水下爆炸兴波及其对结构物作用的数值模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文基于势流理论,利用边界元方法,对水下爆炸兴波及其对结构物作用问题进行了数值研究。
     首先,对无限水深时域格林函数进行了推导,并介绍了时域格林函数的快速算法,用于接下来的时域计算。
     其次,基于一种简单的气泡模型的假定(Rayleigh气泡模型)建立起水下爆炸气泡脉动的数学模型,并通过求解气泡脉动微分方程得到气泡脉动的源强。
     然后,在势流理论的基础上,应用满足线性自由水面条件的定常移动源时域格林函数,代入气泡脉动源强对水下爆炸兴波进行数值模拟。
     之后,将时域格林函数法应用于计算结构物在爆炸兴波作用下的绕射问题。本文给出了无限水深中结构物在不同频率的规则波作用下的绕射问题,并将其与频域解得的结果进行比较,由此来验证数值方法的准确性。而后用前文计算的爆炸兴波代替规则波,给出了结构物受爆炸兴波作用产生的波浪力的计算算例,并初步探讨了波浪力随炸药量、炸药埋深及结构物与爆炸源水平距离的变化规律。
     最后在前文工作的基础上,将爆炸兴波对固定结构物作用问题拓展到对漂浮结构物作用问题的计算。同时,本文给出了无限水深中的结构物在不同频率的规则波作用下的绕射-辐射问题,并将其与频域结果进行比较,由此来验证数值方法的准确性,并给出了结构物在爆炸兴波作用下的绕射-辐射问题的相应算例。通过对计算结果的分析总结了在爆炸兴波作用下,结构物的运动响应与炸药量、炸药埋深及结构物与爆炸源水平距离等的关系。
Boundary element method based on potential flow theory has been developed to solve the waves induced by underwater explosion and their action on structures in the time domain.
     A fast algorithm for time-domain Green function at infinite depth and its derivatives are presented for following calculations.
     Next, based on the assumption of a simple bubble model (Rayleigh bubble model), bubble dynamics equations have been established for the source strength of the bubble pulsation.
     Water waves caused by underwater explosion have been simulated by the evaluations of time-domain Green function with the source strength replaced by the bubble pulsation on the basis of potential flow theory.
     Then the actions of underwater explosion induced water waves on fixed structures have been numerically analyzed. The calculation model is first examined by the diffraction of simple shape body (hemi-sphere and truncated cylinder) in regular waves. The computed wave forces are compared with the frequency-domain results, and they agree very well. The diffraction problems of fixed structures under waves caused by underwater explosion are considered next. A relationship between wave forces and explosive charge or explosive embedment depth or horizontal distance between explosive source and structures has been studied later.
     Finally, diffraction-radiation problems are examined in context of simple shape body (submerged sphere and floating box) and compared with the frequency-domain results. The parameter analysis of explosive charge, explosive embedment depth and horizontal distance between explosive source and structures is implemented.
引文
[1]Cole R H. Underwater explosion[M]. Princeton:Princeton University Press,1948.
    [2]Underwater explosion research[C]. Washington, D.C.:1950.
    [3]Snay H G. Hydrodynamics of underwater explosion[C]. Washington, D.C.:Sympsium on Naval Hydrodyanmics,1957.
    [4]恽寿榕,涂侯杰,梁德寿,等.爆炸力学计算方法[M].北京:北京理工大学出版社,1995.
    [5]Boulain K A, Choe J Y, Irwin K A, et al. Micowave absorption for water plume density measurements[J]. American Institute of Physics.1998,69(01):193-196.
    [6]Szymczak W G, Wardlaw A B. Numerical methods for explosion plume predictions[R]. Dahlgren: Naval Surface Warfare Center,1993.
    [7]Connor J G, Higdon C E. Water barrier line charge plume video analysis[R]. Dahlgren:Naval Surface Warfare Center,1996.
    [8]Higdon C E, Szymczak W G, Connor J G. Analysis of water barrier line charge plume measurements[R]. Dahlgren:Naval Surface Warfare Center,1998.
