基于单端暂态行波的接地故障测距与保护研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
输配电线路是电力系统运行的大动脉,是连接发电厂与终端用户的纽带。由于其工作环境极为恶劣,暴露于风雨,穿行于山野,所以是电力系统中发生故障最多的地方,而且极难查找。在线路发生故障后,快速切除故障并迅速准确地找到故障点,不仅对及时修复线路、快速恢复供电,而且对整个电力系统的安全稳定和经济运行都有十分重要的作用。
     近年来,随着数据采集与处理技术和光电互感器实用化技术的发展,基于暂态行波的超高速保护和故障测距成为继电保护领域的一个研究热点,已取得了一定的成果,不少成果已经在电力系统中获得应用,取得了较好的效果。但到目前为止,这些技术尚不十分成熟,仍然存在不少的问题有待进一步深入研究。
     本文以基于暂态行波的单端故障测距、保护为研究对象,旨在借鉴、总结前人工作经验教训的基础上,根据目前存在的问题,结合现代分析方法和技术手段,提出新的工作原理及算法,以期解决目前技术中存在的问题。具体研究工作有以下几点:
     (?)分析了模量电阻、电感、波速度和衰减系数随频率变化的规律,为后续的行波传输规律的分析奠定了基础。论述了二进小波适合于暂态信号奇异性检测的特点,并指出了基于二进小波的奇异性检测方法WTMM法和WTMS法的不足,提出了利用所有尺度的模极大值或模极大值之和,根据最小二乘法估算信号奇异性的新方法,该方法具有较高精度,为后续Lipschitz指数的定量分析奠定了基础。
     (?)介绍了检测波速度的概念,分析了暂态行波随传输距离的变化规律,得出了以下结论:检测波速度随传输距离的增加而单调降低;波头Lipschitz指数随传输距离的增加而单调增加。导出了波速度和波头Lipschitz指数之间特定的对应关系。分析了过渡电阻、故障初相位和故障类型对检测波速度和波头Lipschitz指数的影响,得出了上述因素对两者之间的对应关系基本没有影响的结论,为后续波速度的估算提供了理论基础。
     (?)利用输电网的线路模型对上述行波传输规律进行了验证,证实了理论分析的正确性。根据波头Lipschitz指数和检测波速度之间的这种特定对应关系,本文提出了利用BP神经网络估算零模波速度的方法,进而提出了基于零模、线模波速度差的输电线行波测距算法。最后利用ATP进行了大量仿真,仿真结果证实了该算法的有效性。
     (?)考虑到配电网自身的特点,本文又利用配电网的线路模型对上述结论进行了验证,证实了上述结论同样适用于配电线路。本文提出了利用样条插值估算零模波速度的方法,仿真证实了该方法的估算精度,并给出了基于零模和线模速度差的测距算法,通过仿真验证了该算法的有效性。考虑到配电线路长度较短,过渡电阻和故障初相位对零模到达时刻的影响非常小,可以认为故障距离只和模量传输时间差有关,本文利用BP神经网络对故障距离和模量传输时间差之间的对应关系进行了建模,进而得到了基于模量传输时间差的配电网行波测距算法。利用样本数据对神经网络进行训练后,达到了设定的误差要求。最后,通过ATP仿真验证了算法的有效性。
     (?)本文首先分析了阻波器对暂态行波传输规律的影响,得出了以下结论:零模分量检测波速度在阻波器前后有个突变,而线模分量检测波速度在阻波器前后基本不变,这样模量传输时间差在阻波器前后有个突变,据此可以判断区内、区外故障。本文又分析了行波能量方向元件的基本原理,通过对比分析选择了线模组合模量做为分析模量,考虑到积分起始时刻的确定需要行波奇异性检测原理,为了避免在小故障初相位时,发生拒动或误动问题,增加了正反向故障的闭锁条件。这样上述边界元件和方向元件相配合,便可以构成基于单端量的接地故障全线速动保护。最后通过仿真验证了上述算法的有效性,在闭锁条件开放的情况下,该算法不受过渡电阻和故障初相位的影响。
     (?)本文首先从行波传输的角度出发,对小电流接地系统发生故障时的暂态过程进行了详细的分析,并通过分析得出以下结论:故障线路的反向电压行波和正向电压行波同时到达,而非故障线路的反向电压行波要滞后正向电压行波一定时间后到达;并且故障线路和非故障线路正向电压行波的初始极性相反。本文利用这两个特征,提出了基于正反向行波能量之比和正向电压行波初始极性的故障选线新判据。最后通过暂态仿真软件ATP进行了仿真,仿真结果证实了上述原理的有效性,并不受故障初相角和过渡电阻的影响。
     (?)针对首半波法所存在的问题,本文利用小波变换技术的时频分析能力,对故障暂态信号进行分解后,利用近似系数进行重构。充分利用其提供的时频域信息,定义了系统特征时刻和零序电压特征值的概念,在特征时刻故障线路和非故障线路零序电流的符号相反,若所有线路电流的符号都相同,则认为母线故障;对于只有2条出线的系统,可以采用零序电流暂态极大值和零序电压特征值极性比较的方法。最后,通过仿真验证了该方法的正确性。
     (?)小电流接地故障选线保护装置的研制。本文针对目前小电流单相接地故障选线成功率低和自动化程度不高的现状,根据上述暂态选线方法,结合注入法,零序电流有功功率增量法,三种选线判据组成的综合选线方案。在硬件方面,利用uPSD3334D强大的系统功能和接口能力,TMS320VC33强大的数据处理能力,组成了双CPU系统,并给出了完善的软硬件设计方案。该装置实现了基于模糊理论的综合选线方案,以及友好的人机交互界面和组网功能,较好的满足了配网自动化的要求。该装置已应用于泰安电校的继电保护培训系统中,应用效果良好;并在大庆油田采油一厂中十三联变电所做了现场接地试验,均正确选出故障线路,获得一致好评。
Transmission and distribution lines are essential parts of the power systems, attaching power plants and end-users. Meanwhile power lines are the places where the most faults occur in power system, and the fault seeking is very difficult because these lines are mostly working in harsh circumstance, exposing to the wind and rain and passing through hill and field. When power line faults occur, quickly removing the fault and correctly locating the fault point would be critical for repairing power lines and restoring power supply in time. Moreover, it would also play an important role in safety stability and economical operation of the whole power systems.
