人巨细胞病毒蛋白pUL23影响宿主蛋白RACK1与STAT1间的相互作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
人巨细胞病毒(Human cytomegalovirus HCMV)属疱疹病毒科β亚属(β疱疹病毒),在人群中的感染率十分普遍。HCMV像其它β疱疹病毒一样,不能被宿主体内的免疫系统完全清除,它会以一种较低的病毒水平保持对宿主的持续感染或者是以一种非活性状态持续潜伏于宿主体内,因而对于免疫功能正常的人,HCMV可长期潜伏而不致病。但是当宿主免疫功能低下时,HCMV则可大量繁殖,进而引起严重的致死并发症。随着目前多个HCMV病毒株完整基因组核酸序列的分析完成,HCMV基因组结构已基本被阐明。通过对病毒临床株基因的分析和缺失突变等发现,在200多个开放阅读框中(Open Reading Frame,ORF),仅有45到57个ORFs为病毒在人成纤维细胞中繁殖所必要,余下的都为非必需基因。研究表明,部分病毒蛋白参与了协调与宿主间细胞关系,以达到自身与宿主细胞长期共生的目的。
     UL23基因是HCMV US22基因家族的成员,它能编码一个大小为33kD的病毒皮层蛋白pUL23,聚集在细胞质中的核周边区域。然而对于pUL23蛋白的功能目前了解甚少。为了进一步阐明pUL23的潜在功能,本实验室前期工作利用酵母双杂交方法,从人胚肾cDNA文库中筛选到多个与pUL23相互作用的宿主蛋白。RACK1[Receptor for activated C kinase1]就是其中之一。RACK1是蛋白激酶C的受体蛋白,因其可以和多种类型的蛋白分子相结合,从而被普遍地认为是一种多功能脚手架蛋白。本课题利用回复性酵母双杂交、免疫共沉淀等实验方法进一步确认了pUL23与RACK1间的相互作用,且pUL23和RACK1共定位于细胞质中。
     研究发现RACK1能够与非磷酸化的STAT1结合,并作为一个脚手架蛋白发挥了招募STAT1到干扰素受体上的功能。而STAT1与干扰素受体的预先结合是STAT1活化和干扰素信号途径传导必不可少的一步,这说明RACK1与STAT1的结合对STAT1的活化和干扰素信号途径的传导是至关重要的。因此本文利用GSTpull-down实验检测了pUL23与RACK1的结合对RACK1-STAT1相互结合的影响,实验结果表明pUL23减弱了RACK1与STAT1间的亲和力,这说明病毒蛋白pUL23能够更牢固的“抓住”RACK1蛋白,进而导致RACK1、STAT1或许还有干扰素受体在内的复合物的解离。由文献可知,RACK1与STAT1结合的减弱会直接导致STAT1磷酸化水平的下降和干扰素抗病毒信号途径传导的受阻。因此本文的研究结果提高了pUL23在干扰素信号途径中发挥调节作用的可能性,并为今后pUL23蛋白功能的研究提供了诸多有意义的线索。
Human cytomegalovirus (HCMV) is the prototypical member of thebetaherpesvirus family and is a ubiquitous human pathogen. HCMV, like otherherpesviruses, cannot be completely eliminated by the immune system and remainseither as a low-level persistent infection or in a quiescent latent state for the lifetimeof the infected person. Therefore HCMV infections in immunocompetent adults areusually benign and could maintain a lifelong relationship with its host, butreactivation of HCMV from latency causes life-threatening illness in immunologicallyimmature or compromised individuals. According to the global analysis of severalHCMV strains genome, it revealed HCMV contains more than200ORFS (OpenReading Frame, ORF), but only45~57ORFS of them are essential for HCMV growthin primary human fibroblasts, the rest are nonessential. Studies have revealed someHCMV proteins have involved in coordinating the relationship with the host cell bytheir interaction with host cell protein.
     UL23is a member of HCMV US22gene family, it encodes a tegument proteinpUL23about33kD which is located in cytoplasmic protein aggregates. But thebiological function of pUL23is controversial and has been not clear to this day. Toinvestigate the underlying function of pUL23, the yeast two-hybrid screening systemand co-immunoprecipitation (Co-IP) experiment were used to identify cellular targetsof pUL23. One of the binding partners of pUL23was RACK1, which is the foundingmember of the family of receptors for activated C kinase (PKC) collectively calledRACKs and is identified as a multifunctional scaffold protein. Furthermore pUL23and RACK1substantially co-localized in the cytoplasm when they wereco-transformed into Hela cells.
