太谷核不育基因ms2的分子生物学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
太谷核不育小麦是我国1972年发现的一份珍贵小麦材料,其独特之处主要表现在:其不育性受显性单基因控制,雄性不育彻底,至今未发现一例自交结实现象;雄性不育稳定,不受环境条件的影响;不育性只受显性基因ms2控制,不受遗传背景的影响。它是世界上发现的第一份小麦显性核不育材料,具有巨大的经济价值和理论研究价值。在此基础上育成的矮败小麦是具有矮秆基因标记的显性核不育材料,其显性不育基因ms2与显性矮秆基因Rht10紧密连锁,二者之间的连锁交换率不超过0.18%。本研究所用材料为以中国春为轮回亲本连续回交十二代的矮败中国春小麦近等基因系,该近等基因系的高杆可育及矮杆不育株除在育性、株高上存在差异外,其它遗传背景相同,是进行各项分子生物学研究的好材料。
     利用拟南芥中已克隆的雄性核不育基因Ms2和水稻中假定雄性不育蛋白的保守区域,设计一对简并引物MSP,在太谷核不育小麦可育株及不育株花药中扩增出了一条134bp的片段,序列分析发现该片段在可育及不育花药cDNA间没有差异。该序列电子延伸得到一个长为1,604bp的小麦Contig,序列比较发现,该拼接Contig推测编码的氨基酸序列包含有一段由200个氨基酸组成的雄性不育保守区,与拟南芥核不育蛋白Ms2和水稻假定雄性不育蛋白同源性分别为88%和98%。与拟南芥雄性不育蛋白Ms2相同,推测的雄性不育保守区也含有一个微体结合信号序列:Gly-Arg-Ala。RT-PCR分析表明该拼接Contig只在小麦可育花药中表达,而在败育花药、叶片和根中不表达,说明该雄性不育同源基因属于花药发育特异基因,为太谷核不育基因ms2的一个下游基因。本研究表明基于同源序列的定位候选克隆策略与电子克隆技术相结合可大大加快基因克隆的速度。
     本研究首先试图寻找与太谷核不育基因紧密连锁的分子标记,以矮败小麦的高杆可育及矮杆不育DNA为亲本,分别筛选了已定位在小麦4D染色体上的11对SSR引物和4个RFLP探针,另外还筛选了大麦、节节麦上的4个RFLP探针,结果这11对SSR引物和8个RFLP探针在可育及不育小麦DNA间均无差异。
    
    分别选取小麦4D染色体短臂上两个顶端区域内的4条EST序列设计4对PCR
    引物,在矮败小麦可育及不育基因组DNA中进行扩增,结果4对来自EST序列
    的PCR引物在矮败小麦中有较强的扩增带,但在可育及不育材料间均不表现多
    二衣
     根据比较基因组的共线性原理,推断水稻第三染色体长臂上m:7-bcj区域与
    小麦4D染色体短臂上的msZ一Rht了O区域具有可能的共线性。其中水稻BAC克
    隆AC087797含有的赤霉酸反应迟钝基因伪,GAI与小麦4DS上的矮杆基因RhtIO
    高度同源,利用该BAC克隆中的22个假定基因设计22对PCR引物,在矮败小
    麦可育及不育基因组DNA中进行扩增,有扩增产物的16对引物在可育与不育
    基因组DNA间扩增条带均无差异。用可育及不育花药cDNA为探针与水稻22
    个基因做反向Northern杂交,表明水稻BAC克隆AC087797中的赤霉酸反应迟
    钝基因OsG月I在小麦花药中表达,推断小麦矮杆基因RhtIO在小麦花药中也表
    达。
     在己有的SSR引物中,本研究未发现有与太谷核不育基因msZ连锁的标记,
    为了寻找与m对紧密连锁的SSR标记,本研究在从EST中开发新的SSR引物方
    面进行了尝试。小麦EST数量的迅速增加为开发新的SSR标记提供了宝贵的数
    据资源,从国际小麦族EST协作网(ITEC)上公布的1 0,380条EST序列中检
    索到444条含有SSR的EST序列,检出率为4.1%。其中含二核营酸重复单元和
    三核普酸重复单元的SSR一ESTs分别为34条(7.7%)和347条(78%)。利用这
    些小麦SSR一ESTs序列共设计135对cSSR引物,在矮败小麦近等基因系的高杆
    可育株和矮杆不育株基因组DNA间进行筛选,其中82对cSSR引物在小麦上有
    扩增产物,占所设计引物总数的61%,但这82对引物在两个亲本间均不表现差
    异。利用小麦一套缺体一四体系列,32对cSSR引物分别被定位到小麦除ZD、4B
    和4D外的18条染色体上,丰富了SSR引物来源。
     为探讨太谷核不育小麦败育机制,本文利用。DNA一AFLP技术,以太谷核不
    育小麦减数分裂开始前的可育株及不育株花药mRNA为材料,对太谷核不育小
    麦败育发生过程中基因的差异表达进行了分析。结果表明,在花药减数分裂开始
    前,可育花药与不育花药中基因的表达存在很大差异。在所统计的144对引物组
    合扩增结果中,在gobp至622bp之间的扩增条带数共为2712条,平均每对引物
    了
    
    扩增出18.8条带纹。在所筛选的469对AFLP引物组合中
    合在可育株与不育株间表现多态,筛选出232条差异片段。
    共有193对引物组
    在反向Northem印
    迹鉴定的50条差异片段中共有30条为阳性克隆。对30条阳性克隆进行了序列
    测定和同源性比对分析,其中22条序列与GenBank中己知功能基因同源,17
    条序列在可育花药中特异表达或表达量高,5条序列在败育花药中特异表达或表
    达量高。24条序列与小麦EST同源,这些序列绝大多数来源于小麦减数分裂期
    花药的cDNA文库。其中1条可育花药特异表达序列与大麦参与成花的
    MADS一box保守结构域同源性高达94%,而该序列在败育花药中不表达。
     总之,本研究从小麦EST中共开发新的EST一SSRS引物82对,其中32对定
    位到了小麦具体
The Taigu Genie Male-Sterile Wheat is one of the most characteristic male sterile plants discovered up to the present, which is great valuable in genetic improvement by its stable inheritance, complete male abortion, and high cross-fertilize rate. Dwarfing-Sterile Wheat is a dwarf marked male sterile material, carrying the dominant gene ms2 for male sterility and dominant dwarf gene Rht10. The two genes are closely linked together on the short arm of chromosome 4D, with a crossing-over value as small as 0.18%. The material used in this study was the Dwarfing-Sterile Chinese Spring separated individual. In our research, several techniques such as RT-PCR, SSR, RFLP, cDNA-AFLP and in silic cloning were used to explore the co-separate marker of male sterile gene, clon the male sterile homology gene and to investigate the difference in gene expression between sterile and fertile anthers development of TGMSW. One 134bp fragment was amplified in male sterile and fertile wheat anthers using one pair of degenerated p
    rimer MSP designed based on conserved domain of MS2 gene in Arabidopsis thaliana and putative male sterile protein of Oryza sativa, and one l,604bp Contig was extended by in silico cloning based on the 134bp fragment. The comparison of sequence indicated that the putative amino acid encoded by the Contig include a 200bp conserved domain of male sterility, and this Contig expressed in male fertile wheat anthers, no expression in male sterile anthers, leaves and roots. This research demonstrated that the male steile homology sequence is specific to wheat anther development and the combination of candidate gene clon strategy based on the homologue sequence and in silico cloning technique can accelerated the gene clon.
    To find molecular markers tightly linked to the male sterility gene ms2 of wheat, 11 SSR markers on 4D chromosome, 8 RFLP probes, 4 PCR primers designed from EST on the short arm of chromosome 4D and 22 PCR primers designed from the BAG clon AC087797, which were located on the chromosome 3 of rice, were screened between the genomic DNA of male sterile and fertile plants of TGMSW. In the result,
    