     In recent years, with the development of data gathering and processing, and optical electric transducer operative technology, traveling wave based ultra high speed protection and fault location are currently highlighted in relay protection domain, and some have been applied in power systems and obtained certain achievements. But by now, these technologies still have not been put into application well enough; and there are still some questions needed to be researched further.
     According to the current questions and utilizing the predecessor's work andintegrating modern analysis method and technique, this paper studies ontransient traveling wave based ultra high speed protection and fault location, putforward new principles and algorithms, and look forward to solving theproblems of current technology. Details of the research works are as following:
     Establish the transmission line model which consider frequencycharacteristic, adopt phase to mode transformation, and analyze thechanging rule with frequency of the resistance, inductance, wave velocity,and attenuation coefficient of each modes. Further analyze the advantage ofusing dyadic wavelet transform to detect singularity, and point out theadvantages and disadvantages of exploiting WTMM and WTMS methods inLipschitz exponent calculating. Propose a new Lipschitz exponent estimatedalgorithms based on the least square method with a high precision, whichprepared the ground for the quantitative analysis of Lipschitz exponent.
     This paper obtains the following conclusions through analyzing transienttraveling wave changing rule with propagation distance: wave velocitydetected decreases monotonously with propagation distance increasing;wave head Lipschitz exponent increases monotonously with propagationdistance increasing. Obtain the special correspondence of wave velocity towave head Lipschitz exponent, analyze transition resistor, fault inceptionphase, fault type influences on wave velocity and wave head Lipschitzexponent, and gain the conclusion that it does not affect the correspondsbasically.
     This paper verifies the changing rule of the wave velocity and wave head Lipschitz exponent with propagation distance, using transmission line parameter. And this paper presents the fact that transition resistor and inception angle influence on wave velocity and wave head Lipschitz exponent by simulation. The simulation results have verified the effectiveness of the principle analysis. From the analysis above, this paper presents new fault location algorithm based on zero mode and aerial mode traveling wave, using wavelet transform and BP neural network technology. The effectiveness of the algorithm has been verified by the ATP simulation results.
     This paper verifies the above conclusions again using distribution line parameter, and put forward a new estimation method of zero mode wave velocity based on splint interpolation. Thus a new fault location algorithm based on zero mode and aerial mode traveling wave has been presented. And ATP simulation results have verified the fault location precision. Since the distribution length is short, there is little influence of transition resistor and inception angle on wave velocity, so it can be considered that the propagation distance is only relate to the propagation time gap of zero mode and aerial mode. This paper model the relation between propagation distance and the propagation time gap using BP neural network, and bring forward a new fault location based on zero mode and aerial mode traveling wave. The effectiveness of the algorithm has been verified by the ATP simulation results. Based on above analysis, a new algorithm of fault location based on wavelet transform and neutral network is presented, which take advantages of the time-frequency analysis capacity of wavelet and neural network strongly nonlinear fitting capacity. The effectiveness of the criterion has been verified by the ATP simulation results.
     Presents a single end traveling wave protection algorithm. This paper draws the following conclusion analyzed the influence of line trap on transient traveling wave: aerial mode velocity changes little in front and rear of line trap; zero mode velocity has a sudden change in front and rear of line trap, so that the propagation time gap of zero mode and aerial mode has a sudden change in front and rear of line trap, and the fault zone can be determined based on this conclusion. This paper also analyzes traveling wave energy direction unit principle, and adds latch condition in forward and reverse fault. Thus the boundary unit and direction unit can form the whole line quick protection. In the end, the effectiveness of presented algorithm has been verified by the ATP simulation results.
