番茄(Lycopersion esculutum)抗虫缺失突变体def1的鉴定及相应基因的定位
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
利用植物自身抗性建立一种无残毒、无污染、可持续地控制农业害虫的策略是人类孜孜以求的目标。为此就必须对植物自身的抗性反应机理进行深入的研究。
     番茄(Lycopersicon eculentum)是重要的经济作物和分子生物学研究中的重要的模式植物。番茄对许多昆虫的天然抗性是由于具有组成型或诱导型化学物质在起作用,在植物与农业病、虫害相互作用关系的研究中,番茄历来被作为不可多得的模式植物。番茄也是植物诱导性抗性研究的理想模型系统。在此系统中可研究调控防御反应的各种信号途径。
     本研究的基本思路是利用番茄这一模式植物的蛋白酶抑制剂(proteinase inhibitors,PIs)为抗性反应强弱的标记基因,筛选番茄昆虫抗性缺失突变体,在对突变体进行分析的基础上克隆相应的基因进而研究其生物学功能、调控机制和在抗性反应中所起的作用,尤其是在番茄诱导抗性模型系统所具有的功能。在此模型系统中,可以研究调控反应的各种途径和该途径在抵御刺吸式昆虫的作用。
     本试验在前人研究的基础上,建立了一整套实验体系,解析信号传导途径在分子水平抵御昆虫的机制。主要研究结果如下:
     1.雌性成虫二点叶螨侵袭两叶一心期(15天龄)野生型(WT)和昆虫抗性缺失突变体def1植株,结果显示:def1植株对二点叶螨捕食较WT植株表现了极显著的敏感性,同时,在def1植株叶片上比其在WT植株叶片上的虫卵数明显增加。这些结果指出:Def1基因发挥着重要作用--降低了番茄叶片作为二点叶螨食物来源和产卵基质的质量。
     验证了脂肪酸途径调节着防御性化合物在植株叶片的合成。和未处理的对照植株相比,WT植株经二点叶螨捕食后,积累了高水平的PI-Ⅱ和JA。而在def1植株上,PI-Ⅱ水平仅是稍高于测定的检测限,JA水平没有受到二点叶螨侵袭的影响。
     二点叶螨对番茄植株的捕食激活了脂肪酸途径,导致PI-Ⅱ基因的激活,从而诱导PI-Ⅱ蛋白的积累及相关基因的表达。由于def1突变体中脂肪酸合成途径受阻,组织的防御体系受到破坏,所以突变体受害严重。
     外源施用茉莉酸(JA)诱导抗性试验结果表明:JA是恢复def1突变体的抗虫性必须的。足够量的JA可恢复突变体对二点叶螨的抵御能力。甲基茉莉酸(MeJA)处理也减少了二点叶螨对WT番茄的捕食量和在其植株上的产卵数。
     在对番茄转基因品系35S∷prosystemin(35S∷prosys)transgene的实验观察了二点叶螨在番茄转基因品系35S∷prosys植株上的表现:35S∷prosys植株比def1和WT番茄植株都更抗二点叶螨危害。同时,二点叶螨产卵率在转基因品系上大量减少,证明了系统素在番茄系统抗性中起必不可少的作用。
     苜蓿蓟马捕食诱导脂肪酸信号途径介导的寄主反应,通过原系统素的超表达,组成型地激活信号途径,因而提高该转基因番茄植株对多种刺吸式昆虫的抗性。
     2.集群分离群体分析法(bulked segregant analysis,BSA)结合AFLP技术,鉴定了与Def1基因连锁的两个AFLP分子标记(EM-1和EM-2)。试验表明所有的受伤反应阳性
    
    东北农业大学农学博_J:学位论文
    (w十)对两个分子标记是杂合的。而所有的受伤反应阴性植株对两个分子标记(EM一l
    和EM一2)是纯合的。对由20个植株组成的BC,分离群体植株进行试验,未发现有重组
    体,说明分子标记EM一l和EM一2与Defi基因紧密连锁,它们位于第3染色体长臂端着
    丝粒远侧。证实D叨的位置在染色体3的末端,该位置距离含有Ds转座子T-DNA插
    入接近ZeM。
    3.嫁接试验表明:JA生物合成有缺陷的突变体d叨和JA反应有缺陷的突变体jai]‘
    丧失了受伤诱导的PI基因的系统表达。jai了突变体不影响嫁接传导系统信号在受伤位点
    产生,但它挠乱了未受伤叶片信号识别。系统受伤反应信号需要JA在受伤叶片的生物
    合成,而系统素不是系统受伤反应移动信号。JA是系统抗性长距离运输的信号分子。
That Plant which made use of the " built in " defense system against mechanical wounding and herbivore established a kind of no remain toxin, no pollution could be continuously control agricultural pests' strategies ,which was human being searching for objective continously and patiently. For this great propose, we must study further on the plant built-in mechanisms.