     RACK1and has been reported to function as an adaptor recruiting thetranscription factor STAT1to the receptor complex in the IFN system, and thispre-association of STAT1with the receptor is required for STAT1activation and IFNsignaling. Therefore it's suggested the interaction between RACK1and STAT1plays a central role in STAT1activation and IFN signaling. Based on these clues, we exploredwhether HCMV pUL23may influence the interaction between RACK1and STAT1with RACK1as a mediator. Glutathione S-transferase pull-down experiment revealedthat the association of RACK1with HCMV protein pUL23with a higher affinity thanSTAT1. Therefore, it is suggested that the viral protein pUL23has the ability tointeract strongly with RACK1and consequently to bring about the disruption of thecomplex formed from STAT1, RACK1, and probably the IFN receptor, which maydirectly lead to the suppression of STAT1activation. While the activation of STAT1isimportant for IFN signaling pathway. Therefore, these findings raise the possibilitythat pUL23functions as a regulator in IFN signaling and provide us with manyimportant clues for the further research of pUL23.
引文
[1]赵杨,陈敦金,闻良珍.人巨细胞病毒基因活性与受染细胞病变的相关性研究[J].中国病理生理杂志,2007,23(5):1013-1016.
    [2] Retiere C,Prodhomme V, Imbert-Marcille B M,et al. Generation of cytomegalovirus-specifichuman T-lymphocyte clones by using autologous B-lymphoblastoid cells with stableexpression of pp65or IE1proteins:a tool to study the fine specificity of the antiviralResponse[J]. PNAS,2000,74(9):3948-3952.
    [3] Boeckh M, Gooley TA, Bowden RA. Effect of high dose acyclovir on survival in allogeneicmarrow transplant recipients who received ganciclovir at engraftment or for cytomegaloviruspp65antigenemia[J]. IFNect Dis,1999,180(2):5712574.
    [4] Tabi Z,Moutaftsi M,Borysiewicz L K. Human cytomegalovirus pp65and immediate early1antigen-specific HLA class I restricted cytotoxic T cell responses induced bycross-presentation of viral antigens[J]. J. Intern.Med,2001,166(9):5695-5703.
    [5] Soderberg-Naucler. Dode cytomegalovinus play a causative role in the development of variousinammatory diseases and cancer[J]. J. Intern.Med,2006,259:219–246.
    [6] Cecilia Soderberg-Naucler. Human cytomegalovirus persists in its host and attacks and avoidselimination by the immune system[J]. Critical Reviews in Immunology,2006,26(3):231-263.
    [7] Nishiyama, Y. The function of human cytomegalovirus genes[J]. Nippon Rinsho,1998,56(1):29-35.
    [8] Chee MS, Bankier AT, Beck S, et al. Analysis of the protein-coding content of the sequence ofhuman cytomegalovirus strain AD169[J]. Curr Top Microbiol Immunol,1990,154:125–169.
    [9]王晓燕,彭慧琴.人巨细胞病毒包膜糖蛋白gB、gH结构、分型及生物学活性[J].中国卫生检验杂志,2008,18(10):2175-2177.
    [10] Chee MS, Bankiera AT,Beck S,et al. Analysis of the protein coding content of the sequence ofhumancy to megalovirus strain AD169[J]. Curr Top Microbiol Immunol,1990,154(11):125-170.
    [11] Gibson W. Protein counterparts of human and simian cytomegaloviruses[J]. Virology,1983,128(2):391-406.
    [12] Tal I Arnon, Hagit Achdout, Ofer Levi, Gal Markel, Nivin Saleh, Gil Katz, Roi Gazit, TsufitGonen-Gross, Jacob Hanna, Efrat Nahari, Angel Porgador, Alik Honigman, Bodo Plachter,Dror Mevorach, Dana G Wolf and Ofer Mandelboim. Inhibition of the NKp30activatingreceptor by pp65of human cytomegalovirus[J]. Nature immunology,2005,6:515-523.
    [13] Baldick CJ Jr,Marchini A,Patterson CE,et al. Human cytomegalovirus tegument protein pp71(ppUL82) enhances the IFNectivity of viral DNA and accelerates the IFNectious cycle[J]. JVirol,1997,71(6):4400-4408.
