HPV16主要衣壳蛋白L1与hnRNP H1的相互作用及其功能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
流行病学和相关研究证实人乳头瘤病毒(HPV)感染与尖锐湿疣、宮颈上皮瘤样增生和宫颈癌的发生关系密切。HPV感染机体后各种病毒基因的表达是受严格调控的,尤其是晚期基因,在未分化的细胞中几乎不表达,随着细胞分裂,病毒基因组随子细胞上移到表皮上层后,晚期蛋白的表达才被启动。这种分化依赖的晚期蛋白表达调控机制尚不明确。
     在以往的研究中发现,晚期蛋白在转录后水平受多种负调节元件的控制,其中早期多聚腺苷酸化信号(pAE)在晚期基因的转录后调控中起到核心的作用,它能使mRNA的转录提前终止,在HPV16 L2的N端有一个GU含量丰富的序列(GU-rich sequence,GRS),是hnRNP H1蛋白结合位点,能够增强pAE的活性,进一步抑制晚期蛋白的表达。hnRNPH1在细胞中的分布水平有随着细胞的分化而降低的特点,晚期蛋白表达的组织特异性很可能与hnRNP H1的表达有关。
     我们用免疫共沉淀技术发现hnRNP H1与HPV16 L1蛋白有相互作用,并证实这种相互作用是天然状态下存在的。我们构建了一个模拟HPV转录调控的质粒模型(pGPG),用两个GFP分别代替早期基因和晚期基因,中间加以pAE和下游的GRS序列。通过检测下游的GFP(G2)的RNA以及蛋白质的表达,来反映hnRNP H1蛋白及L1对晚期蛋白转录翻译的影响。在293F了细胞中转染pGPG质粒,几乎检测不到G2的转录产物,蛋白表达量也很低,沉默hnRNP H1基因后,G2的转录和表达量大大提高,印证了hnRNP H1对晚期蛋白的转录抑制效应起重要作用。我们首次发现:HPV16 L1的表达能够有效地提高G2的转录和蛋白表达水平,在HeLa和Huh7等细胞上也发现相同的现象,将hnRNP H1沉默后再转染HPV16 L1质粒,发现在没有H1的情况下,L1对G2的表达没有额外的刺激效应。提示HPV16 L1对晚期蛋白表达的提高可能是通过L1与hnRNPH1结合,抑制了hnRNP H1的功能来实现的。在病毒的感染过程中,L1蛋白很可能参与了晚期基因的转录后调控,对自身的表达有正协同的效应。L1与hnRNPH1相互阻遏,hnRNP H1表达过高时L1的表达被抑制,在分化的细胞中hnRNPH1的表达量降低,pAE活性不高,晚期基因可以通读、表达,随着L1蛋白表达量增多并结合到hnRNP H1上,hnRNP H1失活,最终L1蛋白得以大量表达,启动病毒成熟的后续过程。本文章为更进一步揭示HPV晚期蛋白的表达和病毒生活周期的调控规律提供了一些思路,为HPV引发的多种疾病的致病机理提供理论支持,并为相关治疗药物的研发提供有利的启示。
It has been confirmed that the infection of HPV is associated with genital warts and various forms of cancer in men and women.Expression of viral gene,especially the late gene,is tightly controlled while these late gene will not expressed in less differentiated cells.Along with cell division,viral genome move upward to the most superficial epithelium layer,and that initiate the late gene expression.However the mechanism of differentiation dependent late gene expression is not totally clear.
     The expression of the late genes is negatively regulated by various factors at the post-transcriptional level.The most key point is the early polyadenylated signal(pAE), which can prevent virus from reading-through into the late region.A GU-rich sequence (GRS) was found downstream of the pAE in HPV16 L2 gene which is also a binding site of hnRNP H1.The binding can enhance the efficiency of pAE and down-regulate the expression of the late gene.It was noticed that in cervical epithelia the expression of hnRNP H1 is gradually declined with the differentiation of the cells.It may be an explanation of why the late gene expression acts in a differentiation-dependent manner.