     Put forward a new fault line selection criterion in non-solidly earthed network based on direction traveling wave. Using the traveling wave technology, this paper elaborately analyzes the transient state process of non-solidly earthed network when single phase earth fault occurring, and discovered the follow conclusions: in the fault line forward voltage traveling wave and the backward voltage traveling wave are both arrived, but in the healthy lines, the arrival time of the backward voltage traveling wave lagged behind that of the forward voltage traveling wave certain amount; the initial polarity of forward voltage traveling wave in the fault line and the health line is extremely opposite. According to those two characteristics, this paper proposes new criterion of fault line selection based on the ratio of the forward and backward traveling wave energy and the forward voltage traveling wave polarity. This criterion will not be affected by fault initial phase angle and transition resistance. The effectiveness of the criterion has been verified by the ATP simulation results.
     A new criterion for fault line selection based on the maximum of zero-sequence transient current is proposed. It utilizes the approximate coefficients and its relative time domain information after wavelet transform. The characteristic time and characteristic value of zero-sequence voltage are defined. At the characteristic time, the zero-sequence current polarity of faulted feeder is opposite from the healthy feeders. However, if all the polarities are the same, the fault occurs on the bus bar. For the system with only two feeders, this method can compare the polarity of the maximum of zero-sequence transient current and characteristic value of zero-sequence voltage. The db4 wavelet is selected to analyze the original signal in 4 levels. Not affected by fault initial phase angle and the manner of neutral grounding, this criterion is capable of withstanding high transition resistance. The effectiveness of the criterion has been verified by simulation.
     fault line selection device for non-solidly earthed network is designed and developed. For overcoming the low success rate of the fault line selection and the low level of automation of single-phase earth fault diagnosis in non-solidly earthed network, this paper proposes a synthetic fault line selection based on three criterions: injection signal method, the criterion based on the increment of active component of zero sequence current, and the criterion based on the maximum of zero sequence transient current. About the hardware of the device, this paper designed a system based on double CPU, which formed by uPSD3334D with powerful system functions and rich peripheral ports and TMS320VC33 with powerful data processing ability. Also this paper provides a hardware platform to have friendly interface and network capacity. The devices have been applied in relay protection training system of Tai'an electric school with good performance, and have been tested in Zhongshisanlian substation of Daqing Oilfield. During these tests all the fault lines have been selected correctly.
引文
[1]贺家李,葛耀中.超高压输电线路故障分析与继电保护[M].北京:科学出版社,1987.
    [2]葛耀中.新型继电保护和故障测距的原理与技术[M].西安:西安交通大学出版社,2007.
    [3]哈恒旭 张保会 吕志来 吕延洁.超高压输电线单端暂态量保护的新原理探讨[J].电工技术学报,2001,16(6):65-71.
    [4]M.Vintins.A fundamental concept for high speed relay[J].IEEE Trans.On PAS-100,1981,No.1,163-168.
    [5]M.Chamia,S.Liberman.Ultra high speed relay for EHV/UHV transmission lines:development,design,and application[J].IEEE Trans.on PAS-97,1978,No.5,2140-2112.
    [6]张哲,陈德树.高压输电线路故障测距的伪根问题及其改进方法[J].中国电机工程学报,1992,12(6):24-29.
    [7]康小宁,索南加乐.基于参数识别的单端电气量频域法故障测距研究.[J].中国电机工程学报,2005,25(2):22-27.
    [8]葛耀中,徐丙垠,陈平.利用暂态行波测距的研究[J].西安交大学报,1995,29(3):70-75.
    [9]徐丙垠,葛耀中,朱锡贵.利用暂态电流行波的输电线路故障测距技术[C].第五次全国继电保护学术年会论文集.北京:1993-7-14-17:125-132.
    [10]董新洲,葛耀中,徐丙垠.利用暂态行波的输电线路故障测距的研究[J].中国电机工程学报,1999,19(4):76-80.
    [11]徐丙垠,李京,陈平等.现代行波测距技术及其应用[J].电力系统自动化,2001,25(20):62-65.
    [12]徐丙垠。利用暂态行波的输电线路故障测距技术[D].西安:西安交通大学,1991.
    [13]董新洲.小波理论应用于行波故障测距研究[D].西安:西安交通大学,1996.
    [14]董新洲,葛耀中,徐丙垠.利用暂态电流行波的输电线路故障测距研究[J],中国电机工程学报,1999,19(4):76-80.
    [15]日本电气书院.电气设备故障检修手册[M].钱汝立,凌锡琮,凌锡玮译.北京:水利 电力出版社,1984.
    [16]T.W.Stringfield,L.J.Marihart,R.F.Stevens.Fault Location Methods for overhead lines.AIEE Trans.,August,1957,518-530.
    [17]M.Aurangzeb,P.A.Crossley,P.Gale.Fault Location Using the High Frequency Travelling Waves Measured at a Single Location on a Transmission Line.IEE DPSP,2001,403-406.
    [18]Qin Jian,Chen Xiangxun and Zheng Jianchao.Traveling wave fault location of transmission line using wavelet transform[C].Proceedings of 1998 International Conference on Power System Technology,Beijing China,1998,533-537.
    [19]Swift G W.The spectra of fault-induced transients[J].IEEE Tans.Power Apparatus &Systems.1979,PAS-98(3):940-947.
    [20]全玉生,杨敏中,王晓蓉等.高压架空输电线路的故障测距方法.电网技术,2000,24(4):27-33.