    Tomato was an important cash crop and a model plant in molecular biology field. Its natural resistance to herbivore attack was because of constitutional or induced phytochemicals taking function.
    Tomato had been thinking as one of the best model plants in study on the interactions between plants and agricultural pests. Tomato was also a kind of ideal model system for plant induced resistance. In this system, signal pathways that regulated defense responses could be studied.
    In this research, we follow this kind of basic technical route: tomato protainese inhibitors (Pis) as a molecular marker that could express the strength and weakness of the resistance of tomato to herbivore attack and mechanical wounding for screening the mutant deficient in resistance to insects , cloning corresponding gene based on analysis of the mutant and for further studing the biological function and action in the resistance response.
    A set of experimental systems had been established in this research on basis of previous study that analysed signaling transduction pathways for plants resistant to insects at molecular lever. The results were as follow:
    1. That defl and wild type tomato plants were attacked by female adult two spotted spider mite show: defl plant was significantly sensitive to two spotted spider mite, meanwhile the number of eggs per plant on defl in comparasion with that on wile type plant increased distinctly. These results indicated that Defl gene played an important role in reducing the quality of tomato leaves as a food source and oviposition substrate for two spotted spider
    mite.
    It had been demonstrated that octadecanoid signaling pathway mediated synthesis of defensive compounds in wild type tomato leaves. Wild type plants subjected to mite feeding accumulated high levels of PI-II and JA relative to untreated control plants. However, PI-II levels in defl plants were only slightly greater than the detection limit of the assay, and JA levels of defl plants were unaffected by herbivory.
    Two spotted spider mite feeding induced octadecanoid signaling pathway that resulted in activation of PI-II gene and expression of relative genes, further more PI-II protein were
    
    
    accumulated. Because Def1 mutation blocked the synthesis pathway of octadecanoid and damaged defensive systems, mutants were attacted seriously.
    The experiment of exogenous JA inducing resistance showed that JA was required for restoring resistance to insect. Sufficient JA restored defense of the mutant against two spotted spider mite. Wild type plants treated by MeJA reduced the feeding and eggs of two spotted spider mite.
    It had been demonstrated 35S::prosys constitutively express PI and others defensive genes in the absence of wounding and that 35S::prosys mediated signaling requires octadecanoid biosynthesis and percetion in transgenic experimental with 35S::prosys
    Thrips feeding induced octadecanoid-mediated host responses and constitutive activation of the signal pathway by overexpression of prosystemin that enhanced resistance to multiple cell content feeding herbivores. Those results indicated that systemin was mecessary in systemic resistance of tomato.
    2. Bulk segregant analysis was used in combination with AFLP to identify markers that were linked to Def1.This experiment showed that W+ plants wre heterozygous for both marker (EM-1 and EM-2), whereas all W" plants were homozygous for the RFLP pattern. The absence of recombinants in the population of 20 BC1 plants demonstrated that EM-1 and EM-2 were linked to the Def1 locus tightly. EM-1 and EM-2 were located on the end of the long arm of chromosome 3. This finding confirms the locations of Def1 on the distal end of chromosome
引文
1.李传友,伏建民,金德敏,王斌,AFLP分析中多态性扩增产物的回收、克隆及鉴定,遗传,1998,20(3):1-4
    2.李传友,AFLP标记在杂交水稻研究中的应用 中国科学院博士研究学位论文 1999
    3.刘丽艳,水稻基因转化技术的研究及主要转化方法可行性分析,黑龙江农业科学,1999(6)
    4.刘丽艳.体细胞无性系变异遗传机制的探讨及在水稻育种上的应用,哈尔滨医科大学学报,1997(5)95-97
    5. Ahn S J A, Anderson Sorrells M E, Tanksley S DHomologous relationships of rice, wheat, and maize chromosomes. Mol Gen Genet, 1993, 241:483-490
    6. Arimura G, Ozawa R, Shimoda T, Nishioka T, Boland W, Takabayashi J Herbivory-induced volatiles elicit defense gene in lime bean leaves. Nature(2000) 406:512-515.
    7. Ballvora A, Hesselbach J, Niewohner J, et al. Marker enrichment and high-resolution map of the segment of potato chromosome Ⅶ harbouring the nematode resistance gene Grol. Mol Gen Genet. (1995)249:82-90
    8. Barrctt B A, Kidwell, K K AFLP-based genetic diversity assessment among wheat cultivars from the Pacific Northwest. Crop Sci (1998)38:1261-1271
    9 Barrctt B A, Kidwell, K K , Fox P N Comparison of AFLP and pedigreebased genetic diversity assessment methods using wheat cultivars from the Pacific Northwest. Crop Sci (1998) 38:1271~1278.