    [9]Szymczak W G, Higdon C E. Model validations and predictions for water barrier defense[R]. Dahlgren:Naval Surface Warfare Center,1998.
    [10]Kamegai M. A Study of Near-Surface and Underwater Explosions by Computer Simulations [R]. Lawrence Livermore National Laboratory,1994.
    [11]Swisdak M M. Explosion Effects and Properties:Part Ⅱ-Explosion Effects in Water[R]. NSWC, 1978.
    [12]王林旭,鄢来斌,李思昆.水中爆炸产生的水柱运动实时模拟[J].计算机工程与科学.2004(01):1524-1531.
    [13]沈国光,李德筠.港池爆炸兴波响应的计算方法[J].海洋工程.1994(03):73-82.
    [14]沈国光,叶春生.任意波面的基元波分解[J].天津大学学报.2002(01):126-129.
    [15]丁珏,刘家骢.近水面水下爆炸初期水雾形成过程的数值研究[J].爆破器材.2002(05):1-5.
    [16]梁卓中,戴毓修,刘子豪.炸药水下爆炸效应之研究[J].台湾:中国造船及机械工程学刊.2005(01):39-56.
    [17]梁卓中,刘子豪,曾韦铭.浅水深爆炸水柱模型之验证与评估[J].台湾:中国造船及机械工程学刊.2006(01):14-33.
    [18]刘文华,罗松林,顾文彬,等.单个球形装药浅层水中爆炸冲击波特性的研究[J].工程爆破.1999,5(03):1-5.
    [19]顾文彬,阳天海,叶序双,等.单个装药浅层水中沉底爆炸的数值模拟[J].解放军理工大学学报(自然科学版).2000(03):51-55.
    [20]孙百连,顾文彬,蒋建平,等.浅层水中沉底的两个装药爆炸的数值模拟研究[J].爆炸与冲击.2003(05):460-465.
    [21]张鹏翔,顾文彬,叶序双.浅层水中爆炸冲击波切断现象浅探[J].爆炸与冲击.2002(03):221-228.
    [22]Thorne R C. Multiple expansions in the theory of surface waves [J]. Proceedings of the Cambridge Philosophical Society.1953,49:709-716.
    [23]Black J L, Mei C C, Bray M C G. Radiation and scattering of water waves by rigid bodies [J]. Journal of Fluid Mechanics.1971,46:151-164.
    [24]Havelock T H. The pressure of water waves upon a fixed obstacle[J]. Proceeding of the Royal Society of London.1940,175:409-421.
    [25]Maccamy R C, Fuchs R A. Wave forces on pile:a diffraction theory[R]. US Army Coastal Engineering Research Center,1954.
    [26]Garrett C J R. Wave forces on a circular dock[J]. Journal of Fluid Mechanics.1971,46(01):129-139.
    [27]Yeung R W. Added mass and damping of a vertical cylinder in finite-depth waters[J]. Applied Ocean Research.1981,3(03):119-133.
    [28]Malenica S, Clark P J, Molin B. Wave and current forces on a vertical cylinder free to surge and sway[J]. Applied Ocean Research.1995,17:79-90.
    [29]Hulme A. The wave forces acting on a floating hemisphere undergoing forced periodic oscillation[J]. Journal of Fluid Mechanics.1982,121:446-463.
    [30]Wang S. Motion of a spherical submarine in waves[J]. Ocean Engineering.1986,13:249-271.
    [31]Wu G X, Eatock T R. The exciting force on a submerged spheroid in regular[J]. Journal of Fluid Mechanics.1987,182:411-426.
    [32]Wu G X, Eatock T R. On radiation and diffraction of surface waves by submerged spheroids[J]. Journal of Ship Research.1989,33:84-92.
    [33]Linton C M. Radiation and diffraction of water waves by a submerged sphere in finite depth[J]. Ocean Engineering.1991,18(1/2):61-74.
    [34]Wu G X, Witz J A, Ma Q, et al. Analysis of wave induced forces acting on a submerged sphere in finite water depth [J]. Applied Ocean Research.1994,16:353-361.