    
    none polymorphism were found between the genomic DNA of male sterile and fertile plants of TGMSW. Reverse Northern blotting result indicated that the gene OsGAI of rice express in wheat anthers.
    The growing availability of EST sequences in wheat provides a potentially valuable source of new SSR markers. In this study, 444 SSR-ESTs were identified from 10,380 ESTs in the International Triticeae EST Cooperative database(ITEC), representing 4.1% of the total number of ESTs. 34 dinucleotide repeats and 347 trinucleotide repeats were found in these SSR-ESTs, representing 7.7% and 78% of the total. SSR-ESTs, respectively. 135 cSSR primers were designed to sequences flanking SSRs from 175 selected SSR-ESTs, of which 82 primers were efficient in wheat and 32 cSSR primers were located on 18 wheat chromosomes except 2D, 4B and 4D. In order to investigate the difference in gene expression between sterile and fertile anther development of Taigu Genie Male-Sterile(TGMSW), cDNA-AFLP was employed to compare the gene expression in pre-meiotic anthers between the male sterile and fertile plants of TGMSW NILs. In this study. 469 Pstl/Msel primer combinations were analysed in cDNA of male sterile and fertile anthers, as a result, a mean of 18.8 amplification products were detected from the above cDNA templates and 232 differentially expressed transcript derived fragments (TDFs) have been identified. Fifty differentially amplified PCR prodcuts specific to either male fertile or sterile anthers were excised from polyacrylamide gels, reamplified and directly sequenced following purification. Of the fifty sequenced fragments, thirty were confirmed by reverse northern hybridazation. Sequence analysis of the cloned PCR products revealed that twenty-two clones showed significant similarity to known genes in GenBank, of which seventeen sequences were specific to or shows high expression in male fertile anthers, Five sequences were spe
引文
1.鲍海滢 小麦核不育基因Ms2的分子标记.中国农业科学院:硕士论文2000
    2.陈朱希昭,陈耀堂,高信曾.太谷核不育小麦花药组织和小孢子发生的超微结构研究.植物学报,1984,26:235
    3.陈朱希昭.太谷核不育小麦花药和花粉发育的细胞形态学观察.山西农业科学,1982,(2):13-16
    4.邓景扬,高忠丽.太谷核不育小麦的发现和鉴定.作物学报.1980,(2):84-98
    5.邓景扬主编.太谷核不育小麦.北京:科学出版社,1987
    6.高忠丽 太谷核不育小麦发现经过.农业科技通讯,1981(1):4-5
    7.顾其敏,李育庆,赵志安等.与太谷雄性不育单基因Tal连锁的基因表达产物的双向电泳分析。复旦学报(自然科学版),1989,28(3):320-323
    8.侯磊,肖月华,裴炎 棉花洞A雄性不育系花药发育的mRNA差别显示 遗传学报 2002 29(4):359-363
    9.姜涛,李爱丽,骆蒙,孔秀英,周荣华,贾继增 矮败小麦中矮秆基因Rht10候选基因的克隆及高、矮秆基因全序列对比 2003
    10.景润春,黄青阳,朱英国.图位克隆技术在分离植物基因中的应用.2000,22(3): 180-185
    11.李刚,胡迎春,张开泰,吴德昌.“电子”cDNA筛选指导基因的全长cDNA克隆.生物技术通讯, 2000, 11(1):1-4
    12.李祥义,邓景扬 太谷核不育小麦雄性败育过程的细胞形态学研究 作物学报1983 9(3):151-156
    13.李子银,张劲松,陈受宜,水稻盐胁迫应答基因的克隆、表达及染色体定位.中国科学,1999.29(6):561-571
    14.凌杏元,周培疆,朱英国,1999.一种新的适于线粒体RNA差异展示的方法.科学通报,44:747-750
    15.凌杏元,周培疆,朱英国,2000.水稻红莲型细胞质雄性不育与保持系mRNA差异显示和差异片段的分析.植物学报,42(3):284-288
    16.刘秉华,邓景扬.小麦显性雄性不育单基因的染色体组定位及端体分析.中国科学(B辑).1986,(2):15-165
    
    
    17.刘秉华,杨丽,王山荭.矮败小麦的遗传研究.作物学报.1994,20(3):301-309
    18.刘秉华,杨丽,王山荭.矮败小麦连锁特性的遗传转移.作物学报.1995,21(6):702-706
    19.刘秉华,杨丽.矮败小麦的选育及利用前景.科学通报.1991,36(4):306-308
    20.刘秉华,杨丽.小麦显性矮秆基因Rht10与着丝点间遗传距离测定.科学通报.1993,38(12):1128-1130
    21.刘秉华.植物基因互作型显性核不育材料的新假说.生物学通报.1994,29(5):16
    22.刘秉华.作物显性雄性不育基因起源的探讨及应用途径分析.大自然探索.1991,10(3):31-36
    23.骆蒙,贾继增,国际麦类基因组EST计划研究进展.中国农业科学,2000,33(6):110
    24.门淑珍.显性雄性核不育小麦不育株与近等基因系可育株不同器官的蛋白质比较研究.中国科学院:硕士学位论文,1999
    25.孟金陵等.植物生殖遗传学[M].北京:科学出版社,1997,172-177.
    26.缪颖,曹家树,陈林娇.芸薹属植物雄性不育的发育生物学研究.生命科学,2000,12(3):105-108.
    27.孙宝华 细胞凋亡信号转导中的蛋白水解酶 国外医学分子生物学分册,1999,21:15
    28.孙敬三,路铁刚,辛化伟利用染色体消除法获得太谷核不育小麦纯合体 植物学报 1999,41(3):254-257
    29.田曾元,戴景瑞 利用cDNA-AFLP技术分析玉米灌浆期功能叶基因差异表达与杂种优势 2002 47(18):1412-1416
    30.王学德,朱英国,1998.水稻雄性不育与可育花粉的mRNA差异显示和cDNA片段的分析.中国科学C辑,28(3):257-263
    31.王泽立,戴景瑞,王斌.植物基因的图位克隆[J]生物技术学报,2000 4:21-27
    32.吴济生,茅矛,付刚等.应用大规模测序技术和生物信息学研究造血干/祖细胞的基因表达及新基因的识别和克隆.遗传,1998,20(6):11-14.
    33.许智宏,刘春明,1998.植物发育的分子机理。北京:科学出版社,3-7
    34.杨昭庆.单核苷酸多态性研究进展[J].国外医学遗传学分册,2000,23(1):4-8
    
