高速航行体通气空泡流动研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
潜射导弹具有隐蔽性和机动性的特点,是极其重要的水下武器装备。潜射导弹水下垂直发射过程中,随着环境压力的变化和导弹的加速运动,不可避免的会产生自然空泡。自然空泡对导弹的流动载荷、结构振动和噪声等产生不良影响。
     采用通气空泡技术获得稳定空泡来消除自然空泡的不良影响,是导弹水下发射的一项新技术。国内将通气空泡技术应用于导弹水下发射的研究刚刚起步,虽然对于潜射导弹的空化现象已经有了一定的研究,但对于弹体通气空泡流动的温度效应与尺度效应认识不足。本文就此开展了理论分析与数值模拟研究,对潜射导弹垂直发射上升过程重力场中的通气空泡流动相关问题进行了研究。
     主要研究内容与成果如下:
     1.针对潜射导弹水下垂直运动这一复杂的物理过程,将其简化为轴对称问题,以CFD软件FLUENT12及其二次开发为平台,基于Reynolds平均Navier-Stokes方程和Mixture多相流模型,耦合自然空化模型,建立了气、汽、液多相流的空泡流数学模型。
     2.由于导弹在垂直发射过程中的运动导致计算域的不断变化,采用动网格技术。研究了网格依赖性,以及差分格式、空泡模型与湍流模式的影响,并进行分析对比。
     3.导弹垂直发射上升过程中(包括补气阶段)通气空泡的演化过程大致分成三个阶段。初始阶段仅有少量的气体覆盖于通气孔后的一小段区域,压力的极大值位于弹体前驻点处,初始空泡对流场的影响较小,弹体外围呈现明显的静水压强分布;第二阶段,空泡增长较快,长度增长到接近1/4 L。由于弹体一直做匀加速运动,其头部的压力梯度和尾部的低压区梯度逐渐增大,但由于此时尾端的环境水压较高,没有观察到明显的自然空化现象;补气运动阶段的通气质量流量接近原来的两倍,长度接近1/2 L,在高速航行体尾部可以观察到明显的汽水混合物云团。
     4.在通气空泡形成过程中,弹体表面的压力系数随着环境压力的降低不断减小,在空化区压力系数基本恒定,在空泡闭合区域后弹体柱段表面压力系数不断增加。通气空泡的形成改变了弹体表面的压力分布,在空泡前沿和闭合区均存在较大的压力梯度。压力恢复的峰值开始由于逆压梯度的增加逐渐增大,而后受环境压力减小的影响而降低。
     5.在满足模型几何相似、Fr数相等、空化数相等的相似条件的情况下,模型缩尺减小,空泡的长度随之有一定程度的减小。同时摩擦阻力系数随比尺的减小而增大,压差阻力系数变化不大。对5组缩比算例积分通气质量,表明模拟结果比理论值偏小。
     6.在高温工况下,空化区尾部汽水混合区厚度明显增大。300K时,气体在通气孔喉嘴处温度达到最低值;在500K—2000K时,温度的最低值出现在通气孔上方,沿速度方向大约5倍通气孔直径的区域。随着通气温度的增加,通气孔附近的压力系数脉动增大,空泡主体的压力系数随温度增加而逐渐增大,但空泡长度受高温燃气影响反而有所增长。
     本文通过大量工况的计算和分析,研究了潜射导弹垂直发射上升过程重力场中的通气空泡流动问题,积累了数据,深化了对相关机理的认识,具有工程应用价值,并为进一步研究提供理论基础和技术手段。
Underwater launched missile is an important military equipment, which has the characteristics of concealment and flexibility, it is inevitable to produce natural cavity while the ambient pressure varies and missile accelerates. The natural cavity has an adverse effect upon flow load, structural vibration and noise. Ventilated cavity technique is adopted to obtain stable cavity to eliminate the adverse effects of natural cavity. Although there’re some researches on cavity upon the surface of the sub-launched missile, the understanding is still inadequate in temperature effect and scale effect in respect to projectile body’s ventilated cavity. This paper therefore carries out its theoretical analysis and numerical simulation on this part. The unsteady cavitating flow in a longitudinal gravity force field was studied by using numerical simulation method during vertical launch submarine missile rising.
