盐地碱蓬和小花碱茅对NaCl和Na_2CO_3抗性的比较研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以盐地碱蓬(Suaeda salsa L.)和小花碱茅(Puccinellia tenuiflora)为实验材料,研究不同浓度的NaCl和Na_2CO_3处理对二者种子萌发率及萌发阶段幼苗的生长状况、幼苗的生理特性、活性氧清除系统、光合特性以及PSⅡ光化学特性的影响,从而探讨NaCl和Na_2CO_3胁迫对盐地碱蓬和小花碱茅的伤害以及盐碱胁迫下盐地碱蓬和小花碱茅的光合特性。结果如下:
     1.NaCl和Na_2CO_3对盐地碱蓬和小花碱茅种子萌发率、萌发阶段及幼苗期生长状况的影响
     盐地碱蓬和小花碱茅的种子萌发率随着盐碱浓度的增加而降低。盐地碱蓬和小花碱茅种子的萌发率在NaCl胁迫下的下降趋势明显大于在Na_2CO_3胁迫下的下降趋势。证明了渗透胁迫,而不是pH值因素,是影响盐地碱蓬和小花碱茅种子各自萌发率的主要原因。
     盐地碱蓬和小花碱茅在萌发阶段和幼苗期的生长状况随着NaCl和Na_2CO_3浓度的升高而变弱。盐地碱蓬受Na_2CO_3胁迫明显高于NaCl胁迫,而小花碱茅受NaCl胁迫明显高于Na_2CO_3胁迫。
     2.NaCl和Na_2CO_3对盐地碱蓬和小花碱茅丙二醛(MDA)含量的影响
     在NaCl和Na_2CO_3胁迫下,随着盐碱浓度的升高,盐地碱蓬和小花碱茅叶片中丙二醛(MDA)的含量不断增加。在NaCl胁迫下,盐地碱蓬和小花碱茅叶片中的MDA含量的增加幅度小于在Na_2CO_3胁迫下的增加幅度。表明Na_2CO_3对盐地碱蓬和小花碱茅的胁迫更大。
     3.NaCl和Na_2CO_3对盐地碱蓬和小花碱茅叶片超氧化物歧化酶(SOD)活性的影响
     在NaCl和Na_2CO_3胁迫下,随着盐碱浓度的升高,盐地碱蓬和小花碱茅叶片中超氧化物歧化酶(SOD)的活性表现出不同的变化趋势。在NaCl胁迫下,盐地碱蓬叶片中的SOD活性随着盐浓度的升高呈现出先升高后降低的趋势,在200mM时达到最大值,且较CK升高显著,在一定程度上说明了盐地碱蓬在200mM NaCl处理下生长最好的原因与活性氧的清除有关;小花碱茅叶片中的SOD活性随着盐浓度的升高呈逐渐下降趋势。在Na_2CO_3胁迫下,盐地碱蓬和小花碱茅叶片中的SOD活性随着Na_2CO_3浓度的升高下降趋势都很明显。
     4.NaCl和Na_2CO_3对盐地碱蓬和小花碱茅叶黄素循环的影响
     盐地碱蓬在NaCl处理下,随着盐浓度的升高,叶黄素脱环化程度(DPS)先下降后升高,而且在300、400mM NaCl条件下均明显上升。在Na_2CO_3胁迫下,随着盐浓度的升高,叶黄素脱环化程度(DPS)逐渐升高,且75、100 mmol/L Na_2CO_3升高显著。小花碱茅在NaCl处理下,随着盐浓度的升高,叶黄素脱环化程度(DPS)逐渐升高,且400mM NaCl条件下上升显著。在Na_2CO_3胁迫下,随着盐浓度的升高,叶黄素脱环化程度(DPS)逐渐升高,且75、100 mmol/L Na_2CO_3升高显著,表明依赖于叶黄素循环的能量耗散在盐胁迫下能起到有效的保护作用。
     5.NaCl和Na_2CO_3对盐地碱蓬和小花碱茅叶光合放氧速率的影响
     在NaCl和Na_2CO_3胁迫下,随着盐碱浓度的升高,盐地碱蓬和小花碱茅叶片的光合放氧速率表现出不同的变化趋势。盐地碱蓬在NaCl处理下,随着盐浓度的升高,光合放氧速率先升高后下降,而且在400mM NaCl条件下明显下降。在Na_2CO_3胁迫下,随着盐浓度的升高,光合放氧速率逐渐下降,且100 mmol/L Na_2CO_3下下降极显著。小花碱茅在NaCl处理下,随着盐浓度的升高,光合放氧速率逐渐降低,200、300、400mM NaCl条件下较CK下降显著,且400mM NaCl时下降极显著。在Na_2CO_3胁迫下,随着盐浓度的升高,光合放氧速率逐渐下降,且75、100 mmol/L Na_2CO_3下降显著。二者相比较,盐地碱蓬的抗盐性强于小花碱茅,而抗碱性方面小花碱茅要弱强于盐地碱蓬。
     6.NaCl和Na_2CO_3对盐地碱蓬和小花碱茅叶绿素荧光参数的影响
     盐地碱蓬在NaCl胁迫下,Fo随着盐浓度的升高先降低后升高,Fv/Fm先增加后降低,二者变化不明显,表明在NaCl胁迫下,盐地碱蓬的光合作用中心并没有受到破坏,PSⅡ潜在光化学效率基本没受到影响。在Na_2CO_3胁迫下,Fo随着碱浓度的升高不断升高, Fv/Fm不断降低,且75、100mM Na_2CO_3时较CK变化极显著,表明在较高浓度Na_2CO_3胁迫下,盐地碱蓬的光合作用中心受到明显破坏,PSⅡ潜在光化学效率下降显著。小花碱茅在NaCl和Na_2CO_3胁迫下,Fo随着盐浓度的升高不断增加,Fv/Fm不断降低,且变化明显。表明在NaCl和Na_2CO_3胁迫下,小花碱茅的光合作用中心受到明显破坏,PSⅡ潜在光化学效率下降显著。
