朝鲜碱茅P5CS基因的克隆及其转化紫花苜蓿的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究利用RT-PCR的方法在朝鲜碱茅(Puccinellia chinampoensis)中分离到一个P5CS的同源新基因,命名为:PuP5CS(Genebank:HQ637435),并通过农杆菌介导法将其转入公农2号紫花苜蓿中,以期改良其耐盐性,结果如下:
     表达分析的结果显示,PuP5CS基因在朝鲜碱茅的根部和叶片均有表达,但是根部的表达量较低,叶片中的表达量较高。在根部,PuP5CS基因受盐胁迫、碱胁迫和盐碱复合胁迫诱导的表达量比受干旱胁迫诱导的表达量要高,在叶片中4种胁迫处理均可以诱导PuP5CS基因显著表达,但变化规律不同。
     对PuP5CS基因的亚细胞定位的结果显示,其主要表达在细胞膜和细胞核中。
     在对转基因烟草进行耐盐性和抗寒性检测中,显示正义转基因烟草在受到高盐胁迫和低温胁迫时,能够明显提高其脯氨酸积累,其叶绿素含量、可溶性糖含量的增长幅度也显著高于对照。而反义转基因烟草在受到非生物胁迫的过程中,其脯氨酸积累、可溶性糖含量等都低于对照。表明PuP5CS基因不仅影响了烟草体内脯氨酸的合成过程,而且还参与了体内可溶性糖、丙二醛、叶绿素a和叶绿素b的代谢调控,从增加渗透调节物质,缓解膜质氧化反应,增强光合作用等几个方面在整体上提高了烟草的抗逆性。
     建立了用于公农2号(Medicago sativa L.cv.Gongnong No.2)紫花苜蓿的组织培养高频再生体系。选择子叶作为外植体材料,UM培养基+2mg/L2,4-D+0.25mg/L KT为愈伤诱导培养基,UM培养基+1.2mg/L KT作为分化培养基,1/2MS培养基为生根培养基。共培养时间为3d,转移至含500mg/L头孢霉素的愈伤诱导培养基上进行培养,20d后转至分化培养基上,其中含1.2mg/L KT、500mg/L头孢霉素、2mg/L草铵膦。约20d~40d后,分化出小植株,转入1/2MS+1mg/L草铵膦+500mg/L Cef培养基上,生根后移栽至蛭石:土壤为1:1的混合土壤中,得到了草铵膦阳性植株。经PCR和RT-PCR鉴定,PuP5CS基因已整合至再生植株的基因组上。
In this study, a new P5CS homologous genes was separated by RT-PCR method in Puccinelliachinampoensis, named: PuP5CS (from Genebank: HQ637435). And introduced it into Medicago sativaL.cv.Gongnong No.2by Agrobacterium-mediated genetic transformation, in order to gain the newbreeding of alfalfa.The main result were as following:
     Semi-quantitative RT-PCR results show that in the roots and leaves, the gene PuP5CS is expressed,but the expression level in the root of the PuP5CS gene is lower than that in the leaves. In the leaves,PuP5CS gene was expressed higher under salt stress, alkaline stress and salinization combined stress,compares to the drought stress. In the leaves, the four kinds of stress can induce PuP5CS geneexpression with different pattern.
     The subcellular localization result shows that PuP5CS genes are mainly expressed in the cellmembrane and nucleus.
     When testing the salt tolerance and cold resistance of transgenic tobacco, the overexprssiontransgenic tobacco plants under low high salt stress and temperature stress can significantly improve itsproline accumulation, chlorophyll content and soluble sugar content compares to the control, whilethese in antisense transgenic tobacco plants under abiotic stress is relatively lower than the control.According to the above, it can be concluded that PuP5CS gene affects not only the tobacco prolinesynthesis process, but also participates in the soluble sugar, MDA, chlorophyll a and chlorophyll b.From the increased osmotic adjustment substances alleviate membranous oxidation, enhancedphotosynthesis and other aspects, PuP5CS gene increases the overall stress resistance of tobacco.