     We found an natively existed interaction between HPV16 L1 and hnRNP H1 with co-immunoprecipitation.A plasmid pGPG has been constructed to simulate the transcriptional regulation of papillomavirus.We used two GFP genes to stand for the early and late gene,and inserted the pAE and GRS between them.Assessment of the expression of downstream GFP(G2) could figure out the effects of hnRNP H1 and HPV16 L1 in the late gene expression.293FT cells were transfected with pGPG,and hardly any G2 mRNA and protein could be detected.After silencing the hnRNP H1 gene in 293FT the G2 expression level became high and that supported the view hnRNP H1 plays an important role in down-regulating the late gene expression.We primarily found that HPV16 L1 protein could largely activate the G2 expression.Similar results were also observed in HeLa and Huh7 cells.While L1 in the hnRNP H1 absent cells couldn't bring about extra effects on G2 expression compared with L1 negative cells.It is suspected that HPV16 L1 could increase the late gene expression in our model.The mechanism might lie in the interaction between hnRNP H1 and L1 which inhibit the function of H1 protein. L1 might participate in the regulation of late gene expression in the course of HPV infection,and have a positive synergistic effect on the expression of itself.On the other hand,L1 and hnRNP H1 repress each other.When the expression of hnRNP H1 increases, the late gene expression will be inhibited.Whereas in the terminally differentiated cells, the level of hnRNP H1 was too much lower for pAE to function well.This caused the reading-through of the late region,followed by production of the late mRNAs encoding L1 and L2.More and more L1 protein bind to hnRNP H1 and break the balance between them which make even more late gene products and initiate some other processes impelling the maturation of virus.We hope our research could provide a clue for further understanding of the mechanism about HPV late protein expression and virus life cycle, and provide more experimental supports for interpreting the pathogenesis of HPV induced diseases,which might contribute to successful drug design of these diseases.
引文
[1] Walboomers J M, Jacobs M V, Manos M M, et al., Human papillomavirus is a necessary cause of invasive cervical cancer worldwide[J]. J Pathol, 1999. 189(1): 12-19.
    [2] Bosch F X,De Sanjose S, Chapter 1: Human papillomavirus and cervical cancer-burden and assessment of causality[J]. J Natl Cancer Inst Monogr, 2003(31): 3-13.
    [3] Moscicki a B, Shiboski S, Broering J, et al., The natural history of human papillomavirus infection as measured by repeated DNA testing in adolescent and young women[J]. J Pediatr, 1998. 132(2): 277-284.
    [4] Franco E L, Villa L L, Sobrinho J P, et al., Epidemiology of acquisition and clearance of cervical human papillomavirus infection in women from a high-risk area for cervical cancer[J]. J Infect Dis, 1999. 180(5): 1415-1423.
    [5] Knipe D M,Howley P M, Fields Virology. 4 ed. Vol. 2. 2001: Lippincott Williams & Wilkins. 2197-2264.
    [6] Dunne E F, Unger E R, Steinberg M, et al., Prevalence of HPV infection among females in the United States[J]. Jama, 2007.297(8): 813-819.
    [7] Frazer I H, Prevention of cervical cancer through papillomavirus vaccination [J]. Nat Rev Immunol, 2004. 4(1): 46-54.
    [8] Sedman J,Stenlund A, The papillomavirus E1 protein forms a DNA-dependent hexameric complex with ATPase and DNA helicase activities[J]. J Virol, 1998. 72(8): 6893-6897.
    [9] Piirsoo M, Ustav E, Mandel T, et al., Cis and trans requirements for stable episomal maintenance of the BPV-1 replicator[J]. Embo J, 1996.15(1): 1-11.
    [10] Shafti-Keramat S, Handisurya A, Kriehuber E, et al., Different heparan sulfate proteoglycans serve as cellular receptors for human papillomaviruses[J]. J Virol, 2003. 77(24): 13125-13135.
    
    [11] Yao Z, Jackson W, Forghani B, et al., Varicella-zoster virus glycoprotein gpI/gpIV receptor: expression, complex formation, and antigenicity within the vaccinia virus-T7 RNA polymerase transfection system[J]. J Virol, 1993. 67(1): 305-314.
    [12] Finnen R L, Erickson K D, Chen X S, et al., Interactions between papillomavirus L1 and L2 capsid proteins[J]. J Virol, 2003. 77(8): 4818-4826.
    [13] Day R Y a P M, Cell Surface-Binding Motifs of L2 That Facilitate Papillomavirus Infection[J]. JOURNAL OF VIROLOGY, 2003. 77(6): 3531-3541.
    [14] Modis Y, Trus B L.Harrison S C, Atomic model of the papillomavirus capsid[J]. Embo J, 2002. 21(18): 4754-4762.