     7.NaCl和Na_2CO_3对盐地碱蓬和小花碱茅PSⅡ光化学特性的影响
     Wk表示K相可变荧光占(FJ-FO)振幅的比例,Wk升高表明反应中心受到损伤,在NaCl处理下,随着盐浓度的升高盐地碱蓬的升高幅度小于小花碱茅的升高幅度。而在Na_2CO_3处理下,随着盐浓度的升高小花碱茅的升高幅度较小。Sm表示从2ms到tFm时间内QA被完全还原所需要的能量,Sm降低表明反应中心的电子传递能力下降;N表示从2ms到tFm时间内QA的氧化还原次数,N降低表明电子传递能力下降,反应中心的开放程度降低;VJ表示照光2ms有活性的反应中心的关闭程度;在NaCl处理下,随着盐浓度的升高盐地碱蓬Sm和N的下降幅度小于小花碱茅的下降幅度,并且VJ的升高幅度也小于小花碱茅;而在各盐度的Na_2CO_3处理下,小花碱茅Sm、N、VJ的变化幅度小于盐地碱蓬。
     盐地碱蓬随着NaCl浓度的升高,单位叶面积有活性的反应中心数(RC/CSo)先升高后降低,导致单位反应中心吸收的光能(ABS/RC),用于还原QA的能量(TRo/RC),用于电子传递的能量(ETo/RC),耗散掉的能量(DIo/RC)和反应中心之间激发能的传递的参数(dVG/dto)先降低后升高,而小花碱茅随NaCl浓度的升高,RC/CSo不断降低,ABS/RC、TRo/RC、ETo/RC、DIo/RC和dVG/dto不断降低,且变化幅度比盐地碱蓬大;另外,以吸收光能为基础的性能指数(PIABS)和以吸收光能为基础的推动力(D.F.)盐地碱蓬的下降幅度小于小花碱茅的下降幅度。而在各盐度的Na_2CO_3处理下,小花碱茅反应中心各参数的变化幅度小于盐地碱蓬。
     从PSII的供体侧,受体侧和反应中心的各参数变化幅度可以推测盐地碱蓬的抗盐性稍强于小花碱茅,而盐地碱蓬的抗碱性要稍弱于小花碱茅
     总之,盐地碱蓬和小花碱茅种子萌发率主要受到渗透胁迫的抑制,pH值对二者种子萌发的影响很小;通过对盐地碱蓬和小花碱茅幼苗期的生理指标和光合指标的研究发现盐地碱蓬的抗盐性要稍强于小花碱茅,而小花碱茅的抗碱性要稍强于盐地碱蓬。
This study tries to explore the impact of NaCl and Na_2CO_3 stress on the growth of Suaeda salsa L. and Puccinellia tenuiflora,through evaluating the effects on seed germination, growth of seedling conditions, physiological characteristics, thermal dissipation, as well as metabolism of reactive oxygen species and photochemical characteristics of PSⅡ. The main results are as follows:
     1. Effect of different concentrations of NaCl and Na_2CO_3 on seed germination , the growth of seedling conditions during germination stage and the growth in Suaeda salsa L. and Puccinellia tenuiflora
     Germination rate of Suaeda salsa and Puccinellia tenuiflora decreased with both of the salts concentrations. The seed germination of Suaeda salsa and Puccinellia tenuiflora under NaCl stress decreased significantly greater than that under Na_2CO_3 stress, indicating that osmotic stress, rather than pH stress, was the main reason for germination inhibition in Suaeda salsa and Puccinellia tenuiflora under both NaCl and Na_2CO_3 stress.