    
    35.张成岗等,基于本地和WEB的生物信息学综合分析体系的建立.(私人交流)
    36.张德礼,孙晓静,凌伦奖,等.人类S R蛋白超家族新成员——SFRS12(SRrp508)的基因克隆和特性分析.遗传学报,2002,29(5):377-383
    37.张能刚,周夔 三种内源植物激素与农垦58s育性转换的关系[J]南京农业大学学报, 1992 15(3):16
    38.张炎 官春云 遗传 1995 17(增刊):39-40
    39.赵剑、杨文杰、朱蔚华.细胞色素与植物的次生代谢[J].生命科学,1999,11(3):127-131.
    40.周时佳,韩敬花.太谷核不育小麦可育株、不育株及T型不育系小麦同工酶的比较研究.作物学报,1985,11(2):109-114
    41.朱聪 小麦株高基因Rht10/rht10的分子标记.中国农业科学院:硕士论文,1998
    42.朱玉贤,李毅.(1997)现代分子生物学.高等教育出版社367-385.
    43. Aarts, M. G. M., Dirkse, W. G., Stiekema, W. J. et al., 1993, Transposon tagging of a male sterility gene in Arabidopsis. Nature,363:715-717.
    44. Aguirre PJ and AG Smith. Molecular characterization of a gene encoding a cysteine-rich protein preferentially expressed in anthers of Lycopersicon esculentum.Plant Mol Biol, Nov 1993; 23(3): 477-87.
    45. Ahn S and Tanksley SD. Comparative linkage maps of the rice and maize genomes. Natl.Acad.Sci.USA. 1993,(90):7980-7984
    46. Alia Dellagi, Paul R.J. and lan K.Toth cDNA-AFLP analysis of differential gene expression in the prokaryotic plant pathogen Erwinia carotovora. Microbiology 2000, 146:165-171
    47. Arioli T, Peng L, Betzner AS, et al. Molecular analysis of biosynthesis in Arabidopsis. Scinece, 1998,279:717-719
    48. Arondel V, Lemieux B, Hwang I, et al. Mapp-based cloning of a gene controlling omega-3 fatty desaturation in Arabidopsis. Science, 1992, 258:1353-1355
    49. Ashikari M, Wu JZ, Yano M, et al. Rice gibberellin-insensitive dwarf mutant gene Dwarfl encodes the α-subunit of GTP-binding protein. Proc Natl Acad Sci USA, 1999, 96:10284-10289
    
    
    50. Ayala, M., Balint, R.F., Femandez-de-lossio, M.E., Canaan-Haden, L., Larriek, J.W., Gavilondo, J.V. 1995 New primers trategy improves precision of differential display. Bio Techniques, 18:844-850
    51. Bachem C.W.B, Ronald J.F.J. Oomen and Richard G.F.V.. Transcript Imaging with cDNA-AFLP: A Step-by-Step Protocol Plant Molecular Biology Reporter. 1998, 16:157-173
    52. Bachem C.W.B. cDNA-AFLP A tool for transcriptome analysis 12 June 2002 http://www.dpw.wau.nl/pv/aflp/cDNA-AFLP.pdf
    53. Bachem, C. W. B., van der Hoeven, R. S., Lucker, J., Oomen, R. J. F. J., Casarini, E., Jacobsen, E.and Visser, .R.G.F. Functional genomic analysis of potato tuber life-cycle. Potato Res. 2000; 43:297-312.
    54. Bachem, C.W.B., Hoeven, R., Svander, Bruijn, A.M.de, Vreugdenhil,D., Zabeau, M. et al., 1996. Visualization of differential gene expression using a novel method of RNA finger printing based on AFLP: analysis of gene expression during potato tuber developmrent. Plant Jo 9:745-753
    55. Bedinger, P. 1992 The remarkable biology of pollen. Plant Cell 4:879-887
    56. Beerhues L., Forkmann G., Schopker H., Stotz G., Wiermann R. 1989, J. Plant Physiol., 133:743-746
    57. Belyavavsky A.,Vinogradova T.and Rajewsky, K. Nucleic Acids Res. 1989; 17:2919-2932
    58. Bent AF, Kunkel BN, Dahlbeck D, et al. RPS2 of Arabidopsis thaliana: A leucine-rich repreat class of plant disease resistance genes. Science, 1994, 265:1856-1860
    59. Besse P., Taylor G., Carroll B., Berding N., Burner D.,Mcintyre CL., 1998. Assessing genetic diversity in a Suggar cane germplasm collection using an automated AFLP analysis. Genetics, 104:143-153
    60. Blumberg H., Conklin D., Xu WF., et al., Interleukin 20: discovery, receptor identification, and role in epidermal function. Cell, 2001,104(1):9-19
    61. Bormer L L, Dickenson H G. Anther dehiscence in Lycopersieon esculentum. Ⅰ. Structural aspects. New Phytol, 1989,113:97-115
    
    
    62. Borner, et al., Comparative molecular mapping of GA insensitive Rht loci on chromosome 4B and 4D of comman wheat (Triticum aestivum L.) Theor Appl Genet, 1997,95:1133-1137
    63. Botella MA, Coleman MJ, Hughes DE, et al. Map position of 47 Arabidopsis sequences with sequence similarity to disease resistance genes. The Plant J, 1997, 12(5): 1197-1211.
    64. Botella MA, Parker JE, Frost LN, et al. Three genes of the Arabidopsis RPP1 complex resistance locus recognize distinct Peronospora parasitica avirulence determinants. The plant cell, 1998,10:1847-1860
    65. Boventius H., Weller J.I. 1994. Mapping and analysis of dairy cattle quantitative trait loci by naximum likelihood methodology using milk protein gene as genetic markers Genetics, 137:267-280
    66. Brazier M., Cole DJ., Edwards R. O-glucosyl transferase activities toward phenolic natural products and xenobiotics in wheat and herbicide-resistant and herbicide-susceptible black grass[J]. Phytochemistry,2002,59(2): 149-156.
    67. Breen T R, Chinwalla V, Harte P J. Trithorax is required to maintain engrailed expression in asubset of engrailed-expressing cells. Mech Dev, 1995, 52:89-98
    68. Broude. N.E., Chandra, A., Smith, C.L., 1997 Differential display of genome subsets containing specific interspersed repeats. Proc. Natl. Acad. Sci. USA, 94:4548-4553
    69. Bryan GJ., Collins AJ., Stephenson P. et al., Isolation and characterization of microsatellites from hexaploid bread wheat[J] Theor Appl Genet, 1997, 94:557-563
    70. Buschges R, Hollricher K, Panstruga R, et al. The barley Mol gene: a novel control element of plant pathogen resistance. Cell, 1997,88:695-705
    71. Cai D, Kleine M, Kifle S, et al. Positional cloning of a gene for nematode resistance in sugar beet. Science,1997,275:832-834
    72. Caligiuri M A,schiffer C A, Heinonen K, et al. Partial tandem duplication of ALL1 as a recurrent molecular defect in acute myeloid leukemia with trisomy 11. Cancer Res, 1996, 56:1418-1425
    73. Camargo AA., Samaia HPB., Dias-Neto E., et al., The contribution of 700,000 ORF
    
    sequence tags to the definition of the human transcriptome. Proc Natl Acad Sci USA, 2001, 28(21):12103-12108
    74. Capone MC., Gorman DM., Ching EP., et al., Identification through bioinformatics of cDNAs encoding human thymic shared Ag-1/stem cell Ag-2. A new member of the human Ly-6 family. J. Immunol, 1996,157(3):969-973
    75. Chailakhyan MK, Khriani VN Effect of growth regulators and role of roots in sex expression in Spinach(J). Planta 1978 142:207
    76. Chailakhyan MK, Khriani VN Sexualty in plants and its hormonal regulation(J). New York: Spring-Verlag, 1987, 159
    77. Chandta SKN et al., Role on ABA in stamen and pisitil development in the normal and solanifolia mutant of tomato(Lycopersocon esculentum) (J) Sex Plant Reproduc 19914:279
    78. Chang C, Kwok SF, Bleecker AB. Meyerowitz EM. Arobidopsis ethylene-response gene ETRI: similarity of product to two-component regulators. Science,1993, 262: 539-544
    79. Chao S., Sharp PJ., Worland AJ., et al., RFLP-based genetic maps of wheat homoelogous group 7 chromosomes. Theor Appl Genet, 1989, 78:495-504
    80. Chapman GP, The tapetum. Int Rev Cytol 1987, 107: 111-125.
    81. Chapple C. Molecular genetics analysis of plant cytochrome P450 dependent. monooxygenases[J].Annu Rev Plant Physiol Mol Biol, 1998,49:311-343.
    82. Chaubal R, Zanella C., Trimnell MR., Fox TW.mAlbertsen MC.m Bedinger P. Two male -sterile mutants of Zea Mays (Poaceae) with an extra cell division in the anther wall. Am J Bot., 2000 87 (8): 1193~1201
    83. Cho Y.G., et al., Diversity of microsatellites derived from genomie libraries and GenBank sequences in rice(Oryza sative L. ). Theor Appl Genet,2000; 100:713-722
    84. Coen E S, Meyerowitz E M. The war of the whorls: genetic interactions controlling flower development. Nature, 1991,353:31-37
    85. Coulson A., Sulstion J., Brenner Toward a physical map of the genome of the nematode Caenorhabditis elegans. Proc Natl Acad Sci USA 1986 83:7821-7825
    86. Creusot F, Macadre C, Cana EF, et al. Cloning and molecular characterization of
    
