甘蓝型油菜隐性细胞核雄性不育的基因定位
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
油菜杂种优势利用是提高产量、缓解产量与品质矛盾、增强抗(耐)逆性的有效途径,而高效授粉系统的发掘与利用则是杂交种子生产的关键一环。隐性细胞核雄性不育因其具有不育性彻底且稳定、恢复源广等优点,在国内已经成为杂种优势利用的一个重要途径,但由于得不到100%的不育系,在杂交制种时需人工拔除不育系株行中50%的可育株,限制了其广泛应用。陈凤祥等(1993)提出了隐性核不育的隐性上位互作模式,为隐性核不育的“三系”配套提供了理论依据,为核不育的广泛应用奠定了基础。
     目前国内生产上应用的隐性核不育有双隐性核不育(S45A和117A等)和隐性上位互作核不育(9012A等)。双隐性核不育的育性受两对重叠隐性基因(ms_1和ms_2)控制,在两对基因均为隐性纯合时表现不育,只要有一个位点具有显性基因时即可恢复育性。隐性上位互作核不育的育性受两对重叠隐性不育基因(ms_3和ms_4)和一对隐性上位抑制基因(rfrf)互作控制,隐性上位基因纯合时对隐性不育基因起抑制作用,即三对基因都为隐性纯合时表现可育,与纯合不育系杂交能够产生全不育的群体,可用作保持系,从而解决了核不育制种中拔除50%可育株的难题。陈凤祥等(1998)还证明9012A中两对重叠隐性基因与S45A和117A中的两对重叠隐性基因非等位,且隐性上位基因与不同的重叠隐性不育基因之间的互作可能是非专一性的。为了进一步探索其不育机理,使隐性核不育得到更加广泛的应用,有必要对其核不育基因进行深入研究。
     本研究以甘蓝型油菜双隐性核不育两型系117AB、S45AB和隐性上位互作核不育两型系9012AB为材料,采用AFLP技术寻找各个不育系中与可育基因位点紧密连锁的分子标记,构建目标基因区域的连锁图谱,并利用芸苔属作物与拟南芥的同源性和共线性开展目的基因的图位克隆工作,取得的实验结果和主要结论如下:
     1.将双隐性核不育两型系117AB中的可育株(117B)与S45AB中的可育株(S45B)进行人工杂交,在F_1代套袋自交,收获10个F_1的自交后代,在F_2代对这些株系进行育性调查,其结果显示:有2个株系出现15:1的育性分离,8个株系出现3:1的育性分离,表明在这两个近等基因系中,117B和S45B的可育基因是不等位的。
     2.在甘蓝型油菜双隐性核不育两型系117AB中构建了含152个单株的近等基因系群体,应用BSA法构建了可育基因池和不育基因池,在两个基因池之间一共筛选了512对AFLP引物,找到了6个与目标基因紧密连锁的分子标记,其中有3个标记(K1、K4和K5)位于可育基因位点的同一侧,与可育基因位点的遗传图距分别为4.0 cM、8.0 cM和8.0 cM,一个标记(Y1)位于可育基因位点的另一侧,与可育基因位点的遗传图距为8.0 cM,其它两个标记(K2和K3)在所用的群体中与目标基因共分离。对标记K1、K2、K3和Y1进行回收、克隆、测序,并根
The utilization of heterosis in rapeseed is an efficient pathway to increase yield, to solve the problem between yield and quality, and to improve resistance/tolerance. The study and utilization of high efficient pollination control system is the key step in hybrid seed production. The genic male sterility (GMS) systems had great potential for hybrid seed production in virtue of the characteristics of complete and stable male sterility, no negative cytoplasmic effects on plant growth, and ease of transference of the male sterility gene(s) to diverse genetic backgrounds. However, the production of F1 hybrid seed requires the removal of 50% of segregating fertile plants in the sterile female line which limits its utilization for production of hybrid seed. In 1993, Chen et al. reported a recessive genic male sterility (RGMS) line with an epistatic inhibitor gene, a 100% sterile population can be obtained via temporary maintainer, which made three-line systems available in hybrid seed production, and set up condition for the widely utilization of RGMS lines.Now, the RGMS lines used in China included several RGMS lines (eg. 117A and S45A) and several RGMS lines with an epistatic inhibitor gene (eg. 9012A). The 117AB and S45AB are two RGMS lines in which the sterility is controlled by two duplicate recessive genes named ms1 