     The growth of seedling conditions during germination stage and the growth of Suaeda salsa and Puccinellia tenuiflora became weaker with the increase of NaCl and Na_2CO_3 concentrations. And the growth conditions of Suaeda salsa under NaCl stress was better than under Na_2CO_3 stress, On the contrary, the growth conditions of Puccinellia tenuiflora under NaCl stress was worse than under Na_2CO_3 stress.
     2.Effect of different concentrations of NaCl and Na_2CO_3 on the MDA content of Suaeda salsa L. and Puccinellia tenuiflora.
     Under NaCl and Na_2CO_3 stress, the MDA content of Suaeda salsa and Puccinellia tenuiflora leaves increased with NaCl and Na_2CO_3 concentrations. But the MDA content of Suaeda salsa and Puccinellia tenuiflora leaves increases less under NaCl than under Na_2CO_3 stress, showing that Na_2CO_3 stress was more seriouse than NaCl stress.
     3.Effect of different concentrations of NaCl and Na_2CO_3 on the SOD activity in the leaves of Suaeda salsa L. and Puccinellia tenuiflora.
     Under NaCl and Na_2CO_3 stress, with the salt concentration increasing, the SOD activity of Suaeda salsa and Puccinellia tenuiflora showed different trends. Under NaCl stress, the SOD activity of Suaeda salsa increased firstly and then decreases with the salt concentrations, and peaked at 200 mmol/L, but still higher than CK at 400mM NaCl. For Puccinellia tenuiflora, the SOD activity decreases continuously with the NaCl concentrations. Moreover, under Na_2CO_3 stress, the SOD activity of Suaeda salsa and Puccinellia tenuiflora both decreased significantly with Na_2CO_3 concentrations.
     4.Effect of different concentrations of NaCl and Na_2CO_3 on the xanthophyll cycle of Suaeda salsa L. and Puccinellia tenuiflora.
     Under NaCl treatment, with the salt concentration increasing, the de-epoxidation degree of xanthophyll cycle (DPS) of Suaeda salsa decreased firstly and then increased, and significant increased under 300 and 400 mmol/L NaCl. Under Na_2CO_3 stress, the DPS increased gradually but significantly under 75 and 100 mmol/L Na_2CO_3. As for Puccinellia tenuiflora, the DPS increased gradually under NaCl and Na_2CO_3 stress, and increased significantly under 400mM NaCl and 75, 100 mmol/L Na_2CO_3, respectively. All the results implied that the de-epoxidation degree of xanthophyll cycle can play an effective protection on Suaeda salsa and Puccinellia tenuiflora under salt stress.
     5.Effect of different concentrations of NaCl and Na_2CO_3 on the photosynthetic oxygen evolution rate of Suaede salsa L.and Puccinellia tenuiflora.