     An efficient regeneration method of Medicago sativa L. cv. Gongnong No.2has been estanblished.The cotyledon was selected as explant for induction. Select the UM medium+2,4-D2mg/L+KT0.25mg/L as the callus induction medium,UM medium containing1.2mg/L KT for regeneration and1/2MS medium as the rooting medium. After co-cultured for3days, the cotyledon was then transferred onthe UM medium containing2,4-D, KT20days, then transferred on the embruogenesis inductionmedium, which contains1.2mg/L KT,2mg/L glufosinate,500mg/L cefotaxime. After20-40days,shoots grew up from the surface of the calli, then transferred on the1/2MS medium which contains1mg/L glufosinate,500mg/L cefotaxime, after rooting transplant the shoots to vermiculite: soil1:1mixture soil. By using PCR and RT-PCR validation, the result shows that the PuP5CS gene has beenintegrated into the genome of the regenerated plants.
引文
1.曹丽,孙振元,义鸣放,等.辛海波多年生黑麦草P5CS基因的cDNA克隆、表达及亚细胞定位[J].园艺学报,2010,37(9):1477-1484.
    2.陈善福,舒庆尧.植物耐干旱胁迫的生物学机理及其基因工程研究进展[J].植物学通报,1999,16(5):555-560.
    3.陈吉宝,普通菜豆P5CS基因的克隆,功能验证及单核苷酸多态性:[博士学位论文].北京:中国农业科学院,2008.
    4.陈月艳,孙国荣,李景信.Na2CO3胁迫对星星草种子萌发过程中水分吸收及膜透性的影响[J].草业科学,1997,14(2):27-30.
    5.程玉祥,星星草质膜型Na+/H+逆向转运蛋白基因的克隆和特性分析[J].植物生理学通讯,2008,44(1):59-64.
    6.方允中,郑荣梁.自由基生物学的理论与应用[M].北京:科学出版社,2002:30-31.
    7.付顺华.植物转基因研究进展[J].云南林业科技,2003,(1):69-74.
    8.顾垒,毕玉芬.转基因苜蓿研究的现状和前景[J].草原与草坪,2004,32(1):17-20.
    9.韩利芳,张玉发.烟草MnSOD基因在保定苜蓿中的转化[J].生物技术通报,2004,(1):39-43.
    10.韩素英,张守攻,汪泉,等.小叶杨Δ-1-吡咯琳-5-羧酸合成酶(P5CS)基因克隆及在杂种落叶松中的转化[J].生物技术通报,2006,(3):99-92.
    11.胡清泉,玉永雄.转基因苜蓿研究进展[J].中国草地,2005,27(5):58-62.
    12.黄绍兴,吕德扬,等.紫花苜蓿原生质体转基因植株再生[J].科学通报,1991,(17):1345-1347.
    13.金太成.大豆DREB基因GmDREB1改良紫花苜蓿耐盐性的研究:[博士学位论文].长春:东北师范大学.
    14.李瑞年,李学森,朱环元,等.紫花苜蓿对准噶尔盆地西北缘土质荒漠改良效果初报[J].草食家畜,2004,(2):54-56.
    15.李艳波,陈月艳,孙国荣等.盐碱胁迫下星星草种子萌发过程中氮代谢的初步研究[J].植物研究,1999,19(2):153-158.
    16.刘香萍,李国良,迟文峰,等.紫花苜蓿耐盐生理的初步研究[J].现代农业科技,2006,(12):6-7.
    17.刘延吉,张蕾,田晓艳.盐胁迫对碱茅幼苗叶片内源激素、NAD激酶及Ca2+-ATPase的效应[J].草业科学,2008,25(4):51-54.
    18.刘艳坤.农杆菌介导的acdS基因转化烟草和中苜3号的研究:[硕士学位论文].北京:中国农业科学院,2009.
    19.刘艳芝,韦正乙,邢少辰等.HAL1基因转化苜蓿再生植株及其耐盐性[J].吉林农业科学,2008,33(6):21-24.
    20.鲁燕,徐兆师,张瑞越,等.W6基因的过表达提高转基因烟草的耐盐性[J].作物学报,2008,3(46):984-990.
    21.马晖玲.紫花苜蓿抗旱耐盐碱转基因植株选育的研究[博士学位论文].兰州:甘肃农业大学,2004.
    22.任伟,王志锋,徐安凯.碱茅耐盐碱基因克隆研究进展[J].草业学报,2010,19(5):260-266.
    23.石德成,殷丽娟.盐与碱对星星草胁迫作用的差异[J].植物学报,1993,35(2):144-149.