    three members of the NBS-LRR subfamily located in the vicinity of the Co-2 locus for anthracnose resistance in Phaseolus vulgares. Genome, 1999, 42: 254-264.
    87. Daryl L.Klindworth, Northman D. Williams and Shivcharan S Maan Chromosome location of genetic male sterility genes in four mutants of Hexaploid wheat, Crop Breeding, Genetics and Cytology
    88. Dellagi A., Birch P.R.J., Heilbornn J. Lyon G.D. 2000. cDNA-AFLP analysis of differential gene-expression in the prokaryotic plant pathogen Erwinia-Carotovora. Microbiology 146:165-171
    89. Deng JY and Huang YY (1988) A dominant male-sterile mutant in common wheat: Taigu genetic male-sterile wheat (T. aestivum L). Proc 7th Int Wheat Genet Symp, Cambridge: 1077-1079.
    90. Devos K M, Atkinson M D, Chinoy C N, et al. RFLP-based genetic maps of wheat homologous group 3 chromosomes of wheat and rye. Theor Appl Genet, 1992,83:931-939
    91. Devos K.M., Dubcovsky J. and M.D.Gale Structural evolution of wheat chromosome 4A, 5A, and 7B and its impact on recombination. Theor Appl Genet 1995, 91:282-288
    92. Devos KM., Gale MD., Genome relationships: the grass model in current research[J].Plant Cell, 2000,12:637-646.
    93. Devos KM, Pittaway TS, Reynolds A, Gale MD Comparative mapping reveals a complex relationship between the pearl millet genome and those of foxtail millet and rice. Theor Appl Genet 100:190-198
    94. Di Rienzo A., et al Mutational processes of simple-sequence repeat loci in human populations. Proc Nat Acad Sci USA, 1994;91:3166-3170 ,
    95. Diatchenho L., Lau YFC., Campell AP. Suppression substraetive hybridization: a method for generating differentially regulated or tissue-specific cDNA probes and libraries(J). Proc Natl Acad Sci USA 1996 93: 6025-6030
    96. Dickinson, H.G. 1987 The physiology and biochemistry of meiosis in the anther. International review of cytology. 107:79-109
    97. Diener, A.C., Fink, G.R. 1996 DLHl is a functional Candida albicans homologue
    
    of the meiosis-specific gene DMC1. Genetics 143(2):769-776
    98.Dixon MS, Hatzixanthis K, Jones DA, et al. The tomoto Cf-5 disease resistance gene and six homologs show pronounced allelic variation in leucine-rieh repeat copy number. The plant cell, 1998,10:1915-1925
    99.Durrant W.E., Rowland O., Piedras P., Hammondkosack K.E., Jones J.D.G. 2000. cDNA-AFLP reveals a striking over lap in race-specific resistance and wound response gene-expression profiles. Plant Cell 12 (6): 963-977
    100.Echlin, P. The role of the tapetum during microsporogenesis of angiosperms. In pollen: development and physiology. Ed. J. Heslop-Harrason., 1971,P41-61. London: Butterworths.
    101.Esau K. Anatomy of Seed Plants. New York, John Wiley
    102.Eujayl I., et al., Assessment of genotypic variation among cultivated durum wheat based the EST-SSRs and genomic SSRs. Theor Appl Genet,2000;
    103.Eujayl I., et al., Isolation of EST-derived microsatellite markers for genotyping the A and B genomes of wheat. Theor Appl Genet, 104(2-3):399-407
    104.Fourgoux. Nicol A., Drouaud J., Haouazine N., Pelletier G., Guerche P., Isolation of rape seed hgenes expressed early and specificalli during development of the male gametophyte. Plant Mol. Biol., 1999,40(5):857-872.
    105.Frohman MA, Dush MK, Martin GR Rapid production of full-length cDNAs from rare transcripts: amplification using single gene-specific oligonucleotide primer. Proc Natl Acad Sci USA, 1988, 85:8998-9002
    106.Fukuta, T., Kido, A., Kajino, K. 1999 Cloning of differentially expression genes in highly and low metastatic rat Osteosarcomas by a modified eDNA-AFLP method. Biochemical and Biophysical Research Communications 261 (1):35-40
    107.Gale MD., Chao S., Sharp PJ., RFLP mapping in wheat-progress and problems, In: Gustafson JP(Ed.). Gene manipulation in plant improvement Ⅱ, Plenum Press, New York, 1990, p353-363
    108.Gill RW, Sanseau P. Rapid in silico cloning of genes using ex-pressed sequencetags(ESTs). Biotech Ann Rev,2000,5:25-44.
    109.Gilpin BJ, McCallum JA, Frew TJ, Timmerman-Vaughan GM. 1997. A linkage map
    
    of the pea(Pisum sativum L.) genome containing cloned sequences of known function and expressed sequence tags (ESTs). Thero Appl Genet, 95:1289-1299
    110. Giraufat J, Hauge BM, Valon C, Smalle J, Parcy F, Goodman HM. Isolation of the Arabidopsis ABI3 gene by positional cloning. Plant Cell, 1992, 4:1251-1261
    111. Goldberg R B, Beals T B, Sanders P M. Anther development: Basic principles and practical applications. Plant Cell, 1993, 5: 1217-1229
    112. Goldberg,R.B.,T.P.Beals.andP.M. Sanders, 1993, Eur.J.CellBiol., 17:433-441
    113. Gopal S., Schroeder M., Pieper U., et al., Homology-based annotation yields 1,042 new candidate genes in the Drosophila melanogaster genome. Nature Genetics, 2001, 27(3):337-340
    114. Grant MR, Godiard L, Straube E, et al. Struction of the Arabidopsis RPM1 gene enabling dual specificity disease resistance. Science, 1995,269:843-846
    115. Gupta P.K.,H.S. Balyan and P. Leroy Genetic mapping of 66 new microsatellite(SSR) loci in bread wheat Theor Appl Genet 2002,105:413-422
    116. Habu, Y., Fukada-Tanaka, S., Hisatomi, Y., Iida, S. 1997. Amplified restriction fragment length polymorphism-based mRNA finger printing using a single restriction enzyme that recognizes a 4-bp sequence. Biochemical and Biophysical Research Communications 234:516~521
    117. Hartings H. 1999. High resolution finger printing of transcribed genes by means of a modified cDNA-AFLP method. Maydica. 44:179-181
    118. Hayashi M, Nito K, Takei-Hoshi R, et al. Ped3p is a peroxisomal ATP-binding cassette transporter that might supply substrates for fatty acid beta-oxidation. Plant Cell Physiol, 2002, 43:1-11
    119. Herdt E., Suttfeld R., Wiermann R., 1978, Eur, J. Cell Biol., 17:433-441
    120. Hird, D. L., Worrall, D., Hodge, R., et al., 1993, The anther-specific protein encoded by the Brassica napus and Arabidopsis thaliana A6 gene displays similarity to β-1,3-glucanases. Plant J. 2,257-260.
    121. Hodge, R., Paul, W., Draper, J and Scott, R. Cold-plaque screening: a simple technique for the isolation of low abundance, differentially expression transcripts from conventional eDNA libraries. Plant J., 1991, 2:257-260
    