     Under NaCl and Na_2CO_3 stress, with the salt concentration increasing, Suaeda salsa and Puccinellia tenuiflora photosynthetic oxygen evolution rate showed different trends. As for Suaeda salsa under NaCl treatment, the photosynthetic oxygen evolution rate increases first and then decreases with NaCl concentrations, and decreased significantly under 400mM NaCl. Under Na_2CO_3 stress, however, with the increase of Na_2CO_3 concentration, the photosynthetic oxygen evolution rate decreases gradually and significantly under 100 mmol/L Na_2CO_3. As for Puccinellia tenuiflora under NaCl stress, the photosynthetic oxygen evolution rate decreased gradually and significantly under 200, 300 and 400 mmol/L NaCl. Under Na_2CO_3 stress, the trend was the same, with the increase of Na_2CO_3 concentration; the photosynthetic oxygen evolution rate gradually increases, and decreases significantly under 75 and 100 mmol/L concentrations. Comparingly, the salt tolerance of Suaeda salsa is stronger than that of Puccinellia tenuiflora, and the alkali tolerance of Suaeda salsa is weaker than that of Puccinellia tenuiflora.
     6.Effect of different concentrations of NaCl and Na_2CO_3 on the Chlorophyll fluorescence parameters of Suaeda salsa L. and Puccinellia tenuiflora.
     Under NaCl stress, Fo of Suaeda salsa decreased firstly and then decreased, while Fv/Fm of Suaeda salsa increased firstly and then decreased, but all not significant, indicating that the photosynthesis centers of Suaeda salsa were not damaged by NaCl, the potential photochemical efficiency of PSⅡwas not obviously affected. However, under Na_2CO_3 stress, Fo increased continuously with the alkali concentrations, and Fv / Fm decreased continuously simultaneously, indicating that the reaction center was affect by high Na_2CO_3 concentrations. Under NaCl and Na_2CO_3 stress, Fo of Puccinellia tenuiflora increased and Fv/Fm decreased continuously and significantly with concentrations, Indicating that photosynthesis center of Puccinellia tenuiflora was significantly damaged under NaCl and Na_2CO_3 stress, the potential photochemical efficiency of PSⅡdecreased significantly.
     7.Effect of different concentrations of NaCl and Na_2CO_3 on the photochemical characteristics of PSⅡin Suaeda salsa L. and Puccinellia tenuiflora.
     Wk accounts for K-phase variable fluorescence (FJ-FO) amplitude ratio, it can indicate that the reaction center has been damaged with the salt concentration increasing.The Wk of Suaeda salsa increases more than it of Puccinellia tenuiflora with the NaCl concentration increasing.On the contrary, the Wk of Suaeda salsa increases less than it of Puccinellia tenuiflora with the Na_2CO_3 concentration increasing.
     With the NaCl treatment, Sm, N and VJ of Suaeda salsa change less than them of Puccinellia tenuiflora, but Sm, N and VJ of Suaeda salsa change more than them of Puccinellia tenuiflora with the Na_2CO_3 concentration increasing. With the NaCl treatment, the RC/CSo of Suaeda salsa increased firstly and then decreased slightly at 300 and 400 mM NaCl compared with CK, and the change was not obvious. Meanwhile, ABS/RC,TRo/RC,ETo/RC,DIo/RC and dVG/dto decreased firstly and then increased slightly at 300,400 mmol/L NaCl. But them of Puccinellia tenuiflora showed opposite tendency.And them of Suaeda salsa changed less than them of Puccinellia tenuiflora. On the contrary, them of Suaeda salsa changed more than them of Puccinellia tenuiflora with the Na_2CO_3 concentration increasing.
     Under NaCl and Na_2CO_3 stress, it is indicated that the salt tolerance of Suaeda salsa is slightly stronger than it of Puccinellia tenuiflora and the alkali tolerance of Suaeda salsa is slightly weaker than it of Puccinellia tenuiflora from the provide side, receptor side and the reaction center of PSII.
     In short, seed germination of Suaeda salsa and Puccinellia tenuiflora were inhibited mainly by osmotic stress, not pH. Furthermore, the salt tolerance of S. salsa was slightly stronger than Puccinellia tenuiflora and the alkali tolerance of Puccinellia tenuiflora was slightly stronger than S. salsa by the study of physiological and photochemical characteristics of Suaeda salsa and Puccinellia tenuiflora.
引文
[1]党瑞红.海滨锦葵抗盐基础生理的研究,山东师范大学硕士学位论文, 2007.
    [2]石德成.磷酸中和缓解Na_2CO_3对星星草的胁迫作用,东北师范大学生命科学学院, 1995.