     The primary results and innovations are given as follows:
     1. The complex physical process of vertical motion of vertical launch submarine missile is simplified as a axisymmetrical problem ,by CFD software FLUENT12 and secondary development platform, based on the Navier-Stokes equations and Mixture multiphase flow model, coupled natural cavitation model, established the multiphase flow model of gas, vapor and water.
     2. The dynamic mesh is adopted for the vertical movement of launching missile led to the changing of computational domain. Also, the dependence of the grids, the difference schemes, cavity models and the effect of turbulence models, were analyzed and compared.
     3. The formation of ventilated cavity during vertical launching missile (including the stage of supplementary gas) can be divided into three stages. In the initial stage, only a small amount of gas covers small area after the nozzle, the initial cavity has little effect on flow field and hydrostatic pressure distribution shows obviously at the periphery of the missile ;The second stage , the cavity grows rapidly, length of which increased to nearly 1 / 4 L, obvious natural cavitation does not be observed because of high environmental pressure;In the stage of supplementary gas, the ventilated mass flow rate becomes twice of the previous two stages and cavity length becomes one half of the previous two stages. Clouds of water and vapor mixture can be observed at the end of the high speed underwater vehicle.
     4. In ventilated cavity formation process, the projectile surface pressure coefficient decreases with the decreasing of ambient pressure, and increases along the cylinder after the closed region. The peak of recovery pressure begins increasing for the adverse pressure gradient increases and then decreases for the effect of environmental pressure reduction.
     5. By meeting the conditions of geometric similarity model, same Fr number and cavitation number, the length of the cavity has a certain degree of decrease with the model scale decreases. Integral the mass flux of these 5 cases, indicates that the simulation results are smaller than the analytical value.
     6. In high temperature conditions, the thickness of water and vapor mixture significantly increases at the end of the cavitation zone. In 300K, the lowest temperature of gas appears at the vent hose nozzle; In 500K-2000K, it appears in the top of the nozzle along the velocity direction about 5 times of the diameter of the nozzle area. As the ventilation temperature increases, the main body cavity pressure coefficient increases gradually with increasing temperature, but the cavity length increases because of the influence of high temperature gas.
     By virtue of numerous calculation and analysis carried out in the present work, the knowledge of complex ventilated cavitating flows with gas, vapor and water multiphase are deepened, important data is accumulated , the understanding of related mechanism has been enhanced ,and it will be worthy for further studies.
引文
[1] Michel J. M.,“Fundamentals of cavitation”, Wuxi, P. R. of China, 1995
    [2]黄继汤,“空化与空蚀的原理及应用”,清华大学出版社,1991.
    [3] Levi‐Civita T.,“Scie e leggi di resistenzia”, Rend. Circ. Mat. Palermo, 1907, Vol. 18, pp. 1‐37.
    [4] Villat H.,“Sur la validatédes solutions de certains problèmes d’hydrodynamique”, J. Math., Pures Appl., 1914, Vol. 10, pp. 231‐290.
    [5] Riabouchinsky D.,“On steady flow motions with free surfaces”, Proc. London Math. Soc., 1920, Vol. 19, pp. 206‐215.
    [6] Kreisel G.,“Cavitation with finite cavitation numbers”, Admirally Res. Lab. Rep., R1/H36, 1946.
    [7] Joukowshy N. E.,“I. A modification of Kirchhoff’s method of determining a two‐dimensional motion of a fluid given a constant velocity along an unknown streamline, II. Determination of the motion of a fluid for any condition given on a streamline”, Mat. Sbornik ( Rec. Math.), 1890, Vol. 15, pp. 121‐278.
    [8] Wu T. Y.,“A wake model for free streamline theory, part 1: Fully and partially developed wake flows and cavity flows past an oblique flat plate”, J. Fluid Mech. 1962, Vol. 13, pp. 161‐181.