    [14] Kalejta RF,Bechtel JT,Shenk T. Human cytomegalovirus pp71stimulates cell cycleprogression by inducing the proteasome-dependent degradation of the retinoblastoma familyof tumor suppressors[J]. Molec Cell Biol,2003,23(6):1885-1895.
    [15] Gibson W, Baxter KM, Clopper SK. Cytomegalovirus “Missing” capsid protein identified asheat-aggregable product of human cytomegalovirus UL46[J]. Journal of Virology,1996,70(11):7454-7461.
    [16] Gibson W. Structure and assembly of the virion[J]. Intervirology,1996,39(5-6):389-400.
    [17] Welch AR,Woods AS,McNally LM,et al. Herpesvirus maturational proteinase assemblin:identification of its gene, putative active site domain, and cleavage site[J]. PNAS,1991,88(23):10792-10796.
    [18] Gibson W, Clopper KS,Britt WJ, et al. Human cytomegalovirus (HCMV) smallest capsidprotein identified as product of short open reading frame located between HCMV UL48andUL49[J]. J Virol,1996,70(8):5680-5683.
    [19]李建蓉,黄汉菊. HCMV基因及其产物在感染中的作用[J].国外医学病毒学分册,2005,l2(6):175-178.
    [20] Bankier A T,Beck S,Bohni R,et al. The DNA sequence of the human cytomegalovirusgenome[J]. DNA Seq,1991,2(1):1-12.
    [21] Dong Yu, Maria C. Silva, and Thomas Shenk. Functional map of human cytomegalovirusAD169defined by global mutational analysis[J]. PNAS,2003,100(21):12396–12401.
    [22] Magali Chaumorcel, Marion Lussignol, Lina Mouna, Yolaine Cavignac, Kamau Fahie,Jacqueline Cotte-Laffitte, Adam Geballe, Wolfram Brune, Isabelle Beau,Patrice Codogno,Audrey Esclatine. The Human Cytomegalovirus Protein TRS1Inhibits Autophagy via ItsInteraction with Beclin1[J]. Journal of Virology,2012,86:2571-2584.
    [23] Michael P. Rout, Brian T. Chait, Thomas Shenk. Human Cytomegalovirus pUL83StimulatesActivity of the Viral Immediate-Early Promoter through Its Interaction with the CellularIFI16Protein[J]. Journal of Virology,2010,84:7803-7814.
    [24]刘新垣.干扰素研究及其重大突破性研究进展[J].中国处方药,2004,7:33-35.
    [25] Daniel M, Miller, Yingxue Zhang, et al. Human Cytomegalovirus Inhibits IFN-a-StimulatedAntiviral and Immunoregulatory Responses by Blocking Multiple Levels of IFN-a SignalTransduction1[J]. J Immunol,1999,6107-6113.
    [26] Vu Thuy Khanh Le, Mirko Trilling, Manuel Wilborn, et al. Human cytomegalovirus interfereswith signal transducer and activator of transcription (STAT)2protein stability and tyrosinephosphorylation[J]. J Gen Virol,2008,89:2416–2426.
    [27] Travis R, Taylor, Wade A. Bresnahan. Human Cytomegalovirus Immediate-Early2GeneExpression Blocks Virus-Induced Beta Interferon Production[J]. J Virol,2005,79(6):3873–3877.
    [28] Miller, D. M., B. M. Rahill, J. M. Boss, M. D. Lairmore, J. E. Durbin, J. W. Waldman, and D.D. Sedmak. Human cytomegalovirus inhibits major histocompatibility complex class IIexpression by disruption of the Jak/Stat pathway[J]. J. Exp. Med,1998,187:675–683.
    [29] Michel Baron, Jean-Luc Davignon. Inhibition of IFN-γ-induced STAT1TyrosinePhosphorylation by Human CMV is mediated by SHP2[J]. The journal of immunology,2008,5530-5536.
    [30] Miller, D. M., Y. Zhang, B. M. Rahill, W. J. Waldman, and D. D. Sedmak. Humancytomegalovirus inhibits IFN-α-stimulated antiviral and immunoregulatory responses byblocking multiple levels of IFN-α signal transduction[J]. J. Immunol,1999,162:6107–6113.
