou, B.L. Abrams, et al. Controlled directional growth of TiO2 nanotubes. Journal of the Electrochemical Society,2010,157:E69-E74
    [124]J.G. Yu, Y.R. Su, B. Cheng, Template-free fabrication and enhanced photocatalytic activity of hierarchical macro-/mesoporous titania. Advanced Functional Materials,2007,17(12): 1984~1990
    [125]V. Gombac, L. Sordelli, T. Montini, et al. CuOx-TiO2 photocatalysts for H2 production from ethanol and glycerol solutions. Journal of Physical Chemistry A,2010,114(11):3916~3925
    [126]J.H. Park, S. Kim, A.J. Bard, Novel carbon-doped TiO2 nanotube arrays with high aspect ratios for efficient solar water splitting. Nano Letters,2006,6(1) 24~28
    [127]M.H. Zhou, J.G Yu, S.W. Liu, et al. Spray-hydrolytic synthesis of highly photoactive mesoporous anatase nanospheres for the photocatalytic degradation of toluene in air. Applied Catalysis B,2009,89(1-2):160~166
    [128]P.V. Kamat, Meeting the clean energy demand:nanostructure architectures for solar energy conversion. Journal of Physical Chemistry C,2007,111(7):2834~2860
    [129]T. Sreethawong, S. Yoshikawa, Enhanced photocatalytic hydrogen evolution over Pt supported on mesoporous TiO2 prepared by single-step sol-gel process with surfactant template. International Journal of Hydrogen Energy,2006,31(6):786~796
    [130]K. Sayama, H. Arakawa, Effect of carbonate salt addition on the photocatalytic decomposition of liquid water over Pt-TiO2 catalyst. Journal of the Chemical Society, Faraday Transactions,1997,93(1):1647-1654
    [131]A. Galinska, J. Walendziewski, Photocatalytic water splitting over Pt-TiO2 in the presence of sacrificial reagents. Energy Fuels,2005,19(3):1143~1147
    [132]A. Patsoura, D.I. Kondarides, X.E. Verykios, Photocatalytic degradation of organic pollutants with simultaneous production of hydrogen. Catalysis Today,2007,124(3-4):94~102
    [133]J. Bandara, C.P.K. Udawatta, C.S.K. Rajapakse, Highly stable CuO incorporated TiO2 catalyst for photocatalytic hydrogen production from H2O. Photochemistry and Photobiology Sciences,2005,4(11):857~861
    [134]M. Hara, T. Kondo, K. Domen, et al. Cu2O as a photocatalyst for overall water splitting under visible light irradiation. Chemical Communications,1998,3:357~358
    [135]T. Sreethawong, S. Yoshikawa, Comparative investigation on photocatalytic hydrogen evolution over Cu-, Pd-, and Au loaded mesoporous TiO2 photocatalysts. Catalysis Communications,2005,6(10):661~668
    [136]N.L. Wu, M.S. Lee, Enhanced TiO2 photocatalysis by Cu in hydrogen production from aqueous methanol solution. International Journal of Hydrogen Energy,2004,29(15):1601~1605
    [137]H.J. Choi, M. Kang, Hydrogen production from methanol/water decomposition in a liquid photosystem using the anatase structure of Cu loaded TiO2. International Journal of Hydrogen Energy,2007,32(16):3841~3848
    [138]V.M. Daskalaki, D.I. Kondarides, Efficient production of hydrogen by photo-induced reforming of glycerol at ambient conditions. Catalysis Today,2009,144(1-2):75~80
    [139]D.I. Kondarides, V.M. Daskalaki, A. Patsoura, et al. Hydrogen production by photo-induced reforming of biomass components and derivatives at ambient conditions. Catalysis Letters,2008, 122(1-2):26~32
    [140]M. Bowker, P.R. Davies, L.S. Al-Mazroai, Photocatalytic reforming of glycerol over gold and palladium as an alternative fuel source. Catalysis Letters,2009,128(3~4):253~255
    [141]W.F. Zhang, M.S. Zhang, Z. Yin, et al. Photoluminescence in anatase titanium dioxide nanocrystals. Applied Physics B,2000,70(2):261~265
    [142]J.G. Yu, X.J. Zhao, Q.N. Zhao, Photocatalytic activity of nanometer TiO2 thin films prepared by the sol-gel method. Materials Chemistry and Physics,2001,69(1-3):25~29
    [143]J.G. Yu, J.F. Xiong, B. Cheng, et al. Fabrication and characterization of Ag-TiO2 multiphase nanocomposite thin films with wnhanced photocatalytic activity. Applied Catalysis B,2005, 60(3-4):211~221
    [144]B. Cheng, Y. Le, J.G. Yu, Preparation and enhanced photocatalytic activity of Ag@TiO2 core-shell nanocomposite nanowires. Journal of Hazardous Materials,2010,177(1-3):971~977

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700