    10 Baydoun EAH, Fry SC. The immobility of pectic substances in injured tomato leaves and its bearing on the identity of the wound hormone. Planta 1985. 165,269-276
    11. Becber J, Vos P, Kuiper M, et al Combined mapping of AFLP and RFLP markers in barley. Mol. Gen Genet, (1995)249:65-73
    12. Benhamou N, Chamberland H, Pauze FJ. Implication of pectic components in cell surface interactions between tomato root cells and Fusarium oxysporum f.sp. radicis-lycopersici.Plant Physiology 1990.92,995-1003
    13. Bennetzen J L, SanMiguel P, Chen M, et al Grass genomes, Proc Natl Acad Sci USA. (1998)95:1975-1978
    14. Bergey, D.R., Howe, G.A. and Ryan, C.A. Polypeptide signaling for plant defensive genes exhibits analogies to defense signaling in animals. Proc. Natl Acad. Sci. USA. (1996) 93,12053-12058.
    15. Birkenmeier GF, Ryan CA Wound signaling in tomato plants. Evidence that ABA is not a primary signal for defense gene activation. Plant Physiology (1998) 117,687-693
    16. Bishop PD, Makus DJ, Pearce G, Ryan CA. Proteinase inhibitor-inducing factor activity in tomato leaves resides in oligosaccharides enzymically released from cell walls. Proceedings of the National Academy of Sciences, USA 1981.78,3536-3540
    
    
    17. Boivin K, Dea M, Rami J-F, et al Towards a saturated sorghum map using RFLP and AFLP markers. Theor Appl Genet, (1999)98:320-328
    18. Bouquin T, Lasserre E, Pradier J, Pech JC, Balague C. Wound and ethylene induction of the ACC oxidase melon gene CM-ACO2 occurs via two direct and independent transduction pathways. Plant Molecular Biology 1997.35, 1029-1035
    19. Broadway RM, Duffey SS Plant proteinase inhibitors: mechanism of action and effect on the growth and digestive physiology of larval Heliothis zea and Spodoptera exigua. J Insect Physiol (1986) 32:827-833
    20. Carrera E, Prat S. Expression of the Arabidopsis abil-1 mutant allele inhibits proteinase inhibitor wound-induction in tomato. The Plant Journal 1998. 15,765-771
    21. Constabel CP, Yip L, Ryan CA. Prosystemin from potato. Black nightshade and beel pepper: primary structure and biological activity of predicted systemin polypeptides. Plant Molecular Biology 1998.36,55-62
    22. Cnops G, Boer B, Gerats A, et al. Chromosome landing at the Arabidopsis TORNADOI locus using an AFLP-based strategy. Mol Gen Genet. (1996)253:32-41
    23. Conconi A, Miquel M, Browse JA, Ryan CA Intracellular levels of free linoenic and linoleic acids increase in tomato leaves in response to wounding, Plant Physiol (1996) 111:797-803
    24. Constabel CP, Bergey DR, Ryan CA Systemin activates synthesis of wound-inducible tomato leaf polyphenol oxidase via the octadecanoid defense signaling pathway. Proc Natl Acad Sci USA 92:407-411 Devos K M, Millian T, Gale M D, 1993, Comparative RFLP maps of homologous group 2 chromosomes of wheat, rye and barley, Theor Appl Genet, (1995)85:784-792
    25. Dalkin K, Bowles DJ. Local and systemic changes in gene expression induced in tomato plants by wounding and by elicitor treatment. Planta (1989). 179,367-375.