    [15] Hans-Christoph Selinka T G, Thorsten Nowak, Neil D. Christensen.and Martin Sapp, Further Evidence that Papillomavirus Capsids Exist in Two Distinct Conformations[J]. JOURNAL OF VIROLOGY, 2003.77(24): 12961-12967.
    [16] Saeed Shafti-Keramat a H, Ernst Kriehuber, Guerrino Meneguzzi, Katharina Slupetzky and Reinhard Kirnbauer, Different Heparan Sulfate Proteoglycans Serve as Cellular Receptors for Human Papillomaviruses[J]. JOURNAL OF VIROLOGY, 2003. 77(24): 13125-13135.
    [17] Oliver Rommel J D, Claudia Fligge,Christian Bergsdorf,Xiaohong Wang,Hans-Christoph Selinka and Martin Sapp, Heparan Sulfate Proteoglycans Interact Exclusively With Conformationally Intact HPV L1 Assemblies: Basis for a Virus-Like Particle ELISA[J]. Journal of Medical Virology 2005. 75: 114-121.
    [18] Joseph G Joyce J-S T, Craig T. Przysiecki, James C. Cook, E. Dale Lehman,Jeffrey A. Sandsi, Kathrin U. Jansen and Paul M. Keller, The L1 Major Capsid Protein of Human Papillomavirus Type 11 Recombinant Virus-like Particles Interacts with Heparin and Cell-surface Glycosaminoglycans on Human Keratinocytes[J]. THE JOURNAL OF BIOLOGICAL CHEMISTRY, 1999. 274(9): 5810-5822.
    [19] Yukiko Kawana K K, Hiroyuki Yoshikawa Et Al, Human Papillomavirus Type 16 Minor Capsid Protein L2 N-Terminal Region Containing a Common Neutralization Epitope Binds to the Cell Surface and Enters the Cytoplasm[J]. JOURNAL OF VIROLOGY, Mar. 2001, p., 2001. 75(5): 2331-2336.
    [20] Rongcun Yang P M D, William H. Yutzy Iv Et Al, Cell Surface-Binding Motifs of L2 That Facilitate Papillomavirus Infection[J]. JOURNAL OF VIROLOGY, 2003. 77(6): 3531-3541.
    [21] Patricia M. Day D R L, and John T. Schiller, Papillomaviruses infect cells via a clathrin-dependent pathway[J]. Virology, 2003. 307: 1-11.
    [22] Latifa Bousarghin a T, Pierre-Yves Sizaret and Pierre Coursaget, Human Papillomavirus Types 16, 31, and 58 Use Different Endocytosis Pathways To Enter Cells[J]. JOURNAL OF VIROLOGY, 2003. 77(6): 3846-3850
    [23] Rebecca M. Richards D R L, John T. Schiller, and Patricia M. Day, Cleavage of the papillomavirus minor capsid protein, L2, at a furin consensus site is necessary for infection[J]. PNAS, 2006. 103(5): 1522-1527.
    [24] Nadine Ka¨Mper P M D, Thorsten Nowak, Hans-Christoph Selinka Et Al, A Membrane-Destabilizing Peptide in Capsid Protein L2 Is Required for Egress of Papillomavirus Genomes from Endosomes[J]. JOURNAL OF VIROLOGY, 2006. 80(2): 759-768.
    [25] Florin L, Becker K A, Lambert C, et al., Identification of a dynein interacting domain in the papillomavirus minor capsid protein 12[J]. J Virol, 2006. 80(13): 6691-6696.
    [26] Rongcun Yang W H Y, Iv, Raphael P. Viscidi and Richard B. S. Roden, Interaction of L2 with beta-Actin Directs Intracellular Transport of Papillomavirus and Infection[J]. THE JOURNAL OF BIOLOGICAL CHEMISTRY, 2003. 278(14): 12546-12553.
    [27] Medha S. Darshan J L, Emily Harding, and Junona Moroianu, The L2 Minor Capsid Protein of Human Papillomavirus Type 16 Interacts with a Network of Nuclear Import Receptors[J]. JOURNAL OF VIROLOGY, 2004. 78(22): 12179-12188.
    [28] Egawa K, Do human papillomaviruses target epidermal stem cells?[J]. Dermatology, 2003. 207(3): 251-254.