    [21]刘沛,程时杰.架空输电线路故障测距方法综述.电力系统自动化,1993,17(8):46-56.
    [22]AIEE Committee Report.Bibliography and summary of fault location methods.IEEE Trans on Power Apparatus and System.1956,75(2),pp.1423-1428.
    [23]Paithankar Y G and Sant M T.A new algorithm for relaying and fault location based on autocorrelation of traveling waves[J].Electric Power System Research,1985,8(2):179-185.
    [24]Ancell T.G.B,Pahalawaththa N.C.Maximum likelihood estimation of fault location on transmission lines using travelling waves[J].IEEE Trans.on Power Delivery,1994,9(2):680-689.
    [25]董新洲,葛耀中,徐丙垠,陈平,李京。利用GPS的输电线路行波故障测距研究。电力系统自动化,1996,20(12):37-40.
    [26]曾祥君.电力线路故障检测与定位新原理及其信息融合实现研究[D].武汉:华中科技大学,2000.
    [27]陈平.输电线路现代行波故障测距及其应用研究[D].西安:西安交通大学,2003.
    [28]R.F.Stevens,T.E.Stringfield.A Transmission Line Fault Locator Using Fault-generated Surges.AIEE Trans.,Vol.67,pp.1168-1179,1948.
    [29]T.W.Stringfield,L.J.Marihart,R.F.Stevens.Fault Location Methods for overhead lines.AIEE Trans.,August,1957,518-530.
    [30]M.Aurangzeb,P.A.Crossley,P.Gale.Fault Location Using the High Frequency Travelling Waves Measured at a Single Location on a Transmission Line.IEE DPSP.2001,403-406.
    [31]A.O.Ibe,B.J.Cory.A Travelling Wave-Based Fault Locator for Two-and Three-Terminal Networks.IEEE Trans on Power Systems,1986,1(2):283-288.
    [32]Ranjbar,A.M.Shirani,A.R.Fathi,A.E A New Approach for Fault Location Problem on Power Lines.IEEE Trans on Power Delivery,1992,7(1):146-151.
    [33]G.Ban,L.Prikler.Fault location on EHV lines based on electromagnetic transients[C].IEEE NTUA Athens Power Tech Conference.1993:936-940.
    [34]Bao Lian and M.M.A.Salama.An overview of digital fault location algorithms for power transmission lines using transient waveforms.Electric Power Systems Research,29,17-25,1994.
    [35]Ancell G B,Pahalawaththa N C.Effects of frequency dependence and line parameters on single ended traveling wave based fault location schemes.IEE Proceedings-C,1992,139(4):332-342.
    [36]Gale PF,Crossley PA,Xu Bingyin,Ge Yaozhong,Cory BJ,Barker JRG.Fault Location Based on Travelling Waves.In:Fifth International Conference on Developments in Power System Protection,54-59,York(UK),1993.
    [37]束洪春.基于分布参数线路模型的架空电力线路故障测距方法的研究[D].哈尔滨:哈尔滨工业大学,1977.
    [38]覃剑,陈祥训,郑健超.行波在输电线上传播的色散研究[J].中国电机工程学报,1999,19(9):27-30.
    [39]曾祥君,尹项根,陈浩等.新型输电线路故障综合定位系统研究[J].电力系统自动化,2000,24(22):39-44.
    [40]胡帆,刘沛,程时杰。高压输电线路故障测距算法仿真研究。中国电机工程学报,1995,15(1):67-72.
    [41]陈平,葛耀中,索南加乐,徐丙垠。输电线路故障开断暂态行波的传播特性研究。中国电机工程学报,2000,20(7):75-78.
    [42]陈平,葛耀中,索南加乐,徐丙垠.基于故障开断暂态行波信息的输电线路故障测距研究.中国电机工程学报,2000,20(8):56-59.
    [43]陈平,徐丙垠,葛耀中,一种利用暂态电流行波的输电线路故障测距方法[J],电力系统自动化,1999,23(14):29-33.
    [44]李友军,王俊生,郑玉平,周文.几种行波测距算法的比较[J].电力系统自动化,2001,25(15):36-40.
    [45]陈平,徐丙垠,李京,董新洲,葛耀中。现代行波故障测距装置及其运行经验。电力系统自动化,2003:27(6):66-69.
    [46]P.F.Gale,P.V.Taylor et al.Traveling-wave fault locator experience on Eskom's transmission network.Developments in Power System Protection[C].Seventh International Conference on(IEE),2001,9-12 April,327-330.
    [47]H.Lee and A.M.Mousa,GPS Travelling wave Fault iocator systems:Investigation into the Anomalous Measurement Related to Lightning strikes,IEEE Trans.On PWRD,July 1996,11(3):1214-1223.
    [48]徐丙垠,李桂义,李京等。接收GPS卫星信号的电力系统同步时钟。电力系统自动化,1995,19(3):44-47.
    [49]董新洲等.新型输电线路故障测距装置的研制[J].电网技术,1998,22(1):17-21.
    [50]曾祥君,尹项根,陈德树等.基于整个输电网GPS行波故障定位系统的研究,电力系统自动化,1999,23(10):8-10.