    24.汪开治. Arcadia公司推出转基因耐盐育种技术[J].生物技术通报,2005,6:50.
    25.王锁民,朱兴运,赵银.盐胁迫对拔节期碱茅游离氨基酸成分及脯氨酸等含量的影响[J].草业学报,1994,3(3):22-26.
    26.王涌鑫.根癌农杆菌介导的DREB1C基因转化苜蓿的研究:[博士学位论文].北京:中国农业科学院,2008.
    27.韦存虚,王建军,王建波.Na2CO3胁迫对星星草叶肉细胞超微结构的影响[J].生态学报,2006,26(1):108-114.
    28.吴建慧,高野哲夫,柳参奎.碱茅(Puccinellia tenuifolra)Put-Cu/Zn-SOD基因的克隆及在酵母中的表达[J].基因组学与应用生物学,2009,28(1):10-14.
    29.吴青年,徐安凯.碱茅草改良碱斑草场综合技术[J].中国农业科学,1987,20(1):92-92.
    30.徐安凯.“吉农朝鲜碱茅”与“三北”地区盐碱地的改良[J].牧草与饲料,2007,1(2):3-5.
    31.徐安凯.碱茅发芽生理及恒温发芽选育效果研究:[硕士学位论文].兰州:甘肃农业大学,1995.
    32.徐春波,米福贵,王勇.转基因冰草植株耐盐性研究[J].草地学报,2006,14(1):20-23.
    33.阎顺国,朱兴运,郭树林.碱茅草对土壤盐分动态及盐量平衡的影响[J].水土保持学报,1990,4(1):44-55.
    34.晏石娟,马晖玲,曹志忠.紫花苜蓿抗旱耐盐碱转基因抗性苗耐盐性研究[J].2006,41(5):91-94.
    35.杨成民,王宏芝,孙振元,等.利用基因枪共转化法获得转bar与P5CS基因黑麦草[J].草地学报,2005,13(1):34-38.
    36.杨春雪,申家恒.星星草受精作用及其胚与胚乳早期发育的观察[J].武汉植物学研究,2004,22(2):91-97.
    37.杨青川,康俊梅,孙彦等.紫花苜蓿耐盐新种质一般配合力分析与轮回选择[J].草地学报,200614(1):4-8.
    38.杨铮,钟鸣,郭志富.盐胁迫下朝鲜碱茅的甜菜碱醛脱氢酶活性变化及其基因保守区的克隆[J].植物生理学通讯,2007,4(3):430-434.
    39.于雪飞,杨传平.碱茅(Puccinellia tenuiflora) Put-R40g3基因的分离及其与逆境的应答[J].分子植物育种,2009,7(2):251-256.
    40.张春宝,赵洪锟,李启云,等.野生大豆Δ1-吡咯琳-5-羧酸合成酶(P5CS)基因的克隆与序列分析[J].大豆科学,2008,27(6):915-920.
    41.张晓磊.星星草PtDHAR及PtFer基因的克隆与表达分析:[硕士学位论文].黑龙江:东北林业大学,2008.
    42.张一弓,张丽静,傅华.植物维生素E合成酶基因克隆及其逆境生理研究进展[J].草业学报,2009,18(5):235-242.
    43.郑红梅.转基因苜蓿的研究进展[J].四川草原,2005,4:12-14.
    44.支立峰等.P5CS转化水稻细胞系的研究.湖北师范学院学报(自然科学版)[J],2005,4:39-51.
    45.中国饲用植物志编辑委员会编.中国饲用植物志(第一卷)[M].北京:农业出版社,1978,21-22.
    46.钟鸣,张佳,郭志富.朝鲜碱茅BADH基因3′端及5′端部分序列的扩增[J].华北农学报,2009,24(3):46-50.
    47.周精华等,苎麻Δ1-吡咯啉-5-羧酸合成酶(P5CS)基因的克隆和表达分析:作物学报2012,38(3):173-179.
    48.朱宇旌,张勇,胡自治,阎顺国.小花碱茅根适应盐胁迫的显微结构研究[J].中国草地,2001,23(1):37-40.