    [29] Schmitt A, Rochat A, Zeltner R, et al., The primary target cells of the high-risk cottontail rabbit papillomavirus colocalize with hair follicle stem cells[J]. J Virol, 1996. 70(3): 1912-1922.
    [30] Doorbar J, The papillomavirus life cycle[J]. J Clin Virol, 2005. 32 Suppl 1: S7-15.
    [31] Rahat M A, Lahat N, Sharon A, et al., Increased telomerase activity and decreased telomere length in genital condylomata acuminata[J]. Int J STD AIDS, 1999. 10(11): 699-702.
    [32] Parish J L, Kowalczyk A, Chen H T, et al., E2 proteins from high- and low-risk human papillomavirus types differ in their ability to bind p53 and induce apoptotic cell death[J]. J Virol, 2006. 80(9): 4580-4590.
    [33] Wahle E,Ruegsegger U, 3'-End processing of pre-mRNA in eukaryotes[J]. FEMS Microbiol Rev, 1999. 23(3): 277-295.
    [34] Proudfoot N, O'sulIivan J, Polyadenylation: a tail of two compIexes[J]. Curr Biol, 2002. 12(24): R855-857.
    [35] Chanfreau G, Noble S M,Guthrie C, Essential yeast protein with unexpected similarity to subunits of mammalian cleavage and polyadenylation specificity factor (CPSF)[J]. Science, 1996. 274(5292): 1511-1514.
    [36] Jenny A, Minvielle-Sebastia L, Preker P J, et al., Sequence similarity between the 73-kilodalton protein of mammalian CPSF and a subunit of yeast polyadenylation factor I[J]. Science, 1996. 274(5292): 1514-1517.
    [37] Jenny A. Keller W, Cloning of cDNAs encoding the 160 kDa subunit of the bovine cleavage and polyadenylation specificity factor[J]. Nucleic Acids Res, 1995. 23(14): 2629-2635.
    [38] Koffa M D, Graham S V, Takagaki Y, et al., The human papillomavirus type 16 negative regulatory RNA element interacts with three proteins that act at different posttranscriptional levels[J]. Proc Natl Acad Sci U S A, 2000. 97(9): 4677-4682.
    [39] Bienroth S, Wahle E, Suter-Crazzolara C, et al., Purification of the cleavage and polyadenylation factor involved in the 3'-processing of messenger RNA precursors[J]. J Biol Chem, 1991. 266(29): 19768-19776.
    [40] Stubenrauch F,Laimins L A, Human papillomavirus life cycle: active and latent phases[J]. Semin Cancer Biol, 1999. 9(6): 379-386.
    [41] Burnett S, Moreno-Lopez J,Pettersson U, A novel spontaneous mutation of the bovine papillomavirus-1 genome[J]. Plasmid, 1988. 20(1): 61-74.
    [42] Terhune S S, Hubert W G, Thomas J T, et al., Early polyadenylation signals of human papillomavirus type 31 negatively regulate capsid gene expression[J]. J Virol, 2001. 75(17): 8147-8157.
    [43] Oberg D, Fay J, Lambkin H, et al., A downstream polyadenylation element in human papillomavirus type 16 L2 encodes multiple GGG motifs and interacts with hnRNP H[J]. J Virol, 2005. 79(14): 9254-9269.
    [44] Baker C C,Noe J S, Transcriptional termination between bovine papillomavirus type 1 (BPV-1) early and late polyadenylation sites blocks late transcription in BPV-1-transformed cells[J]. J Virol, 1989. 63(8): 3529-3534.
    [45] Furth P A, Choe W T, Rex J H, et al., Sequences homologous to 5' splice sites are required for the inhibitory activity of papillomavirus late 3' untranslated regions[J]. Mol Cell Biol, 1994. 14(8): 5278-5289.
    [46] Cumming S A, Mcphillips M G, Veerapraditsin T, et al., Activity of the human papillomavirus type 16 late negative regulatory element is partly due to four weak consensus 5' splice sites that bind a U1 snRNP-like complex[J]. J Virol, 2003. 77(9): 5167-5177.
    [47] Goraczniak R,Gunderson S I, The regulatory element in the 3'-untranslated region of human papillomavirus 16 inhibits expression by binding CUG-binding protein I[J]. J Biol Chem, 2008. 283(4): 2286-2296.
    [48] Conne B, Stutz A,Vassalli J D, The 3' untranslated region of messenger RNA: A molecular 'hotspot' for pathology?[J]. Nat Med, 2000. 6(6): 637-641.