    [31] Richard Adair, Elaine R. Douglas,Jean B. Maclean, Susan Y. Graham,James D. Aitken FionaE. Jamieson1and Derrick J. Dargan. The products of human cytomegalovirus genes UL23,UL24,UL43and US22are tegument components[J]. Journal of General Virology,2002,83:1315-1324.
    [32] Skaletskaya A,Bartle ML,Chittenden T,et al. A cytomegalovirus-encoded inhibitor ofapoptosis that suppresses caspase-8activation[J]. PNAS,2001,98(14):7829-7834.
    [33] Tenney DJ,Colberg-Poley AM. Human cytomegalovirus UL36-38and US3immediate-earlygenes: temporally regulated expression of nuclear,cytoplasmic,and polysome-associatedtranscripts during IFNection[J]. Virol,1991,65(12):6724-6734.
    [34] Li H, Liu F. Characterization of the cellular Golgin-245binding domain of HCMV pUL24:identification a viral protein associating with tran-Golgi network and microtubule networkfacilitating nuclear targeting HCMV capsids[J]. PNAS,2002,57:123-155.
    [35] Child SJ, Hakki M, De Niro KL, et al. Evasion of cellular antiviral responses by humancytomegalovirus TRS1and IRS1[J]. J Virol,2004,78(1):197-205.
    [36] Cassady KA. Human cytomegalovirus TRS1and IRS1gene products block thedouble-stranded-RNA-activated host protein shut off response induced by herpes simplexvirus type1IFNection[J]. Journal of Virology,2005,79(14):8707-8715.
    [37] Dunn W, Chou C, Li H, Hai R, Patterson D, Stolc V, Zhu H, Liu F. Functional profiling of ahuman cytomegalovirus genome[J]. PNAS,2003,100(24):14223-14228.
    [38] Dong Yu, Maria C. Silva, Thomas Shenk. Functional map of human cytomegalovirus AD169defined by global mutational analysis[J]. PNAS,2003,100(21):12396–12401.
    [39]赵振岭,李实骞,姚火旺,等.酵母双杂交系统筛选与HCMV pUL23蛋白相互作用的蛋白质[J].暨南大学学报,2009,30(5):566-570.
    [40]曾涛,李实骞,姚伙旺,等. ATPase抑制因子1是与HCMV pPUL23相作用的宿主蛋白分子-酵母双杂交技术筛选与鉴定[J].中国病理生理杂志,2009,25(7):1360–1364.
    [41]姚伙旺,李实骞,胡嘉淼,等.人DNAJB6蛋白与人巨细胞病毒皮层蛋白pUL23相互作用的鉴定[J].中国生物化学与分子生物学报,2009,25(12):1143-1148.
    [42] Jakob Nilsson, Jayati Sengupta. Regulation of eukaryotic translation by the RACK1protein:a platform for signalling molecules on the ribosome european[J].molecular biologyorganization,2004,5:1137-1141.
    [43] Ileana M. Cristea, Nathaniel J. Moorman, Scott S. Terhune, Christian D. Cuevas, Erin S.O'Keefe, Jakob Nilsson, Jayati Sengupta. Regulation of eukaryotic translation by the RACK1protein: a platform for signalling molecules on the ribosome european[J]. Molecular biologyorganization,2004,5:1137-1141.
    [44] Rodriguez MM, Ron D, Touhara K, Chen CH, Mochly-Rosen D. RACK1, a protein kinase Canchoring protein, coordinates the binding of activated protein kinase C and select pleckstrinhomology domains in vitro[J].Biochemistry,1999,38:13787-13794.
    [45] McCahill A, Warwicker J, Bolger GB, Houslay MD, Yarwood SJ. The RACK1scaffoldprotein: a dynamic cog in cell response mechanisms[J]. Mol Pharmacol,2002,62:1261-1273.
    [46] Ying Zheng, Luping Zhang, Xiaoqing Jia, Haiyan Wang, Yanqiu Hu. Interaction of proteininhibitor of activated STAT2(PIAS2) with receptor of activated C kinase1, RACK1[J].FEBS Letters,2011,586:122–126.
    [47] Takashi Haro, Kazuya Shimoda, Haruko Kakumitsu, Kenjirou Kamezaki, Akihiko Numata,Fumihiko Ishikawa, Yuichi Sekine, Ryuta Muromoto, Tadashi Matsuda, and Mine Harada.Tyrosine Kinase2Interacts with and Phosphorylates Receptor for Activated C Kinase-1, aWD Motif-Containing Protein1[J]. The Journal of Immunology,2004,173:1151-1157.