    49. Adams E,and Frank L.Metabolism of proline and the hydroxyprolines[J].Annu Rev Biochem,1980,49,1005-1061.
    50. Ahmad I, Larher F, Stewart GR.A compatible osmotic solute in Plantago maritima[J].NewPhytol,1979,82:671-678.
    51. Aida HS, Radhia GB, Amira B. Over expression of Δ1-pyrroline-5-carboxylate synthetaseincreases proline production and confers salt tolerance in transgenic potato plants[J]. Plant Science,2005,169(4):74-752.
    52. Alia, Pardha Saradhi P, Prasanna Mohanty.Involvement of proline in protecting thylakoidmembranes against free radical-induced photodamage[J].J Photochem Photobiol,1997,38:253-257.
    53. Ardie SW,Xie L,Takahashi R.Cloning of a high-affinity K+transporter gene PutHKT2;1fromPuccinellia tenuiflora and its functional comparison with OsHKT2;1from rice in yeast andArabidopsis[J].Journal of Experimental Botany,2009,12:1-12.
    54. Armengaud P, Thiery L, Buhot N, et al.Transcriptional regulation of proline biosynthesis inMedicago truncatula reveals developmental and environmental specific features[J]. Physiol Plant,2004,120:442-450.
    55. Bohnert HJ and Jensen RG.Strategies for engineering water stress tolerance in plants[J].TrendsBiotechnol,1996,14:89-97.
    56. Bryan J.K.A comprehensive treatise.In:The Biochemistry of Plants,Miflin,B.J.and Lea,P.J.(eds),San Diego:Academic Press,1990,16:197-282.
    57. Chadalavada SV,et al.Proline–protein interactions:Protection of structural and functional integrityof M4lactate dehydrogenase[J].Biochem Biophys Res Comm,1994,201(2):957-963.
    58. Chen JB, Wang SM, Jing RL,et al.Cloning the PvP5CS gene from common bean (Phaseolusvulgaris) and its expression patterns under abiotic stresses[J]. Journal of Plant Physiology,2009,166(1):12-9.
    59. Delauney AJ, Verma DPS. Proline biosynthesis and osmo-regulation in plants[J]. The Plant Journal,1993,4(2):215-223.
    60. Delauney AJ,Hu CA,Kisher PB,et al.Cloning of ornithine aminotransferase cDNA from Vignaaconitifolia by transcomplementation in Escherichia coli and regulation of proline biosynthesis[J].JBiol Chem,1993,268:18673-18678.
    61. Denchev PD, Velcheva MR, Dragijska R, et al.Somatic embryogenesis in Medicago[J].Biotechnology and Biotechnological Equipment,1990,4:66-70.
    62. Ginzberg I, Stein H, Kapulnik Y, et al.Isolation and characterization of two different cDNAs ofΔ1-pyrroline-5-carboxylate synthetase in alfalfa transcriptionally induced upon salt stress[J]. PlantMolecular Biology,1998,38:755-764.
    63. Guenriot ML,Yi Y.Iron: Nutritions, Noxious and Not Readily Avaliable[J].Plant Physiology,1994,104(33):815-820.
    64. Hamilton EW and Heckathorn SA.Mitochondrial adaptations to NaCl,Complex I is protected byantioxidants and small heat shock proteins,whereas complex II is protected by proline andbetaine[J].Plant Physiology,2001,126:1266-1274.
    65. Han KH and Hwang CH.Salt tolerance enhanced by transformation of a P5CS gene in carrot[J]. JPlant Biotechnol,2003,5:149-153.
    66. Hare PD and Cress WA.Tissue specific accumulation of transcript encoding Δ1-pyrroline-5-carboxylate reductase in Arabidopsis thaliana[J].Plant Growth Regul,1996,19:249-256.
    67. Hare PD,Cress WA,Van Staden.Dissecting the roles of osmolyte accumulation in plants.Plant CellEnvironment[J],1998,21:535-553.
    68. Hong Z, Lakkineni K, Zhang Z, et al.Removal of feedback inhibition of Δ1-pyrroline-5-carbo--xylate synthetase results in increased proline accumulation and protection of plants from osmoticstress[J]. Plant Physiology,2000,122:1129-1136.
    69. Hu CA, Delauney A, Verma DS. A bifunctional enzyme (Δ1-pyrroline-5-carboxylate synthetase)catalyzes the first two steps in proline biosynthesis in plants[J]. Proc Natl Acad Sci,1992,89:9354-9358.