    [51]苏进喜,解子凤,秦荃华等。基于GPS的新型输电线路故障定位装置的研制。电网技术,1999,23(6):19-21.
    [52]曾祥君,尹项根,陈浩,陈德树等.GPS同步暂态录波仪的研制.高电压技术2000,26(2):56-58.
    [53]李冰,覃剑,雷林绪,等.基于小波变换技术的混合电流电压行波测距系统在750 kV输电工程中的应用.电力设备,2006,7(6):25-28.
    [54]伊贵业,杨学昌,吴振升.配电网传递函数故障定位法的判据分析[J].电力系统自动化,2000,24(10):29-33.
    [55]桑在中,潘贞存,李磊,等.小电流接地系统单相接地故障选线测距和定位的新技术[J].电网技术,1997,21(10):50-52.
    [56]张慧芬,潘贞存,桑在中.基于注入法的小电流接地系统故障定位新方法[J].电力系统自动化,2004,28(3):64-66.
    [57]严凤,杨奇逊,齐郑,等.基于行波理论的配电网故障定位方法的研究[J].中国电机工程学报,2004,24(9):37-43.
    [58]季涛,薛永端,孙同景,徐丙垠。配电线路故障测距初探[J].电力系统自动化.2005 29 (19):66-71.
    [59]季涛,基于暂态行波的配电线路故障测距研究[D],山东大学,2006。
    [60]桑在中,潘贞存,李磊,等.小电流接地系统单相接地故障选线测距和定位的新技术[J].电网技术,1997,21(10):50-52.
    [61]张慧芬,潘贞存,桑在中.基于注入法的小电流接地系统故障定位新方法[J].电力系统自动化,2004,28(3):64-66.
    [62]张帆,潘贞存,张慧芬,等.树型配电网单相接地故障行波测距新算法[J].电机工程学报,2007,28(3):46-52.
    [63]张帆,潘贞存,马姗姗,等.基于小波和神经网络的配电网故障测距新算法[J].电力系统自动化,2007,31(22):83-88.
    [64]W.-H.Edwin Liu,Weili Zhong.A Fuzzy Set Method for Fault Location Identification in Power Distribution Systems[J].Proceedings of the 35~(th)Conference on Decision and Control Kobe,Japan December 1996,2208-2212
    [65]P.Jmentausta,P.Verho,M.Kiirenlampi,et al.AI-Based Methods in Practical Fault location of Medium Voltage Distribution Feeders[J].IEEE,0-7803-31 15-X/96,1996,164-169
    [66]曾祥君,尹项根,林福昌等.基于行波传感器的输电线路故障定位方法研究[J].中国电机工程学报,2002,22(6):42-46.
    [67]Yamagata Y,Oshi T,Katsukawa H,et al.Development of Optical Current Transforms and Application to Fault Location Systems for Substation.IEEE Trans on Power Delivery,1993,8(34):866-873.
    [68]Maffetone D,Mcclelland TM.345 kV Substation Optical Measurement System for Revenue Metering and Protective Relaying.IEEE Trans on Power Delivery,1991,6(4):1430-1437.
    [69]Cruden A,Richardson Z J,McDonald J R,et al.Compact 132 kV Combined Optical Voltage and Current Measurement System.IEEE Trans on Instrument and Measurement,1998,47(1):219-223.
    [70]聂一雄.有源光电互感器在大型发、变电站测控保护系统工程应用研究.华中科技大学博士后研究工作报告,武汉,2004.
    [71]韩小涛.光电传感数字化及其继电保护技术研究[D].武汉:华中科技大学,2004.
    [72]刘哗,王采堂,苏彦民等。电力系统适用光学电流互感器的研究新进展[J].电力系统自动化,2000,24(17),60-64.
    [73]董新洲,葛耀中,贺家李等.输电线路行波保护的现状与展望[J].电力系统自动化,2000,24(10):56-61.
    [74]李幼仪,董新洲,孙元章,不同行波方向元件原理与判据的比较[J],清华大学学报,2006,46(7):1208-1211.
    [75]董杏丽,董新洲,张言苍等.基于小波变换的行波极性比较式方向保护原理研究[J].电力系统自动化,2000,24(14):11-15.
    [76]董杏丽,葛耀中,董新洲等.基于小波变换的行波幅值比较式方向保护[J].电力系统自动化,2000,24(17):11-15.
    [77]K.S.Prakash.Amplitude comparator based algorithm for directional comparison protection of transmission lines[C].IEEE-PES Winter Meeting 1989,525-577.
    [78]A.T.Johns.New Ultra-high-speed Directional Comparison Technique for The Protection of EHV Transmission Lines.IEE Proc.C Vol.127,No.4,351-357,1980.
    [79]A.T.Johns,R.K.Aggarwal.New approach to power line protection based upon the detection of fault induced high frequency.IEE Proc.C Vol.137,No.4,307-313,1990.
    [80]A.T.Johns,A.Barker,M.A.Martin.The Design and Engineering of a New Digital Direction Comparison Line Protection.IEEE Transactions on Power Delivery,1986,VoI.PWRD-1,No.2:24-34.
    [81]董杏丽,葛耀中,董新洲.基于小波变换的无通道全线速动行波保护[J].电力系统自动化,2001,25(10):18-22.