    
    122. Hogensch JB., Ching KA., Batalov S., et al., A comparison of the Celera and Ensembl predicted gene sets reveals little overlap in novel genes. Cell, 2001,106(4): 413-415
    123. http://www.ncbi.nlm.nih.gov/dbEST/dbEST-summary.html
    124. Hu, J., J. N. Rutger. 1992. Pollen characteristics and genetics of induced and spontaneous genetic male-sterile mutants in rice. Plant Breed. 109: 97-107.
    125. Huminiecki L., Bicknell R., In silico cloning of novel endothelial-specific genes. Genome Research, 2000,10(11): 1796-1806
    126. Izhar S.and R. Frankel, R. Theor. Appl. Genet., 1971,41:104-108
    127. Jacinta LF., Richard AS., et al., Molecular Characterization of a Secreted Enzyme with Phospholipase B Activity from Moraxella bovis. Journal of Bacteriology, 2001, 717-6720
    128. Jasinski M, Stukkens Y, Degand H, et al. A plant plasma membrane ATP binding cassette-type transporter is involved in antifungal terpenoid secretion. Plant Cell, 2001, 13:1095-1107
    129. Jensen PE, Willows RD, et al., Structural genes for Mg-chelatase subunits in barley: Xantha-f, -g and -h. Mol Gen Genet. 1996 7;250(4):383-94.
    130. Ji, L.H., Langridge, P. An early meiosis cDNA clone from wheat. Mol. Gen. Genet. 1994, 243(1):17-23
    131. John ME. et al., Cotton (Gossypium hisutum L.,) pollen specific polygalacyuron asered temporal specificity of its promoter intransgenec tobacco. Plant Mol.Biol., 1994,26(6): 1989-1993.
    132. Johnes JT., Rower H., 1998. A comparison the efficiency of differential display and cDN A-AFLPs as a tools for the isolation of differentially expressed parasite genes. Fundamental and Applied Nemadity, 21:81-88
    133. Jonsson JJ., Weissman SM. From mutation mapping to phenoty cloning(J) Proc Natl Acad Sci USA 1995, 92:83-85
    134. Julie Glover, Mathilde Grelon, Stuart Craig et al., Cloning and characterization of MS5 from Arabidopsis: a gene critical in male meiosis. Plant J., 1998,15(3): 345-356.
    
    
    135. Kamalay JC, Goldberg RB, Organ-specific nuclear RNAs in tobacco. Proc Natl Acad Sci USA, 1984, 81: 2801-2805.
    136. Kamalay JC, Goldberg RB, Regulation of structural gene expression in tobacco. Cell, 1980, 19: 935-946.
    137. Kanazin V, Marek LF, Shoemaker RC. Resistance gene analogs are conserved and clustered in soybean. Proc Natl Acad Sci USA, 1996, 93: 11746~11750.
    138. Kantety RV, et al., Data mining for simple sequence repeats in expressed sequence tags from barley, maize, rice, sorghum and wheat. Plant Mol Biol. 2002;48(5-6):501-10
    139. Kaul, M. L. H. 1988. Male sterility in higher plants. Monographs on Theoretical and Applied Genetics 10. Springer-Verlag, New York.
    140. Kehoe D.M., Villand P., Omerville S., 1999. DNA microarrays for studies of higher plants and other photosynthethic organisms. Trends Plant Sci.,4:38-41
    141. Kehrel,B.,and R.Wiermann. 1985. Plant, 163:183-190
    142. Klimyuk, V.I., Jones, J.D. AtDMC1, the Arabidopsis homologue of the yease DMC1 gene: charscterization, transposon-induced alleic variation and meiosis-associated expression. Plant J., 1997, 11 (1): 1-14
    143. Kobayashi, T., Hotta, Y., Tabata, S. Isolation and characterization of a yeast gene that is homologous with a meiosis-specific cDNA from plant. Mol. Genet., 1993, 237(1-2):225-232
    144. Kojima T., Habu Y., Iida S., Ogihara Y. Direct isolation of differentially expressed genes from a specific chromosome region of common wheat---Application of the amplified fragment length polymorphism-based messedger-RNA finger printing (Amf) method in combination with a deletion of wheat. Molecular and General Genetics, 2000, 263 (4): 635-641
    145. Koltunow, A.W., Truettner, J., Cox,K.H., Wallroth,M., andR.B.Golberg. PlantCéll, 1990, 2:1201-1224
    146. Koornneef, M., Hanhart, C. J. and van der Veen,J. H (1991). A genetic and physiological analysis of late flowering mutants in Arabidopsis thaliana. Mol. Gen. Genet 229, 57-66
    
    
    147. Krizek BA and Meyerrowitz EM Mapping the protein regions responsible for the functional specificities of the Arabidopsis MADS domain organ identity proteins. Proc. Natl. Acad.Sci. USA, 1996,93:4063-4070
    148. Kruglyak L, The use of a genetic map of biallelic markers in linkage studies(J). Nat Genet, 1997, 17:21-24
    149. Kruglyak L., The use of a genetic map of biallelic markers in linkage studies[J]. Nat Genet, 1997,17:21-24
    150. Kurata N,et al. Conservation of genome structure between dee and wheat. Bio/technology. 1994,(12):276-278
    151. Lagudah ES, Moullet O, Apples R. Map-based cloning of a gene sequence encoding a nucleotide-binding domain and a leucine-rich region at the Cre3 nematode resistance locus of wheat. Genome, 1997,40(5):659-665
    152. Lander ES., Linton LM., Birren B., et al., Initial sequencing and analysis of the human genome. Nature, 2001, 409(6822): 860-921
    153. Laurie DA., Bennett MD., The production of aploid wheat plants from wheat×1 maize crosses. Theor Appl Genet, 1988, 76:393-397
    154. Lee, I., Aukerman, M.J., Gore, S.L., Lohman, K.N., Michaels, S.D.,Weaver, L.M., John, M.C., Feldmann, K.A., and Amasino, R.M.(1994). Plant Cell 6, 75-83.
    155. Leister D, Kurth J, Laurie D A, et al. RFLP and physical mapping of resisitence gene homologuous in rice (O. Sativa) and barley (H. Vulgare) [J] Thero Appl Genet, 1999, 98:509-520
    156. LeisterD, Kurth J, Laurie DA et al. A PCR-based approach for isolating pathogen resistance genes from potato with potential for wide application in plants(J). Nature Genet 1996, 13:421-429
    157. Leung J, Durand MB, Morries PC, Guerrier D, Chefdor F, Giraudat J. Arabidopsis ABA response gene ABI1: features of a calcium-modulated protein phospatase. Science, 1994,264:1448-1452
    158. Levings CS Thoughts on cytoplasmic male sterility in cms-T maize. Plant Cell 1993 5:1285-1291
    159. Levings, CS. The Texas cytoplasm of maize-cytoplasmic male sterility and disease
    