    26. Dixon M S, Jones D A, Keddie J S et al. The tomato Cf-2 disease resistance locus comprises two functional genes encoding leucine-rich repeat proteins. Cell. (1996),84:451-459
    27. Dicke M, Gols R, Ludeking D, Posthumus MASystemin activates synthesis of wound-inducible tomato leaf polyphenol oxidase via the octadecanoid defense signaling pathway. Proc Natl Acad Sci USA (1999) 92:407-411
    28. Dicke M, Sabelis MW, Takabayashi J, Bruin J, Posthumus MAPlant strategies of manipulating predator-prey interactions through allelochemicals: prospects for application in pest control. J Chem Ecol (1990) 16:3091-3118
    29. Doares, S.H., Syrovets, T., Weller, E.W., and Ryan, C.A.. Oli-gogalacturohides and chitosan activate plant defense genes through the octadecanoid pathway. Prco. Natol. Acad. Sci.USA(1995) 92, 4095-4098
    30. Doke N, Miura Y, Chai H-B, Kawakita K. Involvement of active oxygen in induction of plant
    
    defense response against infection and injury. In: Pell E, Steffen K, eds. Active oxygen/oxidative stress and plant metabolism. American Society of Plant Physiologists, 1991.84-96
    31. Doombrowski JE, Pearce G, Ryan CA Proteinase inhibitor-induce activity of the prohormone prosystemin resides exclusively in the C-teminal systemin domain. Proc Natl Acad Sci USA (1999)96:12947-12592
    32. Emmanuel E, Levy AA Tomato mutants as tools for functional genomics. Curr Opin Plant Biol (2002)5:112-117
    33. Eshed Y, Zamir D A genomic library of Lycopersicon pennellii in Lesculentum: a tool for fine mapping of genes. Euphytica (1994)79:175-179
    34. Farmer EE, Ryan CA Octadecanoid precursors of jasmonic acid activate the synthesis of wound-inducible proteinase inhibitors. Plant Cell (1992) 4:129-134
    35. Farrar RR, Kennedy GG Insect and mite resistance in tomato. In G Kalloo, ed, Genetic Improvement of Tomato.Monographs on Theoretical and Applied Genetics 14. Springer-Verlag, New York, (1992) PP122-142
    36. Gale M D, Eevos K M Comparative genetics in the grasses, Proc Natl Acad Sci USA (1998)95:1971-1974
    37. Green TR, Ryan CA Wound-induced proteinase inhibitor in plant leaves: a possible defense mechanism against insects. Science (1972) 175:776-777
    38. Gatehouse, J.A. Plant resistance towards insect herbivores:a dynamic interation, w Phytol. (2002)156,145-169.
    39. Hause, B., Stenzel. I., Miersch, O., Maucher, H., Krameil, R., ziegier, J., and Wasternack, C. Tissue -specific oxylipin signature of tomato flowers. Allene oxide cyclase is highly expressed in distinct flower organs and vascular bundles. Plant. J. (2000).24, 113-126
    40. Heitz T, Bergey DR, Ryan CA A gene encoding a chloroplast-targeted lipoxygenase in tomato leaves is transiently induced by wounding, systemin, and methyl jasmonate. Plant Physiol 1(1997)14:1085-1093
    41. Hildmann T, Ebneth M, Pena-Cortes H, Sanchez-Serrano JJ, Willmitzer L, Prat S. General roles of abscisic and jasmonic acid in gene activiation as a result of mechanical wounding. The Plant Cell (1992). 4,1157-1170
    42. Hill M, Witsenboer H, Zabeau M, et al. PCR-based fingerprinting using AFLPs as a tool for studying genetic relationships in Lactuca spp. Theor Appl Genet, (1996)93:1202-1210
    43. Howe GA, Lee GI, ltoh A, Li L, DeRocher AE Cytochrome P450 dependent metabolism of oxylipins in tomato: cloning and expression of allene oxide synthase and fatty acid hydroperoxide lyase. Plant Physiol (2000)123:711-724
    44. Howe GA, Lightner J, Browse J, Ryan CA An octadecanoid pathway mutant (JL5) of tomato is copromised in signaling for defense against insect attack. Plant Cell (1996) 8:2067-2077
    45. Howe GA, Ryan CA Suppressors of systemin signaling identify genes in the tomato wound
    
    response pathway. Genetics (1999)153:1411-1421
    46. Keim P, Schupp J M, Travis S E A high-density soybean genetic map based on AFLP markers. Crop Sci. (1997) 37:537-543
    47. Kessler, A., and Baldwin, I.T. plant responses to insect herbivory. The emerging molecular analysis.Annu.Rev.Plant Biol. (2002)53,299-328
    48. Jones DA, Thomas CM, Hammond-Kosack KE, Balint-Kurti PJ, Jones JD Isolation of tomato Cf-9 gene for resistance to Cladosporium fulvum by transposon tagging. Science (1994) 266:789-793.
    49. Karban R, Baldwin IT Induced response to herbivory. Chicago University Press, (1997)Chicago
    50. Keinaen M, Oleham N J, Baldwin IT Rapid HPLC screening of jasmonate-induced increases in tobacco alkaloids, phenolics, and diterpene glycosides in Nieotiana attenuata. J Agric Food Chem (2001)49:3553-3558
    51. Knapp S, Larondelle Y, Rossberg M, Furtek D, Theres K Transgenic tomato lines containing Ds elements at defined genomic positions as tools for targeted transposon tagging. Mol Gen Genet (1994)243:666-673
    52. Lahaye T, Shrrasn K, Schulze-Lefert P.Chromosome landing at the barley Rarl Locus. Mol Gen Gent, (1998) 20:92-101
    53. Lange WH, Bronson L Insect pests of tomatoes. Annu Rev Entomoi (1981) 26:345-371
    54. Leon J, Rojo E, Titarenko E, Sanchez-Serrano JJ. JA-dependent and -indepenent wound signal transduction pathways are differentially regulated by CA~(2+)/calmodulin in Arabidopsis thaliana. Molecular and General Genetics (1998). 258, 412-419.