    [82]张举,张晓东,林涛.基于小波变换的行波电流极性比较式方向保护[J].电网技术,2004,28(4):51-54.
    [83]白嘉,徐玉琴,王增平,等.基于组合模量的行波电流极性比较式方向保护原理[J].电网技术,2005,29(13):69-72.
    [84]Dong Xinzhou,Ge Yaozhong,He Jiali.Surge impedance relay[J].IEEE Transactions on Power Delivery,2005,20(2):1247-1256.
    [85]董新洲,葛耀中,贺家李。波阻抗方向继电器的基本原理。电力系统自动化,2001,25(9):15-18.
    [86]董新洲,葛耀中,贺家李。波阻抗方向继电器的算法研究。电力系统自动化,2001,25 (10):14-17.
    [87]董新洲,葛耀中,贺家李。波阻抗方向继电器的性能分析。电力系统自动化,2001,25(11):24-27,2001.
    [88]董新洲,葛耀中,贺家李。波阻抗方向继电器的实现方案。电力系统自动化,2001,25(12):20-23.
    [89]苏斌,董新洲,孙元章.基于小波变换的行波差动保护[J].电力系统自动化,2004,28(18):25-29.
    [90]郭征,贺家李.输电线纵联差动保护的新原理[J].电力系统自动化,2004,28(11):1-5.
    [91]董杏丽,葛耀中,董新洲,等.基于小波变换的行波测距式距离保护原理的研究[J].电网技术,2001,25(7):9-13.
    [92]葛耀中,董新洲,董杏丽.测距式行波距离保护的研究(一)——理论与实现技术[J].电力系统自动化,2002,26(6):34-40.
    [93]董杏丽,葛耀中,董新洲.测距式行波距离保护的研究(二)——原理方案与仿真试验[J].电力系统自动化,2002,26(10):53-58.
    [94]E.H.Shehab-Eldin,P.GMcLaren.Travelling Wave Distance Protection-Problem Areas and Solutions.IEEE Trans on PWD,1988,3(3):894-902.
    [95]P.A.Crossley,P.G.Mclaren.Distance protection based on traveling waves[J].IEEE Trans.on PAS-102,1983,No.9,2971-2983.
    [96]Crossley P A and Mclaren P G.Distance protection based on traveling waves[J].IEEE Tans.Power Apparatus & Systems,1983,PAS-102(9):2971-2983.
    [97]Crossley PA,Mclaren PG.Distance protection based on traveling waves[J].IEEE on Power Apparatus and Systems,1983,102(9):2971-2983.
    [98]徐丙垠,朱锡贵,马长贵.行波特征鉴别式距离保护原理的研究[J].中国电机工程学报,1989,9(3):70-75.
    [99]林湘宁,刘沛,杨春明,等.基于小波分析的超高压输电线路无通信全线速动保护方案[J].中国电机工程学报,2001,21(6):9-14.
    [100]哈恒旭,张保会,吕志来,利用暂态电流的输电线路单端量保护新原理探讨[J],中国电机工程学报,2000,11(20):56-62.
    [101]段建东,张保会,任晋峰等,超高压输电线路单端暂态量保护元件的频率特性分析[J], 中国电机工程学报,2007,1(27):37-43.
    [102]哈恒旭.超高压输电线路边界保护的研究[D].西安:西安交通大学,2002.
    [103]Z.Q.Bo.A new non-communication protection technique for transmission lines[J].IEEE Trans.on Power Delivery,1998,13(4):1073-1078.
    [104]Liang Jie,Elangovan S.Adaptive Travelling wave protection algorithm using two correlation functions[J].IEEE Trans.on Power Delivery,1999,14(1):126-131.
    [105]L.Shang,O.Herold,J.IJaeger.A new approach to high-speed protection for transmission line based on transient signal analysis using wavelets[C].IEE 7~(th)International Conference on Developments in Power System Protection,2001:173-176.
    [106]T.Takagi,J.Baba,K.Uemura,et al.Fault protection based on travelling wave theory,Part 1:Theory[C].IEEE-PES Summer Meeting,1977,750-753.
    [107]T.takagi,J.Baba,K.Uemura and T.Sakagushi.Fault Protection Based on travelling Wave Theory Part Ⅱ:Sensitivity Analysis and Laboratory Test.IEEE PES Summer Meeting,July,1-7,1977.
    [108]H.W.Dommel,J.M.Michels.High speed relaying using traveling wave transient analysis[C].IEEE-PES Winter Meeting 1978,No.A78,1-7.
    [109]H.W.Dommel,J.M.Michels.High Speed Relay Using Travelling wave Transient Analysis.IEEE PES winter Meeting,New York,January/February,1-7.,1978.
    [110]M.Chamia and S.Liberman.Ultra High Speed Relay for EHV/UHV Transmission Lines-Development,Design and Application.IEEE,Trans.on PAS,1978,97(6):2104-2116.
    [111]Christopoulos C Thomas D,Wright A.Seheme,based on Travelling-wave,for the Protection of Major Transmission Lines.IEE Proc-C,Vol 135,No.1.63-73,1988.