    [35]Rahman M. Simulation of diffraction of ocean waves by a submerged sphere in finite depth[J]. Applied Ocean Research.2001,23:305-318.
    [36]Lopes D B S, Sarmento A J N A. Hydrodynamics coefficients of a submerged pulsating sphere in finite depth[J]. Ocean Engineering.2002,29:1391-1398.
    [37]Spring B H, Monknever P L. Interaction of plane waves with vertical cylinders[C]. Copenhagen: Proc 14th Int. Con. on Coastal Engineering,1974.
    [38]Linton C M, Evans D V. The interaction of waves with arrays of vertical circular cylinders[J]. Journal of Fluid Mechanics.1990,215:549-569.
    [39]Yeung R W. Numerical methods in free surface flows[J]. Ann. Rev. Fluid Mech.1982,4:395-442.
    [40]Mei C C. Numerical methods in water wave diffraction and radiation[J]. Ann. Rev. Fluid Mech.1978, 10:393-416.
    [41]Mei C C. The applied dynamics of ocean surface wave[M]. Singapore:World Scientific Publishing Company,1989.
    [42]Harlow F, Shannon J, Welch J. A computing technique for solving viscous, incompressible, transient fluid problems invoving free surface[R]. Los Alamos, NM:Los Alamos Scientific Laboratory,1965.
    [43]Wang Y X, Su T C. Computation of wave breaking on slopine beach by VOF method [C]. Singapore: Proceedings of the Third International Offshore and Polar Engineering Conference,1993.
    [44]邹志利,邱大洪,王永学.VOF方法模拟波浪槽中二维非线性波[J].水动力学研究与进展(A辑).1996(01):93-103.
    [45]Brebbia C A, Telles J C F, Wrobel L C. Boundary element techniques[M]. Berlin:Springer,1984.
    [46]Hess J L, Simth A M O. Calculation of nonlifting potential flow about arbitrary three-dimensional bodies[J]. Journal of Ship Research.1964(08):22-24.
    [47]Garrison C J. Hydrodynamic loading of large offshore structures:three-dimensional source distribution methods[M]. Numerical Methods in Offshore Engineering, Zienkiewicz O C, Lewis R W, Stagg K G, Chichester:A Wiley-Interscience Publication,1978,87-140.
    [48]Chau F P. The second order velocity potential for diffraction of waves by fixed offshore structure[R]. London:University College London,1989.
    [49]Liu Y H, Kim C H, Kim M H. The computation of mean drift forces and wave run-up by higher-order boundary element method[C]. Edinburgh, United Kingdom:Proceedings of the First International Offshore and Polar Engineering Conference,1991.
    [50]Eatock T R, Chau F P. Wave diffraction theory:some developments in linear and nonlinear theory[J]. Journal of Offshore Mechanics and Arctic Engineering.1992,114:185-194.
    [51]Teng B, Eatock T R. New higher-order boundary element methods for wave diffraction/radiation[J]. Applied Ocean Research.1995,17:71-78.
    [52]Teng B, Kato S. A method for second-order diffraction potential from an axisymmetric body[J]. Ocean Engineering.1999,26:1359-1388.
    [53]Kashiwagi M. A b- spline galerkin scheme for computing wave forces on a floating very large elastic plate[C]. Honolulu:7th International Offshore and Polar Engineering Conference,1977.
    [54]Maniar H D. A b-spline based higher order method in 3D[C]. Oxford:The 10th International Workshop on Water Waves and Floating Bodies,1995.
    [55]Teng B, Bai W, Xiang Y. A b-spline based BEM and its application in predicting wave forces on 3D bodies[J]. China Ocean Engineering.1999,13(03):257-264.
    [56]Korsmeyer F T, Lee C H, Newman J N, et al. The analysis of wave effects on tension-leg platforms [C]. Houston, Texas:Proceeding Conference on Offshore Mechanics and Arctic Engineering, 1988.