    susceptibility. 1990. Science 250:942-947
    160. Lewin B.,Genes V. Oxford University Press, New York. 1994
    161. Leyser HMO, Lincoln CA, Timple et al. Arabidopsis auxin-resistance gene AXR1 encodes a protein related to ubiqutin-activating enzyme E1. Nature, 1993,364:161-164
    162. Liang, P., Pardee, S.B. 1992 Differential display of eukaryotic messenger RNA by means of the polymerase chain reaction. Science, 257:967-971
    163. Lisitsyn N., Wigler M. Cloning the differences between two complex genomes(J). Science 1993 259: 946-951
    164. Liu BH and Deng JY (1986a) Genome study and telosomic analysis of the single dominant male-sterile Tal gene in common wheat. Scientia Seniea (Series B) 29: 516-526.
    165. Liu BH and Deng JY (1986b) A dominant gene for male sterility in wheat. Plant Breed 97: 204-209.
    166. Lochner K,siegler G, Fuhrer M, et al. Aspecific deletion in the breakpoint cluster region of all ALL-1 gene is associated with acute lymphoblastic T-cell leukemias. Cancer Res, 1996, 56:2171-2177
    167. Lohmann J, Ischickle H, Bosch TCG. REN display, a rapid and efficient method for monradioactive differential display and mRNA isolation[J]. Bio Techniques, 1995,18:2,200-202
    168. Lonie A, D'Andrea R, Paro R, et al. Molecular characterisation of the polycomblike gene of Drosophila melanogaster, a trans-action negative regulator of homeotic gene expression. Development, 1994, 120:2629-2636
    169. Maan SS, Carlson KM, Williams ND and Yang T (1987) Chromosomal arm location and gene centromere distance of a dominant gene for male sterility in wheat. Crop Sci 27: 494-500.
    170. Maan SS.and S. F. Kianian Third dominant male sterility gene in common wheat Wheat Information Service 2001, 93:27-31
    171. Mago R, Nair S, Mohan M. Resistance gene analogues from rice: cloning, sequencing and mapping. Theor Appl Genet, 1999, 99: 50-57.
    
    
    172. Mariani C., De Beuckeleer M., Treuttner J., Leemans J., Goldberg RB. 1990 Induction of male sterility in plants by a chimeric ri-bonuclease gene. Nature, 347: 737-741
    173. Marion S. Roder, Victor Korzun and Martin W. Ganal A microsatellite map of wheat. Genetics 1998,149:2007-2023
    174. Mark A Cigan, Erica Unger, Xu R J, et al. Phenotypic complementation of ms45 maize requires tapetal expression of MS45. Sex Plant Reprod, 2001,14:135-142
    175. Martin, G.B., Brommonschenkl, S.H., Chunwongse, J. et al., Map-based cloning of a protein kinase gene conferring disease resistance in tomato(J). Science, 1993262:1432-1436
    176. Mascarenhas J P. Molecular mechanisms of pollen tube growth and differentiation. Plant Cell, 1993, 5:1303-1314
    177. Mascarenhas,J.P. Gene activity during pollen development. Annu. Rev. Plant Physiol. Mol. Biol., 1990, 41:317-338
    178. Matz M, Shagin D, Bogdanova E, Britanova O, Lukyanov S, Diatchenko L and Chencik A Amplification of cDNA ends based on template-switching effect and step-out PCR. Nucleic Acids Res.,1999, 27: 1558-1560.
    179. Matz,M., Usmen, N., Shagin, D., Bogdanova, E.,Lukyanov, S. Ordered differential display: a simple method for systematic comparison of gene expression profiles. Nucleic Acids Research., 1997, 25:2541-2542
    180. McCormick S. Male gametophyte development. Plant Cell, 1993, 5:1265-1275
    181. McCormick S. Molecular analysis of male gametogenesis in plants. Trends Genet, 1991, 7:298-303
    182. McDowell JM, Dhandaydham M, Long TA, et al. Intragenic recombination and diversifying selection contribute to the evolution of downy mildew resistance at the RPP8 locus of Arabidopsis. The plant cell,1998,10:1861-1874
    183. Mchelmore RW., Parau I. Isolation of disease resisitance genes from crop plants(J). Current opinion in Biotechnology 1995 6:145-152
    184. Metz J G, Pollard M R, Lassner M W. Fatty acyl ruductases. US Patent 5,370,996, published Dec. 6, 1994.
    
    
    185. Meyer E., et al., Microsatellite polymorphisms reveal mphylogenetic relationships in primates. J Mol Evol. 41: 10-14
    186. Mindrinos M, Katagiri F, Yu G, et al. The A.thaliana disease resistance gene RPS2 encodes a protein containing a nuleotide-binding site and leucine-rich repreats. Cell, 1994,78:1069-1099
    187. Money, T., Reader, S., Qu, L.J., Dunford,R.P., Moore,G., 1996. AFLP-based mRNA finger printing. Nucleic Acids Research. 24:2616-2617
    188. Nacken, WK, P Huijser, JP Beltran, H Saedler, and H Sommer. Molecular characterization of two stamen-specific genes, tapl and fill, that are expressed in the wild type, but not in the deficiens mutant of Antirrhinum majus. Mol Gen Genet, Sep 1991; 229(1): 129-36.
    189. Nakajima M et al., Semi-quantification of Ga1 and GA4 in male sterilty anthers of rice by radiommunoassay(J). Plant Cell Physiol, 1991,2:511
    190. Nave, E.B., Sawhney, V.K. 1986 Enzymatic changes in post-meiotic anther development in Petunia hybrida. Anther ontogeny and isozyme analyses. J. Plant Physiol. 125:451-456
    191. Ohara,O., Dorit,R.L.andGilbert,W.Proc. Natl.Acad. Sci.USA 1989:86:5673-5677
    192. Ohmori T, Murata M, Motoyoshi F. Characterization of disease resistance gene-like sequences in near-isogenic lines of tomato. Theor Appl Genet, 1998, 96:331-338.
    193. Osborne BI., Baker B. Movers and shakers: maize transposons as tools for analyzing other plant genomes(J). Current opinion in Biotechnology 1995 7:406-413
    194. Pacini E, Franchi G G, Hesse M. The tapetum: Its form, function, and possible phylogeny in Embryophyta. Plant Syst Evol, 1985, 149:155-185
    195. Parker JE, Coleman M J, Szabo V, et al. The Arabodipsis downy mildew resistance gene RPP5 shares similarity to the toll and interleukin-1 receptors with N and L6. The plant cell,1997,9:879-894
    196. Paul.W., R Hodge, S Smartt, J Draper, and R Scott. The isolation and characterisation of the tapetum-specific Arabidopsis thaliana A9 gene. Plant Mol Biol, Jul 1992; 19(4): 611-22.
    
    
    197. Pepper A, Delaney T, Washburn T, et al. DET1, a negative regulator of light-mediated development and gene expression in Arabidopsis, encode a novel nuclear-localized protein. Cell,1994,78:109-116
    198. Porter EK., Parry D., Bird J., Dickinson HG., The localization of nucleic acid synthesis during meiosis in higher plants. Contrlling events in meiosis.1984, 363-379
    199. Porter TD, Coon M J, Cytochrome P450. Multiplicity of iso-forms, substrates, and calalytic and regilatory mechanisms[J]. J Bio Chem,1991,266(21): 13469-13472.
    200. Preuss, D., Lemieux, B., Yen, G. and Davis, R. W. (1993).A conditional sterile mutation eliminates surface components from Arabidopsis pollen and disrupts cell signaling during fertilization. Genes Dev. 7, 974-985.
    201. Preuss, D., Rhee, S. and Davis, R, (1994). Tetrad analysis possible in Arabidopsis with mutation of the QUARTET (QRT) genes. Science 264, 1458-1460.
    202. Putterill J, Robson F, Lee K, et al. The CONSTANS gene of Arabidopsis promotes flowering and encodes a protein showing similarities to zinc finger transcription factors. Cell,1995,80:847-857
    203. Qin L.,Overmars B., Helder J., Popeijus H., Vandervoort JR, Groenink W., Vankoert P., SchotsA., Bakker J., Smant G., 2000. An efficient cDNA-AFLP-based strategy for the identification of putative pathogenicity factors from the potato cyst-nematod. Globodera-Rostochiensis. Molecular Plant-Microbe Interactions, 13 (8): 830-836
    204. Quackenbush J., Cho J., Lee D., et al. The TIGR Gene Indices: analysis of gene transcript sequences in highly sampled eukaryotic species. Nucleic Acids Res, 2001,29(1): 159-64
    205. Reed, W.P. Nagpal, D. S. Poole, M. Furuya, and J. Chory Mutations in the Gene for the Red/Far-Red Light Receptor Phytochrome B Alter Cell Elongation and Physiological Responses throughout Arabidopsis Development Plant Cell 1993 5: 147-157.
    206. Reznickova, S.A., Histochemical study of reserve nutrient substances in anther of Lilium candidu., C. R. Acad. Bulg.Sci., 1987, 31:1067-1070
    207. Rhoades, MM. Genic control of chromosomal behavior. Maize Genet Newslect.
    