    [49] Rush M, Zhao X,Schwartz S, A splicing enhancer in the E4 coding region of human papillomavirus type 16 is required for early mRNA splicing and polyadenylation as well as inhibition of premature late gene expression[J].J Virol, 2005. 79(18): 12002-12015.
    [50] Furth P A,Baker C C, An element in the bovine papillomavirus late 3' untranslated region reduces polyadenylated cytoplasmic RNA levels[J]. J Virol, 1991. 65(11): 5806-5812.
    [51] Tan W,Schwartz S, The Rev protein of human immunodeficiency virus type 1 counteracts the effect of an AU-rich negative element in the human papillomavirus type 1 late 3' untranslated region[J]. J Virol, 1995. 69(5): 2932-2945.
    [52] Kennedy I M, Haddow J K,Clements J B, Analysis of human papillomavirus type 16 late mRNA 3' processing signals in vitro and in vivo[J]. J Virol, 1990. 64(4): 1825-1829.
    [53] Kennedy I M, Haddow J K,Clements J B, A negative regulatory element in the human papillomavirus type 16 genome acts at the level of late mRNA stability[J]. J Virol, 1991. 65(4): 2093-2097.
    [54] Cumming S A, Repellin C E, Mcphillips M, et al., The human papillomavirus type 31 late 3' untranslated region contains a complex bipartite negative regulatory element[J]. J Virol, 2002. 76(12): 5993-6003.
    [55] Sokolowski M, Zhao C, Tan W, et al., AU-rich mRNA instability elements on human papillomavirus type 1 late mRNAs and c-fos mRNAs interact with the same cellular factors[J]. Oncogene, 1997. 15(19): 2303-2319.
    [56] Wiklund L, Sokolowski M, Carlsson A, et al., Inhibition of translation by UAUUUAU and UAUUUUUAU motifs of the AU-rich RNA instability element in the HPV-1 late 3' untranslated region[J]. J Biol Chem, 2002. 277(43): 40462-40471.
    [57] Guillemard E, Varano B, Belardelli F, et al., Inhibitory activity of constitutive nitric oxide on the expression of alpha/beta interferon genes in murine peritoneal macrophages[J]. J Virol, 1999. 73(9): 7328-7333.
    [58] Sokolowski M,Schwartz S, Heterogeneous nuclear ribonucleoprotein C binds exclusively to the functionally important UUUUU-motifs in the human papillomavirus type-1 AU-rich inhibitory element[J]. Virus Res, 2001. 73(2): 163-175.
    [59] Barksdale S K, Baker C C, The human immunodeficiency virus type 1 Rev protein and the Rev-responsive element counteract the effect of an inhibitory 5' splice site in a 3' untranslated region[J]. Mol Cell Biol, 1995. 15(6): 2962-2971.
    [60] Tan W, Felber B K, Zolotukhin a S, et al., Efficient expression of the human papillomavirus type 16 L1 protein in epithelial cells by using Rev and the Rev-responsive element of human immunodeficiency virus or the cis-acting transactivation element of simian retrovirus type 1[J]. J Virol, 1995. 69(9): 5607-5620.
    [61] Krecic a M,Swanson M S, hnRNP complexes: composition, structure, and function[J]. Curr Opin Cell Biol, 1999. 11(3): 363-371.
    [62] Siomi H,Dreyfuss G, RNA-binding proteins as regulators of gene expression[J]. Curr Opin Genet Dev, 1997. 7(3): 345-353.
    [63] Shih S C, Claffey K P, Regulation of human vascular endothelial growth factor mRNA stability in hypoxia by heterogeneous nuclear ribonucleoprotein L[J]. J Biol Chem, 1999. 274(3): 1359-1365.
    [64] Bagga P S, Arhin G K,Wilusz J, DSEF-1 is a member of the hnRNP H family of RNA-binding proteins and stimulates pre-mRNA cleavage and potyadenylation in vitro[J]. Nucleic Acids Res, 1998. 26(23): 5343-5350.
    [65] Veraldi K L, Arhin G K, Martincic K, et al., hnRNP F influences binding of a 64-kilodalton subunit of cleavage stimulation factor to mRNA precursors in mouse B cells[J]. Mol Cell Biol, 2001. 21(4): 1228-1238.