    [3]殷立娟,石德成.东北碱化草地的主要盐分Na_2CO_3对羊草危害因素分析,东北师范大学生命科学学院, 1993.
    [4]石德成,殷立娟. Na_2CO_3胁迫下羊草苗的胁变反应及其数学分析,东北师范大学草地研究所;东北师范大学草地研究所,1992.
    [5]张士功,邱建军,张华.我国盐渍土资源及其综合治理[J],中国农业资源与区划, 2000, 21(1):52-56.
    [6]波杰科夫-梅伯主编.盐渍环境中的植物[M],科学出版社, 1980.
    [7]钦佩,周春林,安树青等.海滨盐土农业生态工程[M],化学工业出版社, 2002.
    [8]张新春,庄炳昌,李自超.植物耐盐性研究进展,吉林省农科院农业生物技术重点开放实验室;中国农业大学作物学院吉林公主岭136100中国农业大学作物学院,2002.
    [9]曲元刚,赵可夫. NaCl和Na_2CO_3对玉米生长和生理胁迫效应的比较研究,山东师范大学盐生植物工程技术研究中心;山东师范大学盐生植物工程技术研究中心,2004.
    [10] Vestergaard & Sand-Jensen . Alkalinity and trophic state regulate aquatic plant distribution in Danish lakes, Freshwater Biological Laboratory, 2000.
    [11] Gallagher J L. Halophytic crops for cultivation at seawater salinity. Plantand Soil, 1985(89):323-336.
    [12]阮成江,钦佩,陈景文等.海滨锦葵种子营养成分分析(英文),作物学报, 2004,30(9):901-905.
    [13]朱新广,王强,张其德等.冬小麦光合功能对盐胁迫的响应.植物营养与肥料学报, 2002, 8(2):177-180.
    [14]利容千,王建波.植物逆境细胞及生理学[M].武汉:武汉大学出版社,
    [15]林栖凤.耐盐植物研究[M].北京:科学出版社,2004.48-59.
    [16] ChaudhuriK, ChoudhuriMA. Effect of short-term NaCI stress on water relations and gas exchange of two jute species.Biol Plant, 1997.
    [17]李付广,李凤莲,李秀兰.盐胁迫对棉花幼苗不同组织水分含量的影响.河北农业大学学报,1994(4):5-7.
    [18]尹尚军,石德成,颜红. Na_2CO_3胁迫下星星草胁变反应部位的差异.草业学报,2001, 10(4):101-106.
    [19]麻莹.盐碱混合胁迫下抗碱盐生植物碱地肤的渗透调节及其离子平衡特点[D].东北师范大学生命科学学院,2007.
    [20] Chowdhury MAM,Moseki B,Bowling DJF.A method for screening rice plants for salt Tolerance[J].Plant and Soil,1995(171):317-322.
    [21]潘瑞炽.植物生理学[M].北京:高等教育出版社,2004.299-301.
    [22] Hartung W, Leport L, Ratcliffe R G, et al.Abscisic acid concentration,root pH and anatomy do not explain growth differences of chickpea(Cicer arietinum L.)and lupin(Lupinus angustifolius L.)on acid and alkaline soils[J].Plant Soil, 2002(240):191-199.
    [23] Shi D C,Wang D L.Effects of various salt-alkali mixed stresses on Aneurolepidium chinense(Trin.)Kitag[J].Plant Soil,2005(271):15-26.
    [24] Yan H,Shi D C,Yin S J,et al.Effects of saline-alkaline stress on the contents of nitrogen and several organisms of Aneurolepidium chinense[J] . Chin Northeast NormUniv,2000(32):47-52.
    [25] Blumwald E.Sodium transport and salt tolerance in plants[J].Curr Opin Cell Biol,2000(12):431-434.
    [26] Muller M, Santarius K A.Changes in chloroplast membrane lipids during adaptation of barley to extreme salinity.Plant Physiol, 1978(62):326-333.
    [27] Maslenkora L T. Adaptation to salinity as monitored by PSll oxygen evolving reactions in barley thylakoids.J Plant Physiol, 1993(142):629-634.