    1956 30:38-42
    208. Riechmann JL., Meyerowitz EM., MADS domain proteins in plant development[J]. Biol Chem., 1997,378:1079-1101.
    209. Rivkin MI, Vallejos CE, McClean PE. Disease-resistance related sequences in common bean. Genome, 1999, 42: 41-47.
    210. Roder MS., Plaschke J., Konig SU., et al., Abundance, Variability and chromosomal location of microsatellite in wheat[J]. Mol Gen Genet, 1995, 246:327-333
    211. Roder, J.D. (200 I). Veterinary Toxicology. Butterworth Heinemann (Boston).
    212. Roffey RA, Theg SM. Analysis of the Import of Carboxyl-Terminal Truncations of the 23-Kilodalton Subunit of the Oxygen-Evolving Complex Suggests That Its Structure Is an Important Determinant for Thylakoid Transport. Plant Physiol. 1996 Aug;111(4):1329-1338.
    213. Ross, K. J., Fransz, P., Armstrong, S. J., et al., Cytological characterization of four meiotic mutants of Arabidopsis isolated from T-DNA transformed lines. Chrom. Res. 1997, 5;551-559.
    214. Rossetto M., et al., Evaluating the potential of SSR flanking regions for examing taxonomic relationships in the Vitaceae. Theor Appl Genet, 2002; 104(1):61-6
    215. Rowley, J.R., Walles, B. 1987 Origin and structure of Ubiseh bodies in Pinus sylvestris. Acta. Soc. Bot. Polon. 56:215-227
    216. Rubinelli P., Hu Y., Ma H., 1998 Identification, sequence analysis and expression studies of novel anther-speicific genes of Arabidopsis thaliana. Plant Mol. Biol., 37(4):607-619
    217. Saha V, Chaplin T, Gregorini A, et al. The leukemia-associated-protein (LAP) domain, a cysteine-rich motif, is present in a wide range of proteins, including MLL, AF 10, and MLLT6 proteins. Proc Natl Acadsci USA, 1995, 92:9737-9741
    218. Sasakuma T, Maan SS and Williams ND (1978) EMS-induced male sterility in euplasmic and alloplasmic common wheat. Crop Sci 18: 850-853.
    219. Sato, S., Kobayashi,T., Hotta, Y., Tabata, S. Characterization of a mouse recA-liké gene specifically expressed in testis. DNA Res., 1995, 2(3):147-150
    220. Sawhney VK et al., Morphogenesis of stamenless -2 mutant in tomato Ⅱ.
    
    Modifications of sex organs in the mutant and normal flowers(J). Can J Bot 1973,51:2473
    221. Sawhney VK Floral mutants in tomato: development, physiology, and evolutionary implications(J) Can., J. Bot. 1992 70:701
    222. Sawhney, V.K., and Bhadula, S.K. 1988 Microsporogenesis in the normal and male-sterile stamenless mutant of tomato(Lycopersicon esculentum). Can J. Bot, 66:2013-2021
    223. Scherer G., Telford J., Baldar C. Isolation of cloned genes differentially expressed at early and late stages of Drosophila emboyonic development(J). Dev Biol 1981 86:438-447
    224. Schultz J., Doerk T., Ponting CP., et al., More than 1000 putative new hurnan signalling proteins revealed by EST data mining. Nat Genet, 2000,25(2):201-204
    225. Schwarz-Sommer, Z., Huijser, P., Nacken, W., Saedler, H. and Sommer, H. (1990.) Genetic control of flower development by homeotic genes in Antirrhinum majus. Science, 250, 931-936
    226. Scott R, Hodge,W., Paul,and J.Draper et al. The molecular biology of anther differentiation. Plant Sci, 1991, 80;167-191
    227. Scott, R. J., 1994, Pollen exine -the sporopollenin enigma and the physics pattern. In Molecular and Cellular Aspects of Plant Reproduction (Scott, R. J. and Stead, A. D., eds).Cambridge: Cambridge University Press,pp.49-81.
    228. Scott, R., Dagless, E., Hodge, R., Paul, W., Soufleri, I., Draper, J. 1991 Patterns of gene expression in developing anthers of Brassica napus. Plant Mol Biol. 17:195-207
    229. Seah S, Sivasithamparam S, Karakousis A, et al. Cloning and characterization of a family of disease resistance gene analogs from wheat and barley. Theor Appl Genet, 1998, 97: 937-945.
    230. Sears E R, 10:31-51 Genetic control of chromosome pairing in wheat. Ann. Rev. Genet. 1976 10:31-51.
    231. Sharp P J, Chao S, Gale M D. The isolation, Characterization and application in Triticeae of a set of wheat RFLP probes identifying each homologous chromosome
    
    arm. Theor Appl genet, 1989, 78:342-348
    232. Shen KA, Meyers BC, Islam FMN, et al. Resistance gene candidates identified by PCR with degenerate oligonucleotide primers map to cluster of resistance genes in lettuce. Mol Plant-Microbe Interact, 1998, 11: 815-823.
    233. Shen,J.B. and FC Hsu. Brassica anther-specific genes: characterization and in situ localization of expression.Mol Gen Genet, Sep 1992; 234(3): 379-89
    234. Shockey J M, Rajasekharan R, Kemp J D. Photoaffinity labeling of development jojoba seed microsomal membranes with a photoreactive analog of acyl-coenzyme A. Plant Physiol. 1995, 107:155-160
    235. Shore P, Sharrocks AD. The MADS-box family of transcription factors[J]. Eur J Bio Chem, 1995, 229:1-13.
    236. Slatkin M., A measure of population subdivision based on microsatellite allele frequencies. Genetics, 139:457-462
    237. Smith,A.G. CS. Gasser, KA Budelier, and RT Fraley. Identification and characterization of stamen- and tapetum-specific genes from tomato.Mol Gen Genet, Jun 1990; 222(1): 9-16
    238. Song WY, Wang GL, Chen LL, et al. A receptor kinase-like protein encoded by the rice disease resistance gene Xa21. Science, 1995,270:1804-1806
    239. Sorrells ME and Fritz SE (1982) Application of a dominant male-sterile allele to the improvement of self-pollinated crops. Crop Sci 22:1033-1035.
    240. Sourdille PG, et al., 1998, Linkage between RFLP molecular markers and the dwarfing genes RhtB1 and RhtD1 in wheat. Hereditas, 1998;128:41-46
    241. Southworth D. 1990, Exine biochemistry. In Microspores. Evolution and Ontogeny (Blackmore, S. And Knox, R. B., eds). London: Academic Press, 193-212
    242. Spencer DF, Schnare MN, Coulthart MB, Gray MW Sequence and organization of a 7.2 kb region of wheat mitochondrial DNA containing the large subunit (26S) rRNA gene.Plant Mol Biol. 1992 Oct;20(2):347-52.
    243. Speulman E, Bouchez D, Holub EB, et al. Disease resistance gene homlogs correlate with disease resistance loci of Arabidopsis thaliana. The Plant J,1998, 14(4):467~474.
    