    [57]Molin B. Second order diffraction loads up three dimensional bodies[J]. Applied Ocean Research. 1979,1:197-202.
    [58]Lighthill. Waves and hydrodynamics loading[C]. Proceeding 2nd International Conference Behavior of Offshore Structures,1979.
    [59]Eatock T R, Hung S M. Second order diffraction forces on a vertical cylinder in regular waves[J]. Applied Ocean Research.1987,1:19-30.
    [60]缪国平,刘应中.大直径圆柱上的二阶波浪力[J].中国造船.1987(03):14-26.
    [61]Eatock T R, Hung S M, Chau F P. On the distribution of second order pressure on a vertical circular cylinder[J]. Applied Ocean Research.1989,11(04):183-193.
    [62]Newman J N. Second-harmonic wave diffraction at large depths[J]. Journal of Fluid Mechanics.1990, 213:59-70.
    [63]Wu G X, Eatock T R. The second order diffraction force on a horizontal cylinder in finite water depth[J]. Applied Ocean Research.1990,12(03):106-111.
    [64]邹志利,戴遗山.回转体二阶绕射压力和绕射力[J].中国造船.1992(01):3-20.
    [65]Huang J B, Eatock T R. Semi-analytical solution for second-order wave diffraction by a truncated circular cylinder in monochromatic waves[J]. Journal of Fluid Mechanics.1996,319:171-196.
    [66]Kim M H, Yue D K P. The complete second-order diffraction solution for an axisymmetric body: Part1 monochromatic incident waves[J]. Journal of Fluid Mechanics.1989,200:235-264.
    [67]Kim M H, Yue D K P. The complete second-order diffraction solution for an axisymmetric body: Part2 dichromatic incident waves and body motions[J]. Journal of Fluid Mechanics.1990,211:557-593.
    [68]滕斌,李玉成,董国海.双色入射波下二阶波浪力响应函数[J].海洋学报(中文版).1999(02):115-123.
    [69]Malenica S, Molin B. Third-harmonic wave diffraction by a vertical cylinder[J]. Journal of Fluid Mechanics.1995,302:203-229.
    [70]Teng B, Kato S. Third order wave force on axisymmetric bodies[J]. Ocean Engineering.2002,10: 511-522.
    [71]Finkelstein A. The initial value problem for transient water waves[J]. Communications on Pure and Applied Mathematics.1957,10:511-522.
    [72]Cummins W E. The impulsive response and ship motions[J]. Schiffstechnik.1962,9:124-135.
    [73]Stoker J J. Water waves[M]. New York:Interscience Publishers Inc.,1958.
    [74]Ogilvie T F. Recent progress toward the understanding and prediction of ship motion[C]. Bregen, Norway:Proceeding of the 5th Symposium of Naval Hydrodynamics,1964.
    [75]Kotik J, Lurye J. Some topics in the theory of coupled ship motions[C]. Washington, D.C.: Proceeding of the 5th Symposium of Naval Hydrodynamics,1964.
    [76]Wehausen J V. Initial value problem for the motion in an undulating sea of a body with fixed equilibrium position[J]. The Journal of Engineering Mathematics.1967,1(01):1-19.
    [77]Van Oortmerssen G. The motion of a moored ship in waves[R]. Wageningen, the Netherlands: Netherlands Ship Model Basin,1979.
    [78]Chapman R B. Large amplitude transient motion of two-dimensional floating bodies[J]. Journal of Ship Research.1979,29(01):20-31.
    [79]Chapman R B. Time-domain method for computing forces and moment acting on three-dimensional surface-piercing hull with speed[C]. Paris:The 3rd International Conference on Numerical Ship Hydrodynamics,1981.
    [80]Ohmatsu S. On a wave making theory of cylinders at the early stage of oscillation[J]. Journal of the Society of Naval Architects of Japan.1973,134:75-84.
    [81]Zhang L, Dai Y S. Time-domain solutions for hydrodynamics forces and moments acting on a 3-D moving body in waves[J]. Journal of Hydrodynamics.1993,5(02):110-113.