and ms2, located at two separate loci. One or two of the dominant genes existed at any loci can restore their fertility. The Brassica napus oilseed rape line 9012AB is a recessive epistatic GMS two-type line in which the sterility is controlled by two pairs of recessive duplicate sterile genes (ms3 and ms4) interacting with one pair of a recessive epistatic inhibitor gene (rf). Homozygosity at the rf locus (rfrf) inhibits the expression of the recessive male sterility trait in homozygous ms3 ms3 ms4 ms4 plants. In order to make the RGMS system a wider application, it is necessary to initiate further study on them. In this research, RGMS two-type lines 117AB, S45AB and 9012AB were used to identify AFLP markers linked to the Ms genes of RGMS lines117A and 9012A, construct genetic linkage map surrounding the Ms loci, and initiate comparative mapping between Arabidopsis and Brassica napus surrounding the Ms locus towards map-based cloning of the Ms gene of 9012A. Main results of the present study are as following:1. Crosses were made between the fertile plants of 117AB and S45AB, then selfed the F1 plants, and harvested seeds from 10 F1 individuals. Fertility of the 10 F1-derived F2 populations showed that the dominant Ms loci in 117A and S45A were non-allelic.2. Sterile bulk (BS) and fertile bulk (BF) DNA samples prepared from 9 male sterile and 9 male fertile plants of the two-type line 117AB were subjected to AFLP analysis. From the survey of 512 AFLP primer combinations, six AFLP fragments (Y1, K1, K2, K3, K4 and K5) were identified as being tightly linked to the Ms locus. The genetic distances between the markers and the Ms locus were all less than 8 cM, among which
    two fragments, designated as K2 and K3, co-segregated with the target gene in the tested population. The markers detected could be valuable in marker-assisted selection in the utilization of RGMS in B. napus. By the way, we sequenced the AFLP fragments of Yl, Kl, K2, and K3, and compared the sequences with the Arabidopsis data, then primarily mapped the Ms locus to the Arabidopsis chromosome I . And fragment K2 was successfully converted into a SCAR marker.3. Sterile bulk (BS) and fertile bulk (BF) DNA samples prepared from 10 male sterile and 10 male fertile plants of the homozygous two-type line 9012AB were subjected to AFLP analysis. A total of 256 primer combinations were used and seven markers tightly linked to one fertile gene (Ms) in the RGMS line were identified. Among them, six fragments co-segratated with the target gene in the tested population, and the other one had a genetic distance of 5.4 cM. Five of them were successfully