    55. Li, C., Liu, G., Xu, C., Lee, G., Bauer, P., Ganai, M., Ling, H. and Howe, G.A. The Suppressor of prosystemin-mediated response2 (Spr 2) gene encodes a fatty acid desaturase required for the biosynthesis of jasmonic acid and the production of a systemic wound signal for defense gene expression. The Plant Cell. (2003) 15, 1646-1661
    56. Li, C., Williams, M.M., Loh, Y.T., Lee, I.G. and Howe, G.A.. Resistance of cultiviated tomato to cell content-feeding herbivores is regulated by the octadecanoid signaling pathway. Plant Physiol. (2002)130, 494-503.
    57. Li L, Li C, Howe GA Genetic analysis of wound signaling in tomato: evidence for a dual role of jasmonic acid in defense and female fertility. Plant Physiol (2001) 127:1414-1417
    58. LI L, Li C, Lee GI, Howe GA Distinct roles for jasmonic acid synthesis and action in the systemic wound response of tomato. Proc Natl Acad Sci USA (2002)99:6416-6421
    59. Lightner J, Pearce G, Ryan CA, Browse J Isolation of signaling mutants of tomato (Lycopersicon esculentum). Mo Gen Genet (1993)241:595-601
    60. Liu D, Li N, Dube S, Kalinski A, Herman E, Matoo AK. Molecular characterization of a rapidly and transiently wound-induced soybean (Glycin max L.) gene encoding 1-aminocyclopropane-carboxylate synthase. Plant Cell Physiology(1993). 34, 1151-1157
    
    
    61. Lu Z X, Sosinski B, Reighard G LConstruction of a genetic linkage map and identification of AFLP markers for resistance to root-knot nematodes in peach rootstocks. Genome, (1998) 41: 199-207
    62. Moyen C, Johannes E. systemin transiently depolarizes the tomato mesophyll cell membrane and antagonizes fusiccocin-induced extracellular acidification of mesophyll tissue. Plant Cell and Environment (1996). 19, 464-470
    63. Machill D J, Zhang Z, Rodeona E D Level of polymorphism and genetic mapping of AFLP markers in rice. Genome (1996), 39:969-977
    64. Maheswaran M, Subudhi P K, Nandi S. et al. Polymorphism, distribution and segregation of AFLP markers in a doubled haploid rice population. Theor Appl Genet. (1997) 94:39-45
    65. Martin G B, John G K W and Tanksley S D Rapid identification of markers linked to a Pseudomonas resistance gene in tomato by using random primers and near-isogenic lines, Proc Natl. Acad. Sci. USA. (1991) 88:2236-2240
    66. Martin G B, Brommoncshenkel S H, Chunwongse J, et al. Map based cloning of protein kinase gene conferring disease resistance in tomato. Science, (1993) 262:1432-1436
    67. Martin, G.B., Bogdanoce, A.J.and Sessa, G The functions of plant disease resistance proteins in pathogen recognition and signal transduction. Annual Review of Plant Biology. (2003)54,23-61
    68. McConn, M., Hugly, s., Browse, J., and Somerville, C. (1994) A mutation at the fad8 locus of Arabidopsis identifies a second chloroplast ω3 desaturase. Plant Physiol.106, 1609-1614.
    69. McCouch SR, Kochert G, Yu ZH, Wang ZY, Khush GS, Coffman WR, Tanksley SD (1988) Molecular mapping of rice chromosomes. Theor Appl Genet 76:815-817
    70. McGurl B, Orozco-Cardenas M, Pearce G, Ryan CAOverexpression of the prosystemin gene in transgenic tomato plants generates a systemic signal that constitutively induces proteinase-inhibitor synthesis. Proc Natl Acad Sci USA (1994) 91:9799-9802
    71. McGurl B, Pearce G, Orozco-Cardenas M, Ryan CA Structure, expression, and anitsense inhibition of the systemin precursor gene. Science (1992)253:895-898
    72. McGurl, B. and Ryan, C.A.. The organization of the prosystemin gene. Plan Mol. Biol. (1992)20, 405-409.
    73. McGurl, B., Pearce, G., Orozco-Cardenas, M. and Ryan, C.A. Structure, expression, and antisense inhibition of the systemin precursor gene. Science (1992). 255, 1570-1573.
    74. Meindl T, Boiler T, Felix G. The plant wound hormone systemin binds with the N-terminal part to its receptor but needs the C-terminal part to activate it. The Plant Cell(1998). 10, 1561-1570.