    70. Hu CA. Cloning, characterization and expression of cDNAs encoding human Δ1-pyrroline-5-carboxylate dehydrogenase[J]. J Biol Chem,1996,271:9795-9800.
    71. Hu CA, Delauney AJ, Verma DP.A bifunctional enzyme(Δ1-pyrroline-5-carboxylatesynthetase)catalyzes the first two steps in proline biosynthesis in plants[J].Proc Natl Acad SciUSA,1992,89:9354-9358.
    72. Igarashi Y, Yoshiba Y, Sanada Y, et al.Characterization of the gene for Δ1-pyrroline-5-carboxylatesynthetase andcorrelation between the expression of the gene and salt tolerance in Oryza sativa[J].Plant Molecular Biology,1997,33:857-865.
    73. Igwrash. Charaterization of the gene for pyrroline carboxlate synthetase and correction bet weenthe expression of the gene and salt tolerance in Oryza sativa L[J]. Plant Molecular Biology,1997,33(5):857-865.
    74. Kami J, Velaaquez VB, Debouck DG,et al.Identification of presumed ancestral DNA sequences ofphaseolin in Phaseolus vulgaris[J]. Proc Natl Acad Sci USA,1995,92:1101-1104.
    75. Kavi Kishor PB, Sangam S, Amrutha RN, et al. Regulation of proline biosynthesis, degradation,uptake and transport in higher plants: Its implications in plant growth and abiotic stress to lerance[J].Current Science,2005,88:424-438.
    76. Khedr AH,Abbas MA,Wahid AA,et al.Proline induces the expression of salt-stress-responsiveproteins and may improve the adaptation of Pancratium maritimum L. to salt stress[J].Journal ofExperiment Botany,2003,54:2553-2562.
    77. Kishor PBK, Hong ZL, Miao GH,et al.Over expression of Δ1-pyrroline-5-carboxylate synthetaseincreases proline overproduction and confers osmtolerance in transgenic plants[J]. PlantPhysiology,1995,108:1387-1394.
    78. Kishor PBK, Sangam S, Amrutha RN,et al.Regulation of proline biosynthesis, degradation,uptakeand transport in higher plants: Its implications in plant growth and abiotic stress tolerance[J].Current Science,2005,88(3):424-438.
    79. Kohl DH,Kennelly EJ,Zhu YX,et al.Proline accumulation, nitrogenase(C2H2reducing)activity andactivities of enzymes related to proline metabolism in drought stressed soybean nodules[J]. J ExpBot,1991,42:831-837.
    80. Liu H,Zhang XX,Takan T.Characterization of a PutCAX1gene from Puccinellia tenuiflora thatconfers Ca2+and Ba2+tolerance in yeast[J].Biochemieal and Bio Physieal ResearchCommunieations,2009,383:392-396.
    81. Mansour M. Physiological attributes associated with early season against NaCl stress[J]. PlantPhysiology and Biochemistry[J],1998,39(10):1039-1044.
    82. McKersie BD, Chen YR,Beus M,et al. Superoxide Dismutase Enhances Tolerance of FreezingStress in Transgenic Alfalfa (Medicago stativa L.)[J]. Plant Physiology,1993,103:1155-1163.
    83. Mestichelli LJ, Gupta RN, Spenser ID.The biosynthetic route from ornithine to proline[J].J BiolChem,1979,254:640-647.
    84. Oscar Hita, Piedad Gallego, Nieves Villalobos,et al..Improvement of somatic embryogenesis inMedicago arborea[J]. Plant Cell, Tissue and Organ Culture,2003,72:13-18.
    85. Peng YH,Zhu YF,Mao YQ,Alkali grass resists salt stress through high [K+] and an endodermisbarrier to Na+[J].Journal of Experimental Botany,2004,55:939-949.
    86. Rayapati PJ and Stewart C R.Solubilization of a proline dehydrogenase from maize(Zea maysL.)mitochondria. Plant Physiology,1991,95:787-791.
    87. Savoure A, Jaoua S, Hua XJ,et al.Isolation, characterization, and chromosomal location of a geneencoding the delta-1-pyrroline-5-carboxylate synthetase in Arabidopsis thaliana[J].FEBS Lett,1995,372:13-19.