converted into dominant SCAR markers, which would facilitate the selection and breeding of temporary maintainers.4. A NIL population including 1506 individuals of 9012AB was developed for further study of the 5 SCAR markers, and a fine linkage map surrounding the Ms locus was constructed. Among them, two markers (SEP5 and SEP8) were located at one side of the target locus with a genetic distance of 0.2 cM and 0.1 cM respectively; and three markers (SEP 10, SEP7 and SEP4) were located at the other side with a genetic distance of 1.4 cM, 0.7 cM and 0.4 cM respectively.5. Isolated flanking sequences of the AFLP markers by PCR walking were submitted to NCBI for BLAST analysis. Information about Arabidopsis of each marker was collected and submitted to the Arabidopsis genome database (TAIL), and a linkage map in Arabidopsis chromosome V were made by 5 out of the 7 AFLP markers in the same order as in B. napus. Then, we could map the Ms locus in Arabidopsis between EP4 and EP8, which spanned a physical distance of about 2.1 Mb.
引文
1.干滟,曾凡亚,赵云.甘蓝型油菜“79.9'’细胞核雄性不育基因RAPD分子标记初步研究.西南农业学报,1999,12:111-115
    2.王军,张太平,魏忠芬,李德文.甘蓝型油菜隐性核不育材料ZWA的遗传利用研究.种子,2004,23(5):8-11
    3.王华,汤晓华,赵继献.甘蓝型油菜核不育材料H90S的遗传研究.中国油料作物学报,2001,23(4):11-15
    4.王华,汤晓华,李厚英,赵继献.油菜生态型雄性不育材料H90S温光特性研究.作物研究,2003,(1):24-27
    5.王华,赵继献,汤晓华.甘蓝型油菜新型细胞核雄性不育材料的选育.中国油料,1997,19(1):8-11
    6.王丽侠,赵建伟,徐芳森,刘仁虎,孟金陵.与甘蓝型油菜重要经济性状有关的cDNA克隆在拟南芥遗传图谱中的整合.遗传学报,2002,29(8):741-746
    7.王武萍,庄顺琪,董振生.白菜型油菜细胞核雄性不育三系选育研究.西北农业学报,1992,(1):37-40
    8.王泽立,戴景瑞,王斌.植物基因的图位克隆.生物技术通报,2000,(4):21-27
    9.王俊霞.甘蓝型油菜Pol CMS育性恢复基因图谱定位及其抗菌核病恢复系的分子标记辅助选择[D].武汉:华中农业大学图书馆,2000:
    10.王晓武,方智远,孙培田,刘玉梅,杨丽梅,庄木.一个用于甘蓝显性雄性不育基因辅助选择的SCAR标记.园艺学报,2000,27(2):143-144
    11.王晓武,方智远,孙培田,刘玉梅,杨丽梅.一个与甘蓝显性雄性不育基因连锁的RAPD标记.园艺学报,1998,25(2):197-198
    12.卢钢,曹家树,陈杭,向珣.白菜几个重要园艺性状的QTLs分析.中国农业科学,2002,35(8):969-974
    13.四川南充地区农科所.油菜杂种优势初步观察.油料作物科技,1976,(4):14-15
    14.刘仁虎,孟金陵.Mapdraw,在Excel中绘制遗传连锁图的宏.遗传,2003,25(3):317-321
    15.刘平武.甘蓝型油菜人工合成种及杂交种亲本遗传多样性评价与研究[D].武汉:华中农业大学图书馆,2004:
    16.刘后利.油菜的遗传与育种[M].上海:上海科技出版社,1985:
    17.刘志文.人工合成甘蓝型黄籽油菜的分子标记和利用研究[D].武汉:华中农业大学图书馆,2004:
    18.刘忠松,官春云,陈社员.植物雄性不育机理的研究及应用[M].北京:中国农业出版社,2001:
    19.孙超才,方光华,赵华,王伟荣,钱小芳,李延莉.甘蓝型油菜(Brassica napus L.)隐性核不育两型系22118AB的基因型分析及利用途径探讨.上海农业学报,1997,13(1):11-15
    20.孙超才,赵华,王伟荣,李延莉,钱小芳,方光华.甘蓝型双低隐性核不育杂交种沪油杂1号的选育.中国油料作物学报,2004a,26(1):63-65
    21.孙超才,赵华,王伟荣,李延莉,钱小芳,方光华.甘蓝型油菜隐性核不育系20118A的遗传与利用探讨.中国油料作物学报,2002,24(4):1-4
    22.孙超才,赵华,王伟荣,李延莉,钱小芳,方光华.隐性核不育油菜两型系20118AB的遗传与利用.上海农业学报,2004b,20(1):30-32
    23.余凤群,傅廷栋.甘蓝型油菜几个雄性不育系花药的细胞形态学观察.武汉植物研究,1990,8(3):209-216
    24.张鲁刚,王鸣,陈杭,刘玲.中国白菜RAPD分子遗传图谱的构建.植物学报,2000,42(5):485-489