    [9] Apelt D. J.,“Some studies of fluid flow at low Reynolds numbers”, [Thesis], Oxford Univ., 1957.
    [10] Tulin M. P.,“Supercavitating flows‐small perturbation theory”, J. Ship Res., 1964, Vol. 7, No. 3, pp. 16‐37.
    [11] Brennen C. E.,“Cavitation and bubble dynamics”, Oxford, New York, 1995.
    [12]汤福坤,何友声,“空泡流理论”,上海交通大学, 1986.
    [13] Kinnas, S. A. and Fine, N. E.,“Non‐linear analysis of the flow around partially or super‐cavitating hydrofoils on a potential based panel method”, Proc. IABEM‐90 Symp. Int. Assoc. for Boundary Element Methods, Rome, 1991, pp. 289‐300.
    [14] Leehey, P.,“Supercavitating hydrofoil of finite span”, Proc. IUTAM Symp. on Non‐steady Flow of Water at High Speeds, Leningrad, 1971, pp. 277‐298.
    [15] Uhlman, J. S.,“A partially cavitated hydrofoil of finite span”, ASME J. Fluids Eng., 1978, Vol. 100, No. 3, pp. 353‐354.
    [16] Geust, J. A.,“Linearized theory for partially cavitated hydrofoils”, Int. Shipbuilding Prog., 1959,Vol. 6, No. 60, pp. 369‐384.
    [17] Furuya, O.,“Three‐dimensional theory on supercavitating hydrofoils near a free surface”, J. Fluid Mech., 1975, Vol. 71, pp. 339‐359.
    [18] Plesset, M. S.,“The dynamics of cavitation bubbles”, J. Appl. Mech., 1949, Vol. 16, pp. 277.
    [19] Plesset, M. S. and Prosperetti, A.,“Bubble dynamics and cavitation”, Annu. Rev. Fluid Mech., 1977,Vol. 9, pp. 145‐185.
    [20] Prosperetti, A., Crum, L. A. and Commander, K. W.,“Nonlinear bubble dynamics”, J. Acoust. Soc.,1988, Vol. 83, pp. 502‐514.
    [21] Tsao, H. K. and Koch, D. L.,“Observation of high Reynolds number bubbles interacting with a rigid wall”, Phys. Fluids, 1996, Vol. 9, No.1, pp. 44‐55.
    [22]董世汤,“有厚度水翼局部空泡流的理论解”,中国造船, 1983, pp. 15‐27.
    [23] Silberman E., Song C. S.,“Instability of ventilated cavities”. J. Ship Res., 1961, Vol. 5, pp. 13‐33.
    [24] Song C. S.,“Pulsation of ventilated cavities”. J. Ship Res., 1962, Vol. 5, pp. 8‐20.
    [25] Kubota, A., Kato, H. and Yamaguchi, H., et al,“Unsteady structure measurement ofcloudcavitation on a foil section using conditional sampling technique”, J. Fluid Eng., 1989, Vol. 111, pp.204‐210.
    [26] Hart, D. P., Brennen, C. E. and Acosta, A. J.,“Observations of cavitation on a three‐dimensional oscillating hydrofoil”, ASME Cavitation and Multiphase Flow Forum., 1990, Vol. 98, pp. 49‐52.
    [27] Ceccio, S.,“Surface dynamics of attached cavities”, ASME Dynamics of Bubbles and Vortices Near a Free Surface, Printed in U.S.A., N.Y. 1991, pp. 9‐15.
    [28] Stutz, B. and Reboud, J.L.,“Two‐phase flow structure of sheet cavitation”, J. Phys. Fluids, 1996,Vol. 9, No.12, pp. 3678‐3686.
    [29] Kawanami, Y., Kato, H. and Yamaguchi H.,“Three‐dimensional characteristics of the cavities formed on a two‐dimensional hydrofoil”, Third International Symposium on Cavitation, April 1998, Grenoble, France, 1998, pp. 191‐196.