    [82]Adachi H, Ohmatsu S. On the influence of irregular frequencies in the integral equation solutions of the time-dependent free surface problems[J]. The Journal of Engineering Mathematics.1979:97-119.
    [83]Yeung R W. The transient heaving motion of floating cylinders[J]. Journal of Engineering Mathematics.1982,116:97-119.
    [84]Newman J N. Transient asymmetric motion of a floating cylinder[J]. Journal of Fluid Mechanics. 1985,157:17-33.
    [85]Korsmeyer F T. The first and second order transient free surface wave radiation problems[D]. Massachusetts Institute of Technology,1988.
    [86]Liapis S J. Time-domain analysis of ship motions[D]. Ann Arbor, Michhigan:University of Michigan,1986.
    [87]Beck R F, Liapis S J. Transient motions of floating bodies at zero forward speed[J]. Journal of Ship Research.1987,31(03):164-176.
    [88]Liapis S J, Beck R F. Seakeeping computation using time-domain analysis[C]. The 4th International Conference on Numerical Ship Hydrodynamics,1985.
    [89]King B K. Time-domain analysis of wave exciting forces on ships and bodies[D]. Ann Arbor, Michigan:University of Michigan,1988.
    [90]King B K, Beck R F, Magee A R. Seakeeping calculations with forward speed using time-domain analysis[C]. the Hague, the Netherlands:Proceeding of 17th Symposium on Naval Hydrodynamics,1988.
    [91]Zhu D X, Katory M. A time-domain prediction method of ship motions[J]. Ocean Engineering.1997, 25(09):781-791.
    [92]Beck R F, Magee A R. Time-domain analysis for predicting ship motions[C]. Amsterdam, the Netherlands:Proceedings Symposium on the Dynamics of University,1990.
    [93]Lin W M, Yue D K P. Numerical solutions for large-amplitude ship motions in the time domain[C]. Ann Arbor, Michhigan:Proceeding 18th Symposium on Naval Hydrodynamics,1990.
    [94]Fonseca N, Soares C. Time-domain analysis of large-amplitude vertical ship motions and wave loads[J]. Journal of Ship Research.1998,42(02):139-153.
    [95]Longuet-Higgins M S, Cokelet C D. The deformation of steep surface waves on water:I. A numerical method of computation[C]. London:Proc. R. Soc.,1976.
    [96]Beck R F. Time-domain computations for floating bodies[J]. Applied Ocean Research.1994(16): 267-282.
    [97]Cointe R. Numerical simulation of a wave channel[J]. Analysis with Boundary Elements.1990,7(04): 167-177.
    [98]Dommermuth D G, Yue D K P. Numerical simulations of nonlinear axisymmetric flows with a free surface[J]. Journal of Fluid Mechanics.1987,178:195-219.
    [99]Grilli S T, Skourup J, Svendsen I A. An efficient boundary element for nonlinear water waves[J]. Analysis with Boundary Elements.1989,6(02):97-107.
    [100]Isaacson M. Nonlinear-wave effects on fixed and floating bodies [J]. Journal of Fluid Mechanics. 1992,120:267-281.
    [101]Tanizawa K. A nonlinear simulation method of 3-D body motions in waves[J]. Jour. Society of Naval Arch. Japan.1995,178:179-191.
    [102]Yeung R W, Vaidhyanathan M. Non-linear interaction of water waves with submerged obstacles[J]. Inte. Jour. Num. Methods in Fluid.1992,14:1111-1130.
    [103]Kim C H, Clement A H, Tanizawa K. Recent research and development of mwmerical wave tanks- a review[J]. Jour. Offshore and Polar Eng.1999,9(04):241-256.
    [104]Yeung R W. A singularity distribution method for free surface flow problems with an oscillating body[D]. Berkeley:University of California,1973.
    [105]Anderson P, He Z. On the calculation of two-dimensional added mass and damping coefficients by simple Green's function technique[J]. Ocean Engineering.1985,12(05):425-451.
    [106]贺五洲,戴遗山.简单Green函数法求解三维水动力系数[J].中国造船.1986(02):3-17.