    88. Sawahel WA and Hassan AH.Generation of transgenic wheat plants producing high levels of theosmoprotectant proline[J].Biotechnol Lett,2002,24:721-725.
    89. Schat H, Shanti S,Sharma,et al.Heavy metal induced accumulation of free proline in ametal-tolerant and a nontolerant ecotype of Silene vulgaris.Physiol Plant,1997,101:477-482.
    90. Sivakumar P,Sharmila P,Pardha Saradhi.Proline alleviates salt-stress induced enhancement inribulose-1,5-bisphosphate oxygenase activity[J].Biochem Biophys ResCommun,2000,279:512-515.
    91. Song FN,Yang CP,Liu XM.Effect of salt stress on activity of superoxide dismutase (SOD) inUlmuspumila L.[J].Journal of Forestry Research,2006,17(1):13-16.
    92. Strizhov N,Abraham E,Okresz L,et al.Differential expression of two P5CS genes controllingproline accumulation during salt-stress requires ABA and is regulated by ABA1,ABI1and AXR2inArabidopsis[J]. The Plant Journal,1997,12(3):557-569.
    93. Su J and Wu R.Stress-inducible synthesis of proline in transgenic rice confers faster growth understress conditions than that with constitutive synthesis [J].Plant Science,2004,166:941-948.
    94. Teste RM,Daenport R.Na+tolerance and Na+transport in higher plants[J].Ann Bot(Lond),2003,91(5):503-527.
    95. Trotel P, Boucherrau A,Niogret MF,et al.The fate of osmo-regulated proline in leaf discs of rape(Brassica napus L.) incubated in a medium of low osmolarity[J]. Plant Science,1996,118:31-45.
    96. Wang CM,Zhang JL,Liu XS.Puccinellia tenuiflora maintains a low Na+level under salinity bylimiting unidirectional Na+influx resulting in a high selectivity for K+over Na+[J].Plant, Cell andEnvironment,2009,32:486-496.
    97. Wang SM,Zhao GQ,Gao YS.Puccinellia tenuiflora exhibits stronger selectivity for K+overNa+than wheat[J].Journal of Plant Nutrition,2004,27:1841-1857.
    98. Ward JM,Hirsi KD.Plants pass the salt[J].Trends Plant Science,2003,8(5):200-201.
    99. Winicov I, Bastola DR. Transgenic Overexpression of the Transcription Factor Alfin1EnhancesExpression of the Endogenous MsPRP2Gene in Alfalfa and Improves Salinity Tolerance of thePlants[J]. Plant Physiology,1999,120:473-480.
    100. Yabuta Y,Motoki T,Yoshimura K.Thylakoid membrane-bound ascorbate peroxidase is a limitingfactor of antioxidative systems under photo-oxidative stress[J].The Plant Journal,2002,32:915-925.
    101. Yancey PH.Compatible and counteracting solutes.In:Cellular and Molecular Physiology of CellVolume Regulation,Strange K.(eds),Boca Raton:CRC Press,2001,81-109.
    102. Yoshiba Y, Kiyosue T,Katagira T,et al.Correlation between induction of a gene forΔ1-pyrroline-5-carboxylate synthetase and accumulation of prolinein Arabidopsis thaliana underosmotic stress[J]. The Plant Journal,1995,7:751-760.
    103. Zhang C Q,Nishiuchi S,Liu S k.Characterization of two plasma membrane protein3genes(PutPMP3) from the alkali grass, Puccinellia tenuiflora, and functional comparison of the ricehomologues, OsLti6a/b from rice[J].BMB reports,2008,448-454.
    104. Zhang CS,Lu Q,Verma DPS,et al.Characterization of Δ1-pyrroline-5-carboxylate synthetase genepromoter in transgenic Arabidopsis thaliana subjected to water stress[J]. Plant Science,1997,129:81-89.
    105. Zhao FY,Guo SL,Wang ZL,et al.Recent advances in study on transgenic plants for salt tolerance[J].Journal of Plant Physiology and Molecular Biology,2003,29(3):71-78.
    106. Zhu B,Su J,Chang M,et al.Overexpression of a Δ1-pyrroline-5-carboxylate synthetase gene andanalysis of tolerance to water-and salt-stress in transgenic rice[J].Plant Science,1998,139:41-42

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700