    75. Memelink J, Verpoorte R, Kijne JW ORC Anization of jasmonate: responsive gene expression in alkaloid metabolism. Trends Plant Sci(2001) 6:212-219
    76. Michelmore RW, Paran I, Kesseli RV Identification of markers linked to disease
    
    resistance genes by bulked segregant analysis: a rapid method to detect markers in specific genomic regions using segregating populations. Proc Natl Acad Sci USA (1991)88:9828-9832
    77. Money T S, Readr L J, Qu, et al., AFLP based mRNA fingerprinting Nucleic Acids Research (1996), 24(13): 2616-2617
    78. Moyen C, Johannes E. systemin transiently depolarizes the tomato mesophyll cell membrane and antagonizes fusiccocin-induced extracellular acidification of mesophyll tissue. Plant Cell and Environment (1996). 19, 464-470
    79. Narvátez-Vásquez, J., Florin-Christensen, J. and Ryan, C.A. Positional specificity of a phospholipase A activity induced by wounding, systemin, and oligosaccharide elicitors in tomato leaves. Plant Cell (1999) 11, 2249-2260.
    80. Nishiuchi T, Hamada T, Kodama H, Iba K.. wounding changes the spatial expression pattern of the Arabidopsis plastid ω-3 fatty acid desaturase gene (FAD7) through different signal transduction pathways. The Plant Cell(1997) 9, 1701-1712
    81. Moore G, Grasses line up and from a circle. Current Biology(1995) 5(7): 737-740.
    82. Moran PJ, Thompson GA Molecular responses to aphid feeding in Arabidopsis in relation to plant defense pathways. Plant Physiol(2001)125:1074-1085
    83. O'Donnell, P.J., Calvert, C., Atzom, R., Wastermack, C., Leyser, H.M.O., and Bowles, D.J. ethylene as a signal mediating the wound response of tomato plants. Science (1996) 274, 1914-1917.
    84. O' donnell PJ, Truesdale MR, Calvert C, Dorans A, Roberts R, Bowles DJ. A novel tomato gene that rapidly responds to wound-and pathogen-related signals. The Plant Journal (1998). 14, 137-142
    85. Omer AD, Thaler JS, Granett J, Karban R Jasmonic acid induced resistance in grapevines to a root and leaf feeder. J Econ Entomol(2000) 93:840-845
    86. Orozco-Cardenas,M, Ryan CA.. Hydrogen peroxide is generated systemically in plant leaves by wounding and systemin via the octadecanoid pathway. Proceedings of the National Academy of Sciences, USA (1999), 96, 6553-6557.
    87. Ozawa R, Arimura G, Takabayashi J, Shimoda T, Nishioka T Involvement of jasmonate and salicylate-related signaling pathways for the production of specific herbivore-induced volatiles in plants. Plant Cell Physiol (2000)41:391-398
    88. Pearce, G., Strydom, D., Johnson, S., and Ryan, C.A.. A polypeptide form tomato leaves induces wound-inductible proteinase inhibitor proteins. Science (1991)253,895-898
    89. Pena-Cortes H, Sanchez-Serrrano JJ, Mertens r, Willmitzer L.. Abscisic acid is involved in the wound-induced expression of the proteinase inhibitor Ⅱ gene in potato and tomato. Proceedings of the National Academy of Sciences USA (1989) 86, 9851-9855.
    90. Reymond P, Kunz B, Paul-Pletzer K, Grimm R, Eckerskorn C, Farmer EE. cloning of a cDNA encoding a plasma membrane associated Uronide binding phosphoprotein with
    
    physical properties similar to viral movemnent proteins. The Plant Cell (1996). 8, 2265-2276
    91. Reymond P, Weber H, Damond M, Farmer EE Differential gene expression in response to mechanical wounding and insect feeding in Arabidopsis. The Plant Cell (2000). 12,707-719
    92. Rojo E, Titarenko E, Leon J, Berger S, Vancanneyt G, Sanchez-Serrano JJ. Reversible protein phosphorylation regulates JA-dependent and -independent wound signal trandsuction pathways in Arabidopsis thaliana. The Plant Journal (1998). 13,153-165
    93. Rouppe van der vootr J N A M, Wolters P, Folkertsma P,, et al., Mapping of the cyst nematode resistance locus Gpa2 in potato using a strategy based on comigrating AFLP markers. Theor Appl Genet (1997). 95:874-880
    94. Rouppe Van der voort J N A M, Zandvoort P, Van Eck H J et al., Use of allele specificity of comigrating AFLP markers to align genetic maps from different potato genotypes. Mol Gen Genet(1997). 255:438-447
    95. Russell J R, Fuller J D, Macaulley M, et al., Direct comparison of levels of genetic variation among barley accessions detected by RFLPs, AFLPs, SSRs and RAPDs. Theor Appl Genet(1997).95:714-722
    96. Ryan CA The quantitative determination of soluble cellular proteins by radial diffusion in agar gels containing antibodies. Anal Biochem (1967)19:434-440
    97. Ryan, C.A. and Pearce, G.. Systemin: a polypeptide signal for plant defensive genes. Annu. Rev. Cell Dev. Biol(1998). 14, 1-17.