    [48] Houslay MD, Adams DR: PDE4cAMP phosphodiesterases. Modular enzymes thatorchestrate signalling cross-talk, desensitization and compartmentalization[J]. Biochem J,2003,370:1-18.
    [49] Serrels B, Sandilands E, Serrels A, Baillie G, Houslay MD, Brunton VG, Canel M, MacheskyLM, Anderson KI, Frame MC. A complex between FAK, RACK1, and PDE4D5controlsspreading initiation and cancer cell polarity[J]. Curr Biol,2010,20:1086-1092.
    [50] Baumann M, Gires O, Kolch W, Mischak H, Zeidler R, Pich D, Hammerschmidt W. The PKCtargeting protein RACK1interacts with the Epstein-Barr virus activator protein BZLF1[J].European journal Biochemistry,2000,267(12):3891-901.
    [51] Gallina A, Rossil F, Milanesi G. Rack1Binds HIV-1Nef and Can Act as a Nef-Protein KinaseC Adaptor[J]. Viroloty,2005,283:7-18.
    [52] Shin-ichi Yokota, Hiroyuki Saito, Toru Kubota, Noriko Yokosawa, Ken-ichi Amano andNobuhiro Fujiia. Measles virus suppresses interferon-signaling pathway: suppression of Jak1phosphorylation and association of viral accessory proteins, C and V, with interferon-receptor complex[J]. Virology,2003,306:135-146.
    [53] Gerbasi VR, Weaver CM, Hill S, Friedman DB, Link AJ. Yeast Asc1p and mammalianRACK1are functionally orthologous core40S ribosomal proteins that repress geneexpression[J]. Mol Cell Biol,2004,24:8276–8287.
    [54] McCahill A, Warwicker J, Bolger GB, Houslay MD, Yarwood SJ: The RACK1scaffoldprotein: a dynamic cog in cell response mechanisms[J]. Mol Pharmacol,2002,62:1261-1273.
    [55] Sklan EH, Podoly E, Soreq H. RACK1has the nerve to act: structure meets function in thenervous system[J]. Prog Neurobiol,2006,78:117-134.
    [56] Chang BY, Harte RA, Cartwright CA. RACK1: a novel substrate for the Srcprotein-tyrosine kinase[J]. Oncogene,2002,21:7619-7629.
    [57] Yaka R, Thornton C, Vagts AJ, Phamluong K, Bonci A, Ron D. NMDA receptor function isregulated by the inhibitory scaffolding protein, RACK1[J]. Proc Natl Acad Sci USA,2002,99:5710-5715.
    [58] Koehler JA, Moran MF. RACK1, a protein kinase C scaffolding protein, interacts with the PHdomain of p120GAP[J]. Biochem Biophys Res Commun,2001,283:888-895.
    [59] Rodriguez MM, Ron D, Touhara K, Chen CH, Mochly-Rosen D. RACK1, a protein kinase Canchoring protein, coordinates the binding of activated protein kinase C and select pleckstrinhomology domains in vitro[J]. Biochemistry,1999,38:13787-13794.
    [60] Ron D, Luo J, Mochly-Rosen D. C2region-derived peptides inhibit translocation andfunction of beta protein kinase C in vivo[J]. J Biol Chem,1995,270:24180-24187.
    [61] Stebbins EG, Mochly-Rosen D. Binding specificity for RACK1resides in the V5region ofbeta II protein kinase C[J]. J Biol Chem,2001,276:29644-29650.
    [62] Liedtke CM, Raghuram V, Yun CC, Wang X. Role of a PDZ1domain of NHERF1in thebinding of airway epithelial RACK1to NHERF1[J]. Am J Physiol Cell Physiol,2004,286:C1037-1044.
    [63] Thornton C, Tang KC, Phamluong K, Luong K, Vagts A, Nikanjam D, Yaka R, Ron D.Spatial and temporal regulation of RACK1function and N-methyl-D-aspartate receptoractivity through WD40motif-mediated dimerization[J]. J Biol Chem,2004,279:31357-31364.