    [66] Ivvanaga K, Sueoka N, Sato A, et al., Heterogeneous nuclear ribonucleoprotein Bl protein impairs DNA repair mediated through the inhibition of DNA-dependent protein kinase activity[J]. Biochem Biophys Res Commun, 2005. 333(3): 888-895.
    [67] Eversole A,Maizels N, In vitro properties of the conserved mammalian protein hnRNP D suggest a role in telomere maintenance[J]. Mol Cell Biol, 2000. 20(15): 5425-5432.
    [68] Kamma H, Fujimoto M, Fujivvara M, et al., Interaction of hnRNP A2/B1 isoforms with telomeric ssDNA and the in vitro function[J]. Biochem Biophys Res Commun, 2001. 280(3): 625-630.
    [69] Ishikawa F, Matunis M J, Dreyfuss G, et al., Nuclear proteins that bind the pre-mRNA 3' splice site sequence r(UUAG/G) and the human telomeric DNA sequence d(TTAGGG)n[J]. Mol Cell Biol, 1993.13(7): 4301-4310.
    [70] Labranche H, Dupuis S, Ben-David Y, et al., Telomere elongation by hnRNP A1 and a derivative that interacts with telomeric repeats and telomerase[J]. Nat Genet, 1998. 19(2): 199-202.
    [71] Chen H, Hu B, Gacad M A, et al., Cloning and expression of a novel dominant-negative-acting estrogen response element-binding protein in the heterogeneous nuclear ribonucleoprotein family[J]. J Biol Chem, 1998. 273(47): 31352-31357.
    [72] Honore B, Rasmussen H H, Vorum H, et al., Heterogeneous nuclear ribonucleoproteins H, H', and F are members of a ubiquitously expressed subfamily of related but distinct proteins encoded by genes mapping to different chromosomes[J]. J Biol Chem, 1995. 270(48): 28780-28789.
    [73] Mahe D, Mahl P, Gattoni R, et al., Cloning of human 2H9 heterogeneous nuclear ribonucleoproteins. Relation with splicing and early heat shock-induced splicing arrest[J]. J Biol Chem, 1997. 272(3): 1827-1836.
    [74] Matunis M J, Xing J, Dreyfuss G, The hnRNP F protein: unique primary structure, nucleic acid-binding properties, and subcellular localization[J]. Nucleic Acids Res, 1994. 22(6): 1059-1067.
    [75] Caputi M,Zahler a M, Determination of the RNA binding specificity of the heterogeneous nuclear ribonucleoprotein (hnRNP) H/H7F/2H9 family [J]. J Biol Chem, 2001. 276(47): 43850-43859.
    [76] Chen C D, Kobayashi R, Helfman D M, Binding of hnRNP H to an exonic splicing silencer is involved in the regulation of alternative splicing of the rat beta-tropomyosin gene[J]. Genes Dev, 1999. 13(5): 593-606.
    [77] Chou M Y, Rooke N, Turck C W, et al., hnRNP H is a component of a splicing enhancer complex that activates a c-src alternative exon in neuronal cells[J]. Mol Cell Biol, 1999.19(1): 69-77.
    [78] Kuck D, Leder C, Kern A, et al., Efficiency of HPV 16 L1/E7 DNA immunization: Influence of cellular localization and capsid assembly[J]. Vaccine, 2006. 24(15): 2952-2965.
    [79] Schaerer M T, Kannenberg K, Hunziker P, et al., Interaction between GABA(A) receptor beta subunits and the multifunctional protein gC1q-R[J]. J Biol Chem, 2001. 276(28): 26597-26604.
    [80] Reyes-Del Valle J,Del Angel R M, Isolation of putative dengue virus receptor molecules by affinity chromatography using a recombinant E protein ligand[J]. J Virol Methods, 2004. 116(1): 95-102.
    [81] O'farrell P H, High resolution two-dimensional electrophoresis of proteins[J]. J Biol Chem, 1975. 250(10): 4007-4021.
    [82] Karas M,Hillenkamp F, Laser desorption ionization of proteins with molecular masses exceeding 10,000 daltons[J]. Anal Chem, 1988. 60(20): 2299-2301.
    [83] Fire A, Xu S, Montgomery M K, et al., Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans[J]. Nature, 1998. 391(6669): 806-811.
    [84] Kennerdell J R,Carthew R W, Heritable gene silencing in Drosophila using double-stranded RNA[J]. Nat Biotechnol, 2000. 18(8): 896-898.