    98. Ryan, C.A.. The search for the proteinase inhibitor inducing factor, PIIF. Plant Mol. Biol(1992). 19, 123-134.
    99. Ryan, C.A.. Proteinase inhibitors in plants: genes for improving defenses against insects and pathogens. Annu. Rev. Phytopathol(1990). 28, 425-449
    100. Ryan CA The systemin signaling pathway: differential activation of plant defensive genes. Biochim biophys Acta (2000)1477:112-121
    101. Ryan, C.A. Pearce, G, Scheer, J., and Moura, D.S. Plypeptide hormones. Plant Cell (2002)14 (suppl.), S251-S264
    102. Ryan, C.A., and Moura, D.S. systemic wound signaling in plants: A new perception. Proc. Natl.Acad. Sci. USA (2002)99, 6519-6520
    103. Schaller F Enzymes of the biosynthesis of octadecanoid -derived signaling molecules. J Exp Bot(2001) 52:11-23
    104. Scheer JM, Ryan CA.. A 160 kD systemin receptor on the surface of Lycopersicon peruvianum suspension-cultured cells. The Plant Cell (1999) 11,1525-1536
    105. Scheer, J.M., and Ryan, C.A.. The systemin receptor SR160 from Lycopersicon peruvianum is a member of the LRR recetptor kinase family. Proc. Natol. Acad. Sci. USA (2002) 99, 9585-9590.
    106. Simons G, Van der lee T, Diergaarde P, et al. AFLP-based fine mapping of the Mlo Gene to a
    
    30-kb DNA Segment of the barley genome. Genomics (1997), 44:61-70
    107. Sivasankar S, Sheldrick B, Rothstein SJ Expression of allene oxide synthase determines defense gene activation in tomato. Plant Physiol (2000)122:1335-1342
    108. Song W Y, Wang G L, Chen L L, et al. A receptor binase-libe protein encoded by the rice disease resistance gene, Xa 21, Science(1995), 270:1084-1086
    109. Subudhi P K, Nandi S, Casal C, et al. Classification of rice germplasm: Ⅲ. High-resolution fingerprinting of cytoplasmic genetic male-sterile (CMS) lines with AFLP. Theor Appl Genet. (1998)96:941-949
    110. Stennis MJ, Chandra S, Ryan CA, Low PS. Systemin potentiates the oxidative burst in cultured tomato cells. Plant Physiology (1998). 117, 1031-1036.
    111. Stintzi A, Weber H, Reymond P, Browse J, Farmer EE Plant defense in the absence of jasmonic acid: the role of cyclopentenones. Proc Natl Acad Sci USA (2001)98:12837-12842
    112. Strassner J, Schailer F, Frick U, Howe GA, Weiler EW, Amrhein N, Macheroux P, Scalier A Characterization and cDNA-microarray expression analysis of 12-oxophytodienoate reductases reveals differential roles for octadecanoid biosynthesis in the local versus the systemic wound response. Plant J (2002)
    113. Takabayashi J, Dicke M Plant-carnivore mutualism through herbivore-induced carnivore attractants. Trends Plant Sci (1996) 1: 109-113
    114. Takashi Matsumoto From genetic distance to genomic fragment, Rice Genome. (1997)6(2): 467
    115. Tanksley S D, Bernatzby R, Lapitan N L., et al. Conservation of gene report but not gene order in pepper and tomato. Proc. Natl. Acad. Sci. USA (1988)85:6419-6223
    116. Tanksley SD, Ganal MW, Martin GB Chromosome landing: a paradigm for map-based gene cloning in plants with large genomes. Trends Genet (1995)11:64-68
    117. Tanksley SD, Ganal MW, Prince JP, de Vicente MC, Bonierbale MW, Brown P, Fulton TM, Giovannoni JJ, Grandillo S, Martin GB et al. High density molecular linkage maps of the tomato and potato genomes. Genetics (1992) 132: 1141-1160
    118. Thaler JS Jasmonate-inducible plant defences cause increased parasitism of herbivores. Nature (1999)399:686-688
    119. Thaler JS, Karban R,Ullman DE, Boege K, Bostock RM Cross-talk between jasmonate and salicylate plant defense pathways: effects on several plant parasites. Oecologia (2002)131:227-235
    120. Thaler JS, Stout MJ, Karban R, Duffey SS Exogenous jasmonates simulate insect wounding in tomato plants (Lycopersicon esculentum) in the laboratory and field. J Chem Ecol (1996)22:1767-1781
    121. Thain JF, Gubb IR, Wildon DC.. Depolarization of tomato leaf cells by oligogalacturonide elicitors. Plant Cell and Environment (1995) 18, 211-214
    
    
    122. Thomas C. M, P. Vos, M, Zabeau, et al. Identification of amplified restriction fragment polymorphism (AFLP) markers tightly linked to the tomato Cf-9 gene for resistance to Cladosporium fulvum, The Plant Journal (1995) 8(5): 785-794