    [107]Isaacson M, Cheung K F. Second order wave difFFaction around two-dimensional bodies by time-domain method[J]. Applied Ocean Research.1991,13(04):175-186.
    [108]Isaacson M, Ng J Y T. Second-order wave radiation of three-dimensional bodies by time-domain method[J]. International Journal Offshore of Polar Engineering.1993,4:264-272.
    [109]王赤忠,叶恒奎,石仲坤.用时域法求解二维二阶非线性水波[J].海洋工程.1999(01):9-17.
    [110]王赤忠,叶恒奎,石仲堃.三维二阶水波绕射问题的有限元时域计算[J].海洋工程.2000(01):13-19.
    [111]Bai W, Teng B. Second-order wave diffraction around 3-D boies by a time-domain method[J]. China Ocean Engineering.2001,15(01):73-85.
    [112]戴遗山.舰船在波浪中运动的频域与时域势流理论[M].北京:国防工业出版社,1998.
    [113]刘应中,缪国平.船舶在波浪上的运动理论[M].上海交通大学出版社,1987.
    [114]Lunde J K. On the linearized theory of wave resistance for displacement ships in steady and accelerated motion[R]. Trans. SNAME,1951.
    [115]Michell K W H. The wave resistance of ship[J]. Philosophical Magazine.1898,45(05):106-123.
    [116]Smith A M O, Giesing J P, Hess J L. Calculation of waves and wave resistance for bodies moving on or beneath the surface of the sea[R]. Long Beach, California:Douglas Aircraft Co.,1963.
    [117]Hess J L, Smith A M O. Calculation of potential flow about arbitrary bodies[J]. Progress in Aeronautical Science.1967,8:1-138.
    [118]Shen H T, Farell C. Numerical calculation of the wave integrals in the linearized theory of water wave[J]. Journal of Ship Research.1977,21(01):1-10.
    [119]Noblesse F. The fundamental solution in the theory of steady motion of a ship[J]. Journal of Ship Research.1977,21:82-88.
    [120]Noblesse F. On the fundamental solution in the theory of steady motion of ships[J]. Journal of Ship Research.1978,22:212-215.
    [121]Newman J N. The evaluation of free-surface Green functions[C]. Washington D.C.:Proc.4th intl. conf. Numer. Ship Hydrodynamics,1985.
    [122]Newman J N. The approximation of free-surface Green functions[C]. Cambridge:Wave Asymptotic. Manuscript for the Fritz Ursell Retirement Meeting,1990.
    [123]黄德波.时域Green函数及其导数的数值计算[J].中国造船.1992(04):18-27.
    [124]叶恒奎.三维时域波动函数的一种数值处理方法[J].华中理工大学学报.1994(04):58-63.
    [125]段文洋,戴遗山.二维时域格林函数的数值计算[J].水动力学研究与进展A辑.1996(03).
    [126]Clement A H. An ordinary differential equation for the Green function of time-domain free-surface[J]. Journal of Engineering Mathematics.1998,33:201-217.
    [127]韩凌.应用时域格林函数方法模拟有限水深中波浪对结构物的作用[D].大连:大连理工大学,2005.
    [128]戴愚志,余建星,郭海涛.时域有限水深格林函数及其导数的数值计算[J].船舶力学.2006(01).
    [129]孙雷.船兴波及其对结构物作用的研究[D].大连:大连理工大学,2009.
    [130]Rayleigh L. On the pressure developed in a liquid during the collapse of a spherical cavity[J]. Philos. Mag.1917,34:94-98.
    [131]Best J P, Kucera A. A numerical investigation of non-spherical rebounding bubbles[J]. Journal of Fluid Mechanics.1992,245:137-154.
    [132]Vernon T A. Whipping response of ship hulls from underwater explosion bubble loading[R]. Defense Research Establishment Atlantic,1986.
    [133]Zong Z, Lam K Y. The flexural response of a submarine pipeline to an underwater explosion bubble[J]. Journal of Applied Mechanics.2000,67(04):758-762.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700