    [30]邓华,“非定常空泡特征的实验研究”, [学士学位论文],上海交通大学, 1988
    [31]谢正桐,何友声,朱世权,“零攻角和小攻角下带空泡轴对称细长体的水动力计算”,水动力学研究与进展, A辑, 1996, Vol. 11, No. 6, pp. 681‐689.
    [32]谢正桐,何友声,“小攻角下轴对称细长体的充气肩空泡试验研究”,实验力学, 1999, Vol. 14,No. 3, pp. 279‐287.
    [33]谢正桐,何友声,朱世权,“小攻角带空泡细长体的试验研究”,水动力学研究与进展, A辑,2001, Vol. 16, No. 3, pp. 374‐381
    [34]何友声,刘桦,赵岗,“二维空泡流的脉动性态研究”,力学学报, 1997, Vol. 29, No. 1, pp. 1‐7.
    [35]刘桦,何友声,赵岗,“轴对称空泡流的脉动性态研究”,上海力学, 1997, Vol. 18, No. 2, pp.99‐105.
    [36] Feng Xue‐mei, Lu Chuan‐jing, Hu Tian‐qun,“Experimental research on a supercavitating slender body of revolution with ventilation”, Journal ofHydrodynamics, Ser. B, 2002, Vol. 14, No. 2, pp.17‐23.
    [37]颜开,史淦君,薛晓中等,“用Mackey方法计算鱼雷带空泡航行时的入水弹道”,弹道学报,1998, Vol. 10, No. 2, pp. 93‐96.
    [38] Rankine.W.J.,“On the mathematical theory of streamlines especially those with four foci and upwards”,Phil.Trans.,1871,Vol.161,pp.267‐304.
    [39] Reichardt.H.and Munzner.H.,“Rotationally symmetric source‐sink bodies with predominantly constant pressure distributions”,Arm.Res.Est Trans ,1950,No.1/50.
    [40] Doctors,L.J.,“Effects of a finite froude number on a super cavitating hydrofoil”,Journal of Ship Research,Vol.30,No.1,March 1986,pp.1‐11.
    [41] Kinnas S.A.,“Leading‐edge corrections to the linear theory of Partially cavitating hydrofoils”,Journal of ShiP Research,VOl.35,No3,Sept,1991,PP.15‐27.
    [42] Lee,C.S.,Kim,Y.G.and Lee,J.T.,“Apotential‐based panel method for the analysis of a two‐dimensional super‐or partially‐cavitating hydrofoil”,Journal of Ship Research,1992,Vol.36,No.2,pp.168‐181.
    [43] RoweA&Blottianx O,“Aspects of modeling Partially cavitating flow”,Journal of Ship Research.1993,Vol.37,PP.34‐48
    [44] Nishiyama,H.and Nishiyama,T.,“Dynamic transfer characteristics of partially cavitated hydrofoil cascade”,Organ Comm.,1980,Vol.1,pp.243‐254.
    [45] Nishiyama,H.and Nishiyama,T.,“Dynamic responses of partially cavitated hydrofoil cascade to axial gust in bubbly water”, Journal of Fluids Engineering, Transactions of the ASME,Sep,1984,Vol.106,No.3,pp.312‐318.
    [46] Efremov.I.I. and Semenenko.V.N.,“Calculation of the unsteady‐state hydrodynamic characteristics of a thin‐airfoil cascade in a gas flow”, Gidromekhanika , 1975, No.31, pp.3‐14.
    [47] Semenenko,V.N.,“Instability of a plane ventilated supercavity in an infinitestream”,Fluid Mechanics Research,1996,Vol.23,No.1‐2,pp.134‐143.
    [48] Semenenko,V.N.,“Instability and oscillation of gas‐filled supercavities”,Third International Symposium on Cavitation,April 1998, Grenoble, France, 1998,pp.25‐30.
    [49] Cheng Xiao‐jun, Lu Chuan‐jing,“On the partially cavitating flow around two‐dimensional hydrofoils”, Applied Mathematics and Mechanics, 2000, Vol. 21, No. 12, pp. 1450‐1459.