    [28] Rao G G,Rao G R. Pigment composition and chlorophyyase activity in pigment pea and Gingelly under NaCl salinity. Indian J Exp Biol, 1981(19):768-770.
    [29] Suleyman I, Allakhverdiev1. Ionic and osmotic effects of NaCl inducedinactivationof photosystems I and II in synechococcus SP[J]. Plant physiology, 2000(123):1047-1056.
    [30]鲁丽丽. GSH对NaCl胁迫下二色补血草盐害缓冲机理的研究.山东师范大学硕士学位论文, 2006
    [31] Wei Kang, Shamsi Imran Haider, Zhang Guo-ping. Synergistic inter- action of NaCl and Cd on growth and photosynthetic parameters in soybean genotypes differing in salinity tolerance. Journal of Zhe jiang University-Science B, 2007(8):266-271.
    [32] Quick W P, Stitt M. An examination of factors contributing to non-photochemical quenching of chlorophyll fluorescence in barley leaves [J]. Biochim Biophys Axta, 1989(977):287-296.
    [33] Niyogi K K. Photoprotection revisited: genetic and molecular appro-aches. Annu Rev Plant Phys, 1999(50):333-359.
    [34] Müller P, Li X P, Niyogi K K. Non-photochemical quenching: a response to excess light energy. Plant Physiol, 2001(125):1558-1566.
    [35]董高峰,陈贻竹,蒋跃明.植物叶黄素循环与非辐射能量耗散.植物生理学通讯, 1999, 35(2):141-144.
    [36] Demmig B., Winter K., Kruger A., Czygan FC. Photoinhibition and zeaxanthin formationin intach leaves. Plant Physiol, 1987(84):218-224.
    [37] Havaux M, Niyogi K K. The violaxanthin cycle protects plants from photooxi- dative damage by more than one mechanism. Proc Nat Acad Sci USA, 1999(96):8762-8767.
    [38] Horton P, Ruban A V, Walters R G. Regulation of light harvesting in green plant indication by nonphotochemical quenching of chlorophyll fluorescence. Plant Physiol, 1994(106):415-420.
    [39] Horton P., Ruban A V, Walters R G. Regulation of light harvesting in green plants .Annu Rev Plant Phys, 1996(47):655-684.
    [40] Gilmore A M. Mechanistic aspects of xanthophylls cycle-dependent photoprotec- tion in higher plant chloroplasts and leaves. Physiol Plant,1997(99):197-209.
    [41] Demming-Adams B, Adams W W III. Xanthophyll cycle and light stress innature: uniform response to excess direct sunlight among higher plant species. Planta,1996(198):460-470.
    [42]洪双松,许大全.小麦和大豆叶片荧光参数对强光响应的差异.科学通报, 1997(42):753-756.
    [43]陈贻竹,李晓萍,夏丽等.叶绿素荧光技术在植物环境胁迫研究中的应用[J].热带亚热带植物学报, 1995, 3(4):79-86.
    [44]林世青,许春辉,张其德等.叶绿素荧光动力学在植物抗性生理学、生态学和农业现代化的应用[J] .植物学通报, 1992, 9(1):1-16.
    [45] Krause GH and Weis E. Chlorophyll fluorescence and photosynthesis: the basics. Annu Rev Plant Physiol Plant Mol Biol, 1991(42):319-349.
    [46] Strasser RJ, Srivastava A, Govindjee. Polyphasic chlorophyll a fluorescence transient in plants and cyanobacteria. Photochem Photobiol, 1995(61) :32-42.
    [47] Strasser RJ, Srivastava A, Tsimilli-Michael M. The fluorescence transient as a tool to characterize and screen photosynthetic samples. In: Yunus M, Pathre U, Mohanty P(eds). Probing Photosyn-thesis: Mechanism, Regulation and Adaptation. London: Taylor and Francis Press, 2000(25):445-483.
    [48] Strasser RJ, Tsimill-Michael M, Srivastava. Analysis of the chloro-phyll a fluorescence transient. In: Papageorgiou G and Govindjee (eds). Advances in Photosynthesis and Respiration. Netherlands: KAP Press, 2004(12):1-47.
    [49] Pererson R B, Sivak M N, Walkwr D A. Relationshipbetween steady-state fluorescence yield andphotosynthetic efficiency in spinach leaf tissue[J]. PlantPhysiol, 1998(88):158-163.