    [64] Lopez-Bergami P, Habelhah H, Bhoumik A, Zhang W, Wang LH, Ronai Z. RACK1mediatesactivation of JNK by protein kinase C[J]. Mol Cell,2005,19:309-320.
    [65] David R Adams, Dorit Ron and Patrick A Kiely. RACK1, A multifaceted scaffolding protein:Structure and function[J]. Cell Communication and Signaling,2011,9:1-24.
    [66] Ron D, Jiang Z, Yao L, Vagts A, Diamond I, Gordon A. Coordinated movement of RACK1with activated βIIPKC[J]. J. Biol Chem,1999,274:27039-27046.
    [67] Weizhou Zhang, Cong S. Zong, Ulrich Hermanto, Pablo Lopez-Bergami, Ze’ev Ronai, andLu-Hai Wang. RACK1Recruits STAT3Specically to Insulin and Insulin-Like Growth Factor1Receptors for Activation, Which Is Important for Regulating Anchorage-IndependentGrowth[J]. MOLECULAR AND CELLULAR BIOLOGY,2006,26:413–424.
    [68] Stebbins EG, Mochly-Rosen D. Binding specificity for RACK1resides in the V5region ofbeta II protein kinase C[J]. J Biol Chem,2001,276:29644-29650.
    [69] Kiely PA, Baillie GS, Lynch MJ, Houslay MD, O’Connor R. Tyrosine302in RACK1isessential for insulin-like growth factor-I-mediated competitive binding of PP2A and beta1integrin and for tumor cell proliferation and migration[J]. J Biol Chem,2008,283:22952-22961.
    [70] Mamidipudi V, Dhillon NK, Parman T, Miller LD, Lee KC, Cartwright CA. RACK1inhibitscolonic cell growth by regulating Src activity at cell cycle checkpoints[J]. Oncogene,2007,26:2914-2924.
    [71] Yaka R, Thornton C, Vagts AJ, Phamluong K, Bonci A, Ron D. NMDA receptor function isregulated by the inhibitory scaffolding protein, RACK1[J]. Proc Natl Acad Sci USA,2002,99:5710-5715.
    [72] Hermanto U, Zong CS, Li W, Wang LH. RACK1, an insulin-like growth factor I (IGF-I)receptor-interacting protein, modulates IGF-I-dependent integrin signaling and promotes cellspreading and contact with extracellular matrix[J]. Mol Cell Biol,2002,22:2345-2365.
    [73] Ceci M, Gaviraghi C, Gorrini C, Sala LA, Offenhauser N, Marchisio PC, Biffo S. Release ofeIF6(p27BBP) from the60S subunit allows80S ribosome assembly[J]. Nature,2003,426:579-584.
    [74] Leonidas C Platanias. Mechanisms of type Ⅰ and type Ⅱinterferon mediated signalling[J].IMMUNOLOGY,2005,5:375-386.
    [75] Jacqueline Bromberg, James E Darnell Jr. The role of STATs in transcriptional control andtheir impact on cellular function[J]. Oncogene,2000,19:2468-2473.
    [76] Gallina, A., F. Rossi, and G. Milanesi. RACK1binds HIV-1Nef and can act as a Nef-proteinkinase C adaptor[J]. Virology.2001,283:7–18.
    [77] Sang, N., A. Severino, P. Russo, A. Baldi, A. Giordano, A. M. Mileo, M. G. Paggi, and A. DeLuca. RACK1interacts with E1A and rescues E1Ainduced yeast growth inhibition andmammalian cell apoptosis[J]. J. Biol. Chem.2001,276:27026–27033.
    [78] Anna Usacheva, Rebecca Smith, Richard Minshall, Gleb Baida, Seyha Seng, Ed Croze, OscarColamonici. The WD Motif-containing Protein Receptor for Activated Protein Kinase C(RACK1) Is Required for Recruitment and Activation of Signal Transducer and Activator ofTranscription1through the Type I Interferon Receptor[J]. The journal of biological,2001,276(25):22948-22953.
    [79]姚伙旺.与人巨细胞病毒UL23蛋白相互作用的宿主蛋白分子筛选与鉴定[J],暨南大学2006年硕士论文.
    [80] Kubota T, Yokosawa N, Yokota S, Fujii N, Association of Mumps virus V protein withRACK1results in dissociation of STAT1from the alpha interferon receptor complex[J].Virology.2002,12676–12682.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700