    
    244. Steiglitz, H. 1977 Role of β -1,3-glucanase in postmeiotic microspore release. Dev. Biol. 57:87—97
    245. Stern, H. 1986 Meiosis: some considerations. J. of Cell Science. 4:29-33
    246. Straus D., Ausbel FM., Genomic substraction for cloning DNA corresponding to detction mutations(J). Proc Natl Acad Sci USA 1990 87:1889-1893
    247. Suarez MC, Bernal A., Gutierrez J., Tohme J., Fregene M. 2000. Developing expressed sequence tags (ESTs) from polymorphic transcript-derived fragments (TDFs) in cassava (Manihot esculenta Crantz). Genome, 43:62-67
    248. Sun JS(孙敬三), Liu H.(刘辉), Lu TG (路铁刚), Wang XA (王兴安), Ren Z(任真), Wang JL (王景林), Fang R (方仁), Yang C (杨才). The production of haploid wheat plants via wheat × maize hybridization. Acta Bot Sin (植物学报), 1992, 34:817-821 (in Chinese)
    249. Sung, Z.R., A. Belachew, S. Bai, R. Bertrand-Garcia. 1992. EMF, an Arabidopsis gene required for vegetative shoot development. Science 258:1645-1647.
    250. Sylvia S. et al., Development of EST-derived microsatellite markers for mapping and germplasm analysis in wheat. Plant & Animal Genome Ⅷ Conference
    251. Takegami, M.H.; Yoshioka, M.; Tanaka, I.; Ito, M.. Characteristics of isolated. microsporocytes from Liliaceous plants for studies of the meiotic cell cycle in vitro Trillium kamtschaticum, Lilium. Plant & Cell Physiology, 1981,22:11-10.
    252. Tanaka, I., and Ito, M (1981). Control of division patterns in explanted microspores of Tulipa gesneriana. Protoplasma 108,329-340.
    253. Tautz D, Trick M, Dover GA Cryptic simplicity in DNA is a major soure of genetic variation(J). Nature, 1986 322:652-656
    254. Terryn N., Kouze P., Montagu M.V. 1999. Plant genomics. FEBS Letters, 452:3-6
    255. Theissen G, Becker A, Di Rosa A, et al. A short history of MADS-box genes in plants. Plant Mol Biol, 2000, 42:115-149
    256. Theodoulou F L. Plant ABC transporters. Biochim Biophys Acta, 2000, 1465: 79-103
    257. Thiel T, et al., Exploiting EST databases for the development and characterization of gene-derived SSR-markers in barley(Horderm vulgate L.) Theor Appl Genet,
    
    2003; 106(3):411-22
    258. Thomas CM, Jones DA, Parniske M, et al. Characterizaton of the tomato Cf-4 gene for resistance to Cladosporium fulvum identifies sequences that determine recognition specificity in Cf-4 and Cf-9. The plant cell, 1997,9:2209-2224
    259. Thornberry NA. Lazebnik Y. Caspases: enemies within. Science, 1998, 281:1312-1316.
    260. Timothy A.H. et al., Identification and mapping of polymorphic SSR markers from expressed gen sequences of barley and wheat. Molecular Breeding,2002;9:63-71
    261. Vanderbiezen EA., Juwana H., Parker JE., Jones JDG. CDNA-AFLP display for the isolation of Peronospora-Parasitica genes expressed during infection in Arabidopsis thaliana. Molecular Plant-Microbe Interactions, 13 (8): 895-89
    262. Vardhney R K, et al., In silico analysis on frequency and distribution of microsatellites in ESTs of some cereal species. Cell and Molecular Biologylett..2002
    263. Venter JC., Adama MD., Myers EW., et al., The sequence of the human genome. Science, 2001, 291(5507):1304-1351
    264. Vos, P., Hoger, R., Bleeker, M. 1995. AFLP: a new technique for DNA finger printing. Nucl. Acids. Res.23:4407-4414
    265. Weigel D, Meyerowitz E M, The ABCs of floral homeotic genes. Cell, 1994, 78: 203-209
    266. Wendy E.Durrant,Owen Rowland and Jonathan D.G.J ones cDNA-AFLP reveals a striking overlap in race-specific resistance and wound response gene expression profiles. The Plant Cell 2000, 12:963-977
    267. Wiemann S., Weil B., Wellenreuther R., et al., Toward a catalog of human genes and proteins: sequencing and analysis of 500 novel complete protein coding human cDNAs. Genome Research, 2001,1(3):422-435
    268. Wiermann, R. 1979 Stage-specific phenylpropanoid metabolism during pollen development. In regulation of secondary product and plant hermone metabolism, ed. M. Luckner, K. Schreiber. P231-239. Oxford: Pergamon
    269. Wright SY., Suner MM., Bell PJ., Vaudin M., Greenland AJ. Isolation and
    
    characterrization of male flower cDNAs from maize. Plant J., 1993, 3(1):41-49
    270. Wusirika R., Jorge D.,Yong-Jin P.,and Jeffrey L.B. Different types and rates of genome evolution detected by comparative sequence analysis of orthologous segments from four cereal genomes. Genetics 2002,162:1389-1400
    271. Xu H L, R Bruce Knox, Philip E Taylor et al. Bcpl, a gene required for male fertility in Arabidopsis. Proc. Natl. Acad. Sci.USA, 1995, 92:2106-2110
    272. Yanofsky, M. F., Ma, H., Bowman, J. L., Drews, G. N., Feldmann, K. A. and Meyerowitz, E. M. (1990). The protein encoded by the Arabidopsis homeotic gene agamous resembles transcription factors. Nature 346, 35-39
    273. Yoshimura S, Yamanouchi U, Katayose Y, et al. Expression of Xal, a bacterial blight-resistance gene in rice is induced by bacterial inoculation. Proc Natl Acad Sci USA, 1998,95(4):1163-1668
    274. Yu J., et al., A draft sequence of the rice genome (Oryza sativa L. ssp. indica). Science, 2002, 296(5565), 79-92
    275. Yu YG, Buss GR, Saghai MMA. Isolation of a supperfamily of candidate disease-resistance genes in soybean based on a conserved nucleotide-binding site. Proc Natl Acad Sci USA, 1996, 93:11751-11756.
    276. Zhang, X.H. and Chiang,V.L. Single-stranded DNA ligation by T4 RNA ligase for PCR cloning of 5 '-noncoding fragments and coding sequence of a specific gene. Nucleic Acids Res. 1996;24:990-991
    277. Zoe A, Wilson Shaun M, Morroll Janet Dawson et al. The Arabidopsis MALE STERILITY1(MS 1) gene is a transcriptional regulator of male gametogenesis, with homology to the PHD-finger family of transcription factors. Plant J. 2001, 28(1): 27-39
    278. Milbourne D., R. C. Meyer, A. J. Collins, L. D. Ramsay, and C. Gebhardt et al., 1998 Isolation, characterisation and mapping of simple sequence repeat loci in potato. Mol. Gen. Genet. 259:233-245
    279. Ramesh V. K, Mauricio L R, David E. M and Mark E. Sorrells.Data mining for simple sequence repeats in expressed sequence tags frombarley, maize, rice, sorghum and wheat Plant Molecular Biology 2002, 48:501-510

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700