    [112]D.W.P.Thomas,C.Christopoulos.Ultra-high Speed Protection of Series Compensated Lines.IEEE Trans.on Power Delivery,Vol.7,No.1,139-145,1992.
    [113]J.A.S.B Jayasinghe,R.K.Aggarwal,A.T.Johns et al.A Novel Non-unit Protection for Series Compensated EHV Transmission Lines Based on Fault Generated High Frequency Voltage Signals.IEEE Transactions on Power Delivery,1998,13(3):405-413.
    [114]A.T Johns,R.K.Aggarwal,Be Z O.Non-unit protection technique for the protection of EHV transmission systems based on fault generated noise.Part Ⅰ Signal measurement.IEE Proc.C Vol.141,No.2,133-140,1994.
    [115]A.T Johns,R.K.Aggarwal,Bo Z Q.Non-unit protection technique for the protection of EHV transmission systems based on fault generated noise.Part 2:Signal Processing.IEE Proc.C Vol.141,No.2,141-147,1994.
    [116]A.T Johns,R.K.Aggarwal,Bo Z Q.Non-unit protection technique for the protection of EHV transmission systems based on fault generated noise.Part 3:Engineering and HV laboratory Test.IEE Proc.C Vol.143,No.3,276-282,1996.
    [117]林湘宁,刘沛,杨春明等。基于小波分析的超高压输电线路无通信全线速动保护方案。中国电机工程学报,2001,21(6):10-15.
    [118]段建东.基于暂态量的超高压电网超高速保护的研究[D].西安:西安交通大学,2005.
    [119]S.J.Rose,P.A.Crossly,E.P.Walker etc.Disturbance Monitoring/Fault Test Evaluation of a Directional Comparison Protection on UK 400kV Transmission System.IEEE Transactions on Power Delivery,1988,Vol.3,No.4:1410-1418.
    [120]欧阳子香.华中电网500KV系统继电保护运行情况介绍.华中电力,1990,3(2):48-57.
    [121]史久宏,张炳惠.RALDA型行波保护的运行与改进.华中电力,1993,6(2):47-54.
    [122]T.Takagi,J.Baba,K.Uemura and T.Sakagushi.Feasibility study for a current differential carrier relay system based on traveling wave theory.IEEE PES Winter Meeting,Feb,1978.
    [123]T.Takagi,J.Baba,K.Uemura and T.Sakagushi.Digital differential ralaying system for transmission line primary protection using traveling wave theory-its theory and experience.IEEE PES Winter Meeting,Feb,1978.
    [124]杨钢、杨军。华中电网500kv系统进口保护运行分析.华中电管局.
    [125]要焕年,曹梅月.电力系统谐振接地[M].北京:中国电力出版社,2000.
    [126]潘贞存.比相式和比幅式小接地电流系统接地选线保护[J].山东电力技术,1991,2(3):60-64.
    [127]牟龙华.零序电流有功分量方向接地选线保护原理[J].电网技术,1999,23(9):60-62.
    [128]杜丁香,徐玉琴.消弧线圈接地电网有功选线[J].继电器,2002,30(5):33-36.
    [129]A.I.Shalin,E.N.Politov.Ground fault protection for 6-10KV distribution system.Power and Electrophysics,2002,430-433.
    [130]何奔腾,胡为进.能量法小电流接地选线原理[J].浙江大学学报,1998,32(4):451-457.
    [131]郝玉山,高曙,杨以涵等.MLN系列小电流接地微机选线装置动作原理[J].电力情报,1994(2):7-11.
    [132]曾祥君,尹项根,张哲等.配电网接地故障负序电流分布及接地保护原理研究[J].中国电机工程学报,2001,21(6):84-89.
    [133]Sture L.Sensitive earth fault protection for MV distribution system[C].2.09 CIRED 1991.
    [134]薛永端,徐丙垠,冯祖仁,李天友.小电流接地故障暂态方向保护原理研究[J].中国电机工程学报,2003,23(7):51-56.
    [135]苗友忠,孙雅明,杨华.中性点不接地配电系统馈线单相接地故障的暂态电流保护新原理[J].中国电机工程学报,24(2):28-32.
    [136]孙雅明,苗友忠.谐振接地配电系统馈线单相接地故障的暂态电流保护新原理.中国电机工程学报,24(3):62-66.
    [137]束洪春,肖白.配电网单相电弧接地故障选线暂态分析法[J].电力系统自动化,2002,26(21):58-61.
    [138]贾清泉,刘连光,杨以涵等.应用小波检测故障突变量特性实现配电网小电流故障选线保护[J].中国电机工程学报,2001,21910):78-82.
    [139]张兆宁,郁惟镛,孙阳盛.基于小波包变换的模糊神经网络小电流接地系统故障选线[J].上海交通大学学报,2002,36(7):1012-1015.
    [140]梁军,刘非凡,炱志皓.基于小波原理的小电流接地系统故障选线新方法的研究[J].山东大学学报(工学版),2002,32(2):111-114.
    [141]毛鹏,孙雅明,张兆宁,杜红卫.小波包在配电网单相接地故障选线中的应用[J].电网技术,2000,24(6):9-13.