    [50]程晓俊,鲁传敬,“二维水翼的局部空泡流研究”,应用数学和力学, 2002, Vol. 21, No. 12, pp. 1310‐1318.
    [51]冷海军,鲁传敬,“轴对称体的局部空泡流研究”,上海交通大学学报, 2002, Vol. 36, No. 3, pp. 395‐398.
    [52]戚定满,鲁传敬,“空泡噪声的数值研究”,水动力学研究与进展, A辑, Vol. 16, No. 1, pp. 9‐17.
    [53] Delannoy,Y.and Kueny,J.L.,“Two‐phase flow approach in unsteady cavitation modeling”, ASME Cavitation and Multiphase Flow Forum, Toronto, June 1990,Vol.140,pp.23‐29.
    [54] Kubota.A.,Kato,H.and Yamaguchi,H.,“A new modeling of cavitating flows:a numerical study of unsteady cavitation on a hydrofoil section”, J.Fluid Mech., 1992, Vol.240,pp.59‐96.
    [55] Berntsen, G. S., Kjeldsen, M. and Arndt, R‐E. A.,“Numerical modeling of sheet and tip vortex cavitation with Fluent 5”, Fourth International Symposium on Cavitation: session B5.006, 2001.
    [56] Kunz, F. R., Siebert, B. W., Cope, W. K., et al,“A coupled phasic exchange algorithm for three‐dimensional multi‐field analysis of heated flows with mass transfer”, Computers and Fluids,1998, Vol. 27, No. 7, pp. 741.
    [57] Kunz, R. F., Chyczewski, T. S., Boger, D. A., et al,“Multi‐phase CFD analysis of natural and ventilated cavitation about submerged bodies,”ASME Paper FEDSM99‐7364, Proceedings of 3 rd ASME/JSME Joints Fluids Engineering Conference, 1999,pp.1‐9.
    [58] Kunz, R. F., and Boger, D. A., Stinebring, D. R., et al,“A pre‐conditioned navier‐stokes method for two‐phase flows with application to cavitation prediction,”Computers & Fluids, 2000, Vol. 29, pp.849‐875.
    [59] Lindau, J. W., Kunz, R. F., Boger, D. A., et al,“High Reynolds number, unsteady, multiphase CFD modeling of cavitating flows,”Journal of Fluids Engeneering, Transaction of ASME, 2002, Vol.124, No. 3, pp. 607‐616.
    [60] Lindau, J. W., Venkateswan, S., Kunz, R. F., et al,“Computation of compressible multiphase flows,”AIAA Paper, 2003‐1235.
    [61] Singhal A. K., Athavale M. M., Li H. Y., et al.,“Mathematical basis and validation of the full cavitation model”, J. Fluids Eng., 2002, Vol. 124, pp. 617‐624.
    [62] Xiong Y. L., Gao Y., An W. G.,“Comparisons of turbulence models in predicting unsteady supercavitating flow”, Sixth International Symposium on Cavitation, Wageningen, The Netherlands, September, 2006.
    [63]傅慧萍,鲁传敬,吴磊,“回转体空泡流特性研究”,水动力学研究与进展,A辑,2005,Vol.20, No.1,pp.84‐89.
    [64] Fu Hui‐ping, Lu Chuan‐jing, Li Jie,“Research on hydrodynamic forces of cavitating grid fins”, Journal of hydrodynamics, Ser.B,2005,Vol.17, No.2,pp. 148‐153.
    [65]黄涛,鲁传敬,吴磊,“栅格翼和雷体组合体的空泡水动力计算与分析”,水动力学研究与进展,A辑,2006,Vol.21,No.2,pp.239‐243.
    [66]吴磊,“空泡流数值模拟”,上海交通大学博士学位论文,2002
    [67]邓丽梅,鲁传敬,薛雷平,“单流体变特性模型的定常局部空泡流数值模拟”,上海交通大学学报,2003,Vol. 37, No. 4, pp. 544‐547.
    [68]陈鑫,鲁传敬,吴磊,“通气空泡流的多相流模型与数值模拟”,水动力学研究与进展,A辑,2005,20卷增刊—实用数值模拟专辑,pp.916‐920.