    [50] Strasser BJ, Strasser RJ. Measuring fast fluorescence transients to address environmental questions: The JIP test. In: Mathis P (eds). Photosynthesis: from Light to VBiosphere. Dordrecht: KAP Press, 1995, Vol 5:977-980.
    [51] Strasser RJ, Srivastava A, Tsimilli-Michael M. The fluorescence transient as a tool to characterize and screen photosynthetic samples. In: Yunus M, Pathre U, Mohanty P (eds). Probing Photosynthesis: Mechanism, Regulation and Adaptation. London: Taylor and Francis Press, 2000(25):445-483.
    [52] Strasser RJ, Tsimill-Michael M, Srivastava. Analysis of the chlorophyll afluorescence transient. In: Papageorgiou G and Govindjee (eds). Advances in Photosynthesis and Respiration. Netherlands: KAP Press, 2004(12):1-47.
    [53] Strasser RJ, Govindjee. The Fo and the O-J-I-P fluorescence rise in higher plants and algae. In: Argyroudi-Akoyunoglou JH (eds). Regulation of Chloroplast Biogenesis. New York: Plenum Press, 1991, 423-436.
    [54] Strasser RJ, Govindjee. On the O-J-I-P fluorescence transients in leaves and D1mutants of Chlamydomonas reinhardtii. In: Murata N (eds). Research in Photosynthesis. Dordrecht: KAP Press,1992,Vol 4:29-32.
    [55]李鹏民,高辉远, Reto J. Strasser.快速叶绿素荧光诱导动力学分析在光合作用研究中的应用.植物生理与分子生物学学报, 2005,31(6):559- 566.
    [56] Govindjee. Sixty-three years since Kautsky:Chlorophyll a fluore- scence. AustralianJ Plant Physiol, 1995(22):131-160.
    [57] Strivastava A, Strasser RJ. Stress and stress management of land plants during a regular day. J Plant Physiol, 1996(148):445-455.
    [58] Jiang CD Gao HY, Zou Q. Changes of donor and accepter side in photosystem II complex induced by iron deficiency in attached soybean and maize leaves. Photosynthetica, 2003(41):67-71.
    [59] Hermans C, Smeyers M, Rodriguez RM, Eyletters M, Strasser RJ, Delhaye JP. Quality assessment of urban trees: A comparative study of physiological characterization, airborne imaging and on site of fluorescence monitoring by the OJIP-test. J Plant Physiol, 2003(160): 81-90.
    [60] Van Heerden PDR, Strasser RJ, Krüger GHJ. Reduction of dark chilling stress in N2-fixing soybean by nitrate as indicated by chlorophyll a fluorescence kinetics. Physiol Plant, 2004(121):239-249.
    [61] Van Heerden PDR, Tsimilli-Michael M, Krüger GHJ, Strasser RJ. Dark chilling effects on soybean genotypes during vegetative development: parallel studies of CO2 assimilation, chlorophyll a fluorescence kinetics O-J-I-P and nitrogen fixation. Physiol Plant, 2003(117): 476-491.
    [62] Maxwell K, Johnson GN. Chlorophyll fluorescence-a practical guide. J ExpBot, 2000(51):659-668.
    [63]史功伟,宋杰,高奔,杨青,范海,王宝山,赵可夫.不同生境盐地碱蓬出苗及幼苗抗盐性比较.生态学报, 2009,29(1):138-143.
    [64]孙国荣,阎秀峰.星星草生理生态学研究[M].北京:科学出版社, 2000:13- 17.
    [65] Li J X, Sun G R , Yan X F. The study of physiological ecology in Songnen grass- land. Northeast Forestry University Press,1996.
    [66] Yan X F, Sun G R. The study of physiological ecology of Puccinellia tenuiflora. Science Press, 2000.
    [67] Sun G R ,Yan X F , et al. Effect of sodium carbonate domestication on progre- ssiveon alkaline resistance of seedlings of Puccinellia tenuiflora. Journal of Wuhan Botnical Research, 1996(14):67-70.
    [68] Tang C S. The research of growth and demistication of Puccinellia tenuiflora. GrassLand of China, 1980,(4):13-18.