    [142]戴剑锋,张艳霞.基于多频带分析的自适应配电网故障选线研究[J].中国电机工程学报,2003,23(5):44-47.
    [143]Chaari O,Meunier M.A Recursive Wavelet Transform Analysis of Earth Fault Currents in Petersen-Coil-Protected Power Distribution Networks[C].Proceedings of the IEEE-SP Internation Symposium on Time-Frequency and Time-Seal Analysis,1994:162-165.
    [144]Assef Y,Chaari O,Meunier M.Classification of Power Distribution System Fault Currents Using Wavelets Associated to Artificial Neural Networks[C].Proceedings of the IEEE-SP Internation Symposium on Time-Frequency and Time-Seal Analysis,1996:421-424.
    [145]Huang S J,Hsieh C T.High-impedance Fault Detection Utilizing a Morlet Wavelet Transform Approach[J].IEEE Trans on Power Delivery,1999,14(4):1401-1407.
    [146]Oinis C,Michiel M,Francoise B.Wavelets:A New Tool for the Resonant Grounded Power Distribution System Relaying[J].IEEE Trans on Power Delivery,1996,11(3):1301-1308
    [147]张帆,潘贞存,张慧芬,等,基于零序电流暂态极大值的小电流接地选线新判据[J],电力系统自动化,2006,3(4):45-48.
    [148]董新洲,毕见广.配电线路暂态行波的分析和接地选线研究[J],中国电机工程学报,2005,25(4):1-6.
    [149]张帆,潘贞存,张慧芬,等,基于方向行波的小电流接地系统故障选线[J],中国电机工程学报,2007,27(34):70-76.
    [150]桑在中,张慧芬,潘贞存等.用注入法实现小电流接地系统单相接地选线保护[J].电力系统自动化,1996,20(2):11-12
    [151]Thomas Baldwin,P.E.,Frank Renovich,Lynn Saunders,P.E.Fault Locating in Ungrounded and High-resistance Grounded[J].Copyright Material IEEE,Paper No.PCIC-2000-25:245-251.
    [152]曾祥君,尹项根,于永源,陈德树,基于注入变频信号法的经消弧线圈接地系统控制与保护新方法[J].中国电机工程学报,2000,2091):29-32,36.
    [153]桑在中,潘贞存,李磊,张慧芬.小电流接地系统单相接地故障选线测距和定位的新技术[J].电网技术,1997,21(10):50-52.
    [154]桑在中,潘贞存,李磊,张慧芬.“S注入法”选线定位原理及应用[J].中国电力,1997(30):44-45.
    [155]J.P.Bickford,N.Mullineux,J.R.Reed.电力系统暂态计算翻译组译。电力系统暂态计算。北京:水利电力出版社,1979.
    [156]唐勇,陈珩,戴方涛等.行波保护研究中输电线路模型的选择[J].中国电机工程学报,1997,17(4):269-273.
    [157]J.R.Marti,L.Marti,H.W.Dommel.Transmission line models for steady-state and transients analysis[J].Athens Power Tech,1993.APT'93.Proceedings.Joint International Power Conference,Vol.2,September 5-8,1993,pp.744-750.
    [158]E.S.M.Mok,G.I.Costache.Skin-effect considerations on transient response of a transmission line excited by an electromagnetic pulse[J].IEEE Transactions on Electromagnetic Compatibility,1992,34(3):320-329.
    [159]唐晓初,小波分析及应用.重庆,重庆大学出版社.2006.3.
    [160]董新洲,耿中行,张伏生,等.小波变换应用于电力系统故障信号分析初探[J].中国电机工程学报,1997,17(6):21-24.
    [161]刘贵中,邸双亮.小波分析及其应用[M].西安:西安电子科技大学出版社,1992.
    [162]程正兴,小波分析算法与应用[M].西安:西安交通大学出版社,1998.
    [163]胡昌华,张军波,夏军等.基于Matlab的系统分析与设计—小波分析[M].西安:西安电子科技大学出版社,1999.
    [164]Tai-chiu hsumg,Daniel Pak-Kong,Lun,Wan-chi Siu.Denoising by singularity detection.IEEE Transaction on signal processing,1999,47(11),:3139-3144.
    [165]S.Mallat,M.L.Hwang.Singularity detection and processing with wavelets[J].IEEE Trans.on Information Theory,1992.vol.38,617-643.
    [166]张乃尧,阎平凡,神经网络与模糊控制.北京,清华大学出社,1998.
    [167]王志勇,郭创新,曹一家,基于模糊粗糙集和神经网络的短期负荷预测方法[J].中国电机工程学报,2005,25(19):5-12.
    [168]王念旭,DSP基础与应用系统设计,北京:北京航空航天大学出版社.
    [169]金之诚,李德领,马潮,uPSD32XX高速SOC51单片机原理及应用[M],北京:清华大学出版社,2005.
    [170]马姗,张帆,潘贞存,等.基于双CPU系统的综合选线装置设计[J].电力自动化设备,2007,27(7):80-84.
    [171]杨奇逊。微型机继电保护基础。北京:水利电力出版社,1989.
    [172]陈德树。计算机继电保护原理与技术。北京:水利电力出版社,1988.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700