    [69]陈鑫,“通气空泡流研究”,上海交通大学博士学位论文,2006.
    [70]冯光,颜开,“超空泡航行体水下弹道的数值计算”,船舶力,2005,Vol.9,No.2,pp.1‐8.
    [71]鲁传敬,陈方,樊泓,沈新航,“导弹水下点火的流体动力研究”,航空学报,1992,Vo1.13,No.4. Apr.pp.124‐130.
    [72]单雪雄,杨荣国,叶取源,“具有推理矢量控制系统的导弹流体动力”,上海交通大学学报,2001,Vol.35,No4,Apr.pp625‐630.
    [73]黄建春,叶取源,朱世权,“不同发射深度下导弹水下点火气水流体动力计算”,应用力学学报,1994,Vol.11,No.3,Sep.pp19‐24.
    [74]王诚,叶取源,何友声,“导弹水下发射燃气泡计算”,应用力学学报, 1997,Vo1.14, No. 3, Sep.pp1‐7.
    [75]李悦,周儒荣,“燃气发生器喷喉面积对导弹发射动力的影响”,南京航空航天大学学报,2004,Vol.36,No3.Jun.pp353‐357.
    [76]刘乐华,张宇文,袁绪龙,“水下大深度垂直发射内流场的数值研究”,水动力学研究与进展, 2005, Vol. 20, No. 1, pp. 90‐94.
    [77]程用胜,“导弹水下发射三维非定常燃气泡数值模拟”,上海交通大学博士学位论文, 2006.
    [78]王群,“有波浪情形下水下发射导弹的弹道计算”,上海交通大学硕士学位论文, 1985.
    [79]何友声,鲁传敬,叶取源,“潜射导弹水中弹道研究”,上海交通大学研究报告, 1990.
    [80]李杰,“潜射导弹水下发射中的水动力学问题”,上海交通大学硕士学位论文,2002
    [81]曹嘉怡,“潜射导弹水下垂直自抛发射过程研究”,上海交通大学硕士学位论文, 2005.
    [82]殷一崇,“潜射导弹发射与出水载荷研究”,西北工业大学硕士学位论文,2004.
    [83]仲国维,张嘉钟,“潜射航行体的水下弹道模拟”,弹道学报, 2005, Vol. 17, No. 1, pp. 8‐12.
    [84] Mackey, A M,“A Mathematical Model of Water Entry”,Fluid Mechanics and Heat Transfer 1979.
    [85]朱小敏,颜开,江汉明,“细长回转体带空泡航行时附加质量的实验研究”,潜射巡航导弹水动力学关键技术专题研讨会,1998.
    [86]冷海军,“带空泡运动导弹的流体动力计算”,上海交通大学硕士学位论文,2000
    [87]罗金玲,何海波.“潜射导弹的空化特性研究”,战术导弹技术,2004, No.3,pp:14‐17.
    [88]魏海鹏,郭美凤“.潜射导弹的表面空化特性研究”,宇航学报,2007,Vol. 28, No. 6, pp: 1506‐1509.
    [89]王海斌,魏英杰,王聪.“水下潜射航行体片状空化的数值模拟研究”,战术导弹技术,2007,No.(2),pp:10‐15.
    [90]魏英杰,闵景新,王聪.“潜射导弹垂直发射过程空化特性研究”,工程力学,2009,Vol.26,No.7,pp:251‐256.
    [91] Ashok,K, Singhal,Mahesh M. Athavale,Huiying Li.”Mathematical Basis and Validation of the Full Cavitation Model”, Journal of Fluids Engineering,2002, Vol. 124,No.9, pp:617‐624.
    [92] Li Huiying, Lebanon, Frank J Kelecy,Aleksandra Egelja‐Maruszewski.”Advanced Computational Modeling Of Steady And Unsteady Cavitating Flows”, 2008 ASMEInternational Mechanical Engineering Congress and Exposition, 2008, No.10,pp.01‐11.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700