    123. Thomburg RW, LiX. Wounding Nicotiana tabacum leaves causes a decline in endogenous indole-3-acetic acid levels. Plant Physiology (1991). 96, 802-805
    124. Titarenko E, Rojo E, Leon J, Sanchez-Serrano JJ. JA,dependent and -independent signaling pathways control wound-induced gene activation in Arabidopsis thaliana. Plant Physiology (1997). 115,817-826
    125. Tohme J, Gonzalez D O, Beebe S, et al. AFLP analysis of gene pools of a wild bean core collection. Crop Sci. (1996)36:1375-1384
    126. Turner, J.G., Ellis, C., and Dvoto, A. the jasmonate signal pathway. Plant Cell 14 (2002) (suppl.) S153-S164
    127. Van der Biezen EA, Brandwagt BF, van Leeuwen W, Nijkamp HJ, Hille J Identification and isolation of the FEEBLY gene from tomato by transposon tagging. Mol Gen Genet (1996)251:267-280
    128. Van der Biezen EA, Overduin B, Nijkamp HJJ, Hille J Integrated genetic map of tomato chromosome 3. tomato Genet Cop Rep (1994) 44:8-10
    129. Van de Ven WT, Le Vesque CS, Perring TM, Walling LL Local and systemic changes in Squash gene expression in response to silverleaf whitefly feeding. Plant Cell (2000) 12:1409-1423
    130. Vick B, Zimmerman DC Biosynthesis of jasmonic acid by several plant species. Plant Physiol (1984)75:458-461
    131. Vos P, Hogers R, Bieeker M, Reijans M, van de Lee T, Homes M, Frijters A, Pot J, Peleman J, Kuiper M et al. AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res (1995)23:4407-4414
    132. Voorrips R E, Jongerius M C, Kanne H J Mapping of two genes for resistance to clubroot in a population of doubled haploid lines of Brassica oleracea by means of RFLP and AFLP markers .Theor Appl Genet(1997)94:75-82
    133. Walling L The myriad plant responses to herbivores. J Plant Growth regul(2000) 19:195-216
    134. Wallis, J.G., and Browse, J.. Mutants of Arabidopsis reveal many roles for membrane lipids. Prog. Li0id Res. (2002) 41,254-278
    135. Wang B, et al. Tagging and mapping the thermosensitive genie malesterile gene in rice with molecular markers. Theor Appl Genet. (1995)91: 1111-1114
    136. Wang B, et al. Tagging and mappng rice photoperiod sensitive genie male sterile gene with molecular markers. Plant Genome Ⅳ. San Diego (1999), P57
    137. Wang B, Li C Y, Zheng, G H, Fu, J M, Yang R C, Nguyen, H T Primary study of rice AFLP analysis, Acta Botanica Sinica(1999), 41(3): 1-7
    
    
    138. Wastermack, C., and Hause, B.. Jasmonates and octadecanoids: Signals in plant stress responses and development. Prog. Nucleic Acid Res. Mol. Biol (2002)72, 165-221
    139. Waugh R, Bonar N, Baird E, et al. Homology of AFLP Products in their mapping populations of barley. Mol Gen Genet (1997). 255:311-323
    140. Williams WG, Kennedy GG, Yamamoto RT, Thacker JD, Bordner J 2-Tridecanone, a naturally occurring insecticide from the wild tomato species Lycopersicion hrisutum F. glabratum. Science(1980) 207:888-889
    141. Xie, D.X., Feys, B.F. James, S., Nieto-Rostro,.M. and Turner, J.G.. COI1, An Arabidopsis gene required for jasmonate-regulated defense and fertility. Science (1998). 280, 1091-1094.
    142. Young N D, Zamir D, Ganal M W, et al. Use of isogenic lines and simultaneous probing to identify DNA markers tightly linked to the Tm-2a gene in tomato. Genetics(1988): 120: 579-585
    143. Zabeau M, Vos PSelective restriction fragement amplification :A general method for DNA fingerprinting. European Patent Application 92402629.7 (Publication No. 0534858A1).Paris: European Patent Office. (1993)
    144. Zhang Q F, et al. Using bulked extremes and recessive class to map genes for photoperiod-sensitive genic male steritity in rice. Proc Natl Acad Sci USA. (1994) 191:8675-8679
    145. Ziegler J, Stenzell, Hause B, Maucher Hause B, Maucher H, Hamberg M, Grimm R, Ganal M, Wasternack C Molecular cloning of allene oxide cyclase: the enzyme establishing the stereochemistry of octadecanoids and jasmonates. J Biol Chem (2000) 275:19132-19138.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700