    [85] Brummelkamp T R, Bernards R,Agami R, Stable suppression of tumorigenicity by virus-mediated RNA interference[J]. Cancer Cell, 2002. 2(3): 243-247.
    [86] Song E, Lee S K, Wang J, et al., RNA interference targeting Fas protects mice from fulminant hepatitis[J]. Nat Med, 2003. 9(3): 347-351.
    [87] Thakker D R, Natt F, Husken D, et al., siRNA-mediated knockdown of the serotonin transporter in the adult mouse brain[J]. Mol Psychiatry, 2005.10(8): 782-789, 714.
    [88] Shuey D J, Mccallus D E,Giordano T, RNAi: gene-silencing in therapeutic intervention[J]. Drug Discov Today, 2002. 7(20): 1040-1046.
    [89]Jones S W,Souza P M,Lindsay M A,siRNA for gene silencing:a route to drug target discovery[J].Curr Opin Pharmacol,2004.4(5):522-527.
    [90]Behm C A,Bendig M M,Mccarter J P,et al.,RNAi-based discovery and validation of new drug targets in filarial nematodes[J].Trends Parasitol,2005.21(3):97-100.
    [91]Garneau D,Revil T,Fisette J F,et al.,Heterogeneous nuclear ribonucleoprotein F/H proteins modulate the alternative splicing of the apoptotic mediator Bcl-x[J].J Biol Chem,2005.280(24):22641-22650.
    [92]J.莎姆布鲁克,黄培堂译,分子克隆试验指南(第三版).3 ed.科学出版社.2003:科学出版社.
    [93]李少伟,沈文通,潘晖榕,et al.,从原核生物中纯化人乳头瘤病毒晚期蛋白L1的方法,in CN101153280.2006:China.
    [94]Evander M,Frazer I H,Payne E,et al.,Identification of the alpha6 integrin as a candidate receptor for papillomaviruses[J].J Virol,1997.71(3):2449-2456.
    [95]Mcmillan N A,Payne E,Frazer I H,et al.,Expression of the alpha6 integrin confers papillomavirus binding upon receptor-negative B-cells[J].Virology,1999.261(2):271-279.
    [96]Rommel O,Dillner J,Fligge C,et al.,Heparan sulfate proteoglycans interact exclusively with conformationally intact HPV L I assemblies:basis for a virus-like particle ELISA[J].J Med Virol,2005.75(1):114-121.
    [97]Joyce J G,Tung J S,Przysiecki C T,et al.,The L1 major capsid protein of human papillomavirus type 11 recombinant virus-like particles interacts with heparin and cell-surface glycosaminoglycans on human keratinocytes[J].J Biol Chem,1999.274(9):5810-5822.
    [98]Nelson L M,Rose R C,Moroianu J,Nuclear import strategies of high risk HPV16 L1 major capsid protein[J].J Biol Chem,2002.277(26):23958-23964.
    [99]Van Hoof A,Frischmeyer P A,Dietz H C,et al.,Exosome-mediated recognition and degradation of mRNAs lacking a termination codon[J].Science,2002.295(5563):2262-2264.
    [100]Frischmeyer P A,Van Hoof A,O'donnell K,et al.,An mRNA surveillance mechanism that eliminates transcripts lacking termination codons[J].Science,2002.295(5563):2258-2261.
    [101]Christensen N D,Kirnbauer R,Schiller J T,et al.,Human papillomavirus types 6 and 11 have antigenically distinct strongly immunogenic conformationally dependent neutralizing epitopes[J].Virology,1994.205(1):329-335.
    [102]Von Mering C,Krause R,Snel B,et al.,Comparative assessment of large-scale data sets of protein-protein interactions[J].Nature,2002.417(6887):399-403.
    [103]Uetz P,Giot L,Cagney G,et al.,A comprehensive analysis of protein-protein interactions in Saccharomyces cerevisiae[J].Nature,2000.403(6770):623-627.
    [104]Yoshiyuki Ishii S O,Keiko Tanaka and Tadahito Kanda,Human Papillomavirus 16 Minor Capsid Protein L2 Helps Capsomeres Assemble Independently of Intercapsomeric Disulfide Bonding[J].Virus Genes,2005.31(3):321-328.
    [105]Formstecher E,Aresta S,Collura V,et al.,Protein interaction mapping:a Drosophila case study[J].Genome Res,2005.15(3):376-384.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700