    [69] Yue Z H ,Sun GR ,Yan X F. The effect on humus and some enzymes’activity in alkali soil by different ameliorative ways. Bulletin of Botanical Research, 2003,23(2):211-214.
    [70] Li J X, Ma Y, Fu XL. The study of meliorating alkaline soil by planting Puccinellia tenuiflora. Grassland of China, 1985(2):53-55.
    [71] Sun G R ,Guan Y, Yan X F. Effect of sodium carbonate stress on amino acid contents of Puccinellia tenuiflora seedlings. Bulletin of Botanical Research, 2000,20(1):69-72.
    [72] Sun G R ,Yan X F, Li J . Effects of the growth of cultivated Puccinellia tenuiflora on physical characteristics of alkali soil . Acta Agrestia Sinica, 2002,10(2): 118- 123.
    [73] Yan X F ,Sun G R , et al. Diurnal changes of photosynthesis and transpiration of manually planting Puccinellia tenuiflora. Bulletin of Botanical Research, 1995,15(2):252-255.
    [74] Yan X F ,Sun G R , Xiao W. The relationships between diurnal changes of photosynthesis and transpiration of Puccinellia tenuiflora and the climate factors. Bulletin of Botanical Research , 1996,16(4): 477-484.
    [75] Yan X F, Sun G R, Xiao W. Seasonal changes of photosynthetic and transpiration characters of Puccinellia tenuiflora. Bulletin of Botanical Research, 1996, 16 (3):340-345.
    [76] Yan X F ,Sun G R ,Xiao W. The relationship between seasonal changes of photosynthesis and transpiration of Puccinellia tenuiflora and the climate factors. Bulletin of Botanical Research , 1997,17(3): 325-331.
    [77] Yan X F, Sun G R ,Xiao W. A comparative study on photosynthetic abilities of different grown years. Acta phytoecologica sinica , 1998,22(3):231-236.
    [78] Yan X F, Sun G R, Li J, Xiao W. Changes of several osmotica in Puccinellia tenuiflora seedling under alkali salt stress. Bulletin of Botanical Research, 19(3):347-355.
    [79]刘永慧. NaCl胁迫下二色补血草光保护机制的研究.山东师范大学硕士学位论文. 2009
    [80]赵世杰,孟庆伟,许长城等.植物组织中叶黄素循环组分的高效液相色谱分析[J].植物生理学通讯, 1995,31(6):438-442
    [81]杨光.盐碱胁迫对豆科牧草种子萌发及其生理的影响.东北师范大学硕士学位论文. 2009
    [82]王颖.广布野豌豆荚果和种子发育动态及种子适宜收获时间的确定.东北师范大学硕士学位论文. 2008
    [83] Forer C H., Harbinson J.Relationships between antioxidant metabolism and carotenoids in the photosynthesis. In Frank H A., Young A J., Britton G., Cogdell R J.,eds. The Photochemistry of Carotenoids. The Netherlands:Kluwer Academic Publishers, Dordrecht, 1999,305-325.
    [84] Niyogi K K., Shih C., Chow W S., Pogson B J., Dellapenna D., Bjǒrkman Photoprotection in a zeaxanthin-and lutein-deficient double mutant of Arabidopsis. Photosyn Res, 2001,67:139-145.
    [85]陈静,花青苷对番茄(Lycopersicon esculentum Mill.)幼苗叶片光合机构的保护作用及番茄花青苷结构特征性的研究.西北农林科技大学博士学位论文, 2005.
    [86] Wada M., Kagawa T., Sato Y. Chloroplast movement. Annu Rev Plant Biol,2003,54:455-468.
    [87] Haupt W., Scheuerlein R. Chloroplast movement. Plant Cell Environ, 1990, 13: 595-614.
    [88] Jiang CD Gao HY, Zou Q (2003). Changes of donor and accepter side in photosystemⅡcomplex induced by iron deficiency in attached soybean and maize leaves. Photosynthetica, 41(2):67-71.
    [89] Chen HX, Li WJ, An SZ, Gao HY (2004). Characterization of PSⅡphotoche- mistry and thermostability in salt-treated Rumex leaves. J Plant Physiol, 161:257-264.
    [90]李鹏民.快速叶绿素荧光诱导动力学分析在光合作用研究中的应用.植物生理与分子生物学学报

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700