    25.李加纳,谌利,唐章林,张学昆.油菜细胞核+细胞质双重不育系选育初报.西南农业大学学报,1994,16(4):403-405
    26.李佳,沈斌章,韩继祥,甘莉.一种有效提取油菜叶片总DNA的方法.华中农业大学学报,1994,13(5):521-523
    27.李树林,周志疆,周熙荣.油菜显性核不育三系法制种.上海农业学报,1995,11(1):21-26
    28.李树林,周熙荣,周志疆,钱玉秀.显性核不育油菜的遗传与利用.作物研究,1990,4(3):27-32
    29.李树林,钱玉秀,吴志华.甘蓝型油菜细胞核雄性不育性的遗传规律探讨及其应用.上海农业学报,1985,1(2):1-12
    30.李树林,钱玉秀,吴志华.甘蓝型油菜细胞核雄性不育性的遗传验证.上海农业学报,1986,2(2):1-8
    31.李树林,钱玉秀,周熙荣.显性核不育油菜的遗传性.上海农业学报,1987,3(2):1-8
    32.李树林,周志疆,周熙荣.甘蓝型油菜隐性核不育系S45AB的遗传.上海农业学报,1993,9(4):1-7
    33.李树林.油菜细胞核雄性不育杂种.见:傅廷栋(主编),杂交油菜的育种与利用.武汉:湖北科学技术出版社,1995:71-90
    34.李殿荣.甘蓝型油菜三系选育初报.陕西农业科学,1980,(1):26-29
    35.李德谋,侯磊,罗小英,裴炎,杨光伟.甘蓝型油菜隐性核不育两用系S45AB中与MS2Bnap基因同源片段的克隆及序列分析.作物学报,2002,28(1):1-5
    36.杨光圣,傅廷栋.油菜杂种优势利用的一条可能途径—细胞核+细胞质雄性不育.华中农业大学学报,1993,12(4):307-316
    37.杨光圣,瞿波,傅廷栋.三个甘蓝型油菜隐性细胞核雄性不育系小孢子发生的细胞学观察.华中农业大学学报,1999a,18(6):520-523
    38.杨光圣,瞿波,傅廷栋.甘蓝型油菜显性细胞核雄性不育系宜3A花药发育的解剖学研究.华中农业大学学报,1999b,18(5):405-408
    39.杨光圣,傅廷栋,马朝芝,杨小牛.油菜波里马细胞质雄性不育恢复基因的筛选与遗传.中国农业科学,1996,29(4):17-22
    40.陆光远,杨光圣,傅廷栋.应用于油菜研究的简便银染AFLP标记技术的构建.华中农业大学学报,2001,20(5):413-415
    41.陆光远,杨光圣,傅廷栋.甘蓝型油菜显性细胞核雄性不育基因的AFLP标记.作物学报,2004,30(2):104-107
    42.陆光远.甘蓝型油菜显性核不育基因和抑制基因的图谱定位[D].武汉:华中农业大学图书馆,2003:
    43.陈凤祥,胡宝成,李强生.细胞核不育材料9012A的发现与初步遗传.见:全国植物雄性不育及杂种优势利用青年学术讨论会论文集.北京农业大学学报(A),1993,(2):20-25
    44.陈凤祥,胡宝成,李成,李强生,张曼琳.甘蓝型油菜隐性细胞核雄性不育完全保持系选育成功.中国农业科学,1995,28(5):94—95
    45.陈凤祥,胡宝成,李成,李强生,陈维生,张曼琳.甘蓝型油菜细胞核雄性不育性的遗传研究Ⅰ.隐性核不育系9012A的遗传.作物学报,1998,24(4):431-438
    46.陈凤祥,胡宝成,李强生,侯树敏,吴新杰,费维新,李成,陈维生.甘蓝型油菜隐性上位互作核不育双低杂交种皖油14号的选育.中国油料作物学报,2003,25(1):63-65
    47.陈凤祥,胡宝成,李强生,侯树敏,吴新杰,费维新.甘蓝型油菜隐性上位互作核不育双低杂交种“皖油18”的选育.安徽农业科学,2002,30(4):535-537
    48.卓宇红,彭武生,祁怀风.甘蓝型油菜核不育材料821A的遗传研究与利用.种子,1999,(4):23-26
    49.官春云,李栒,王国槐,陈社员,袁晏松.化学杂交剂诱导油菜雄性不育机理的研究:Ⅰ.杀雄剂1号对甘蓝型油菜花药毡绒层和花粉粒形成的影响.作物学报,1997,23(5):513-521
    50.官春云,李栒,王国槐,陈社员,袁晏松.化学杂交诱导油菜雄性不育机理的研究:Ⅱ.KMS-1对甘蓝型油菜育性的影响.中国油料作物学报,1998,20(3):1-4
    51.青海省门源农科所.油菜天然杂交种增产显著.遗传与育种,1976,(6):19
    52.侯国佐,王华,张瑞茂.甘蓝型油菜细胞核雄性不育材料117A的遗传研究.中国油料,1990,(2):7-10
    53.胡胜武,刘胜毅,于澄宇,郭学兰,赵惠贤,胡小加,路明,刘越英.甘蓝型油菜核不育材料Shaan-GMS不育基因的RAPD标记.中国油料作物学报,2003,25(3):5-7
    54.席代汶,陈卫江,宁祖良.甘蓝型油菜温敏核不育系“湘91S”的选育.湖南农业科学,1994,(4):25-27
    55.涂金星,郑用琏.甘蓝型油菜核不育材料育性基因的RAPD标记.华中农业大学学报,1997,16 (2):112-117
    56.涂金星,傅廷栋,郑用琏,杨光圣,马朝芝,杨小牛.甘蓝型油菜隐性核不育遗传标记的初步研究Ⅱ.P6-9紫杆基因与可育基因连锁的分子证据.作物学报,1999,25(6):669-673
    57.黄邦全,罗鹏,吴书惠.甘蓝型油菜雄性不育材料S90-8-7的获得及细胞学研究.湖北大学学报(自然科学版),2000,22(2):182-184
    58.黄继英,庄顺琪.白菜型油菜杂种优势利用的研究.中国油料,1980,(1):38-41
    59.傅廷栋,涂金星.油菜杂种优势利用的现状与展望.见:刘后利主编,作物育种学论丛.北京:中国农业大学出版社,2002:
    60.傅廷栋.杂交油菜的育种与利用(第二版)[M].武汉:湖北科学技术出版社,2000:
    61.傅廷栋.杂交油菜的育种与利用[M].武汉:湖北科学技术出版社,1995:
    62.蒋梁材,蒲晓斌,王瑞,张启行,蔡平钟.甘蓝型油菜核不育基因的RAPD标记.中国油料作物学报,2000,22(2):1-4
    63.蒙大庆,袁代斌,李芝凡,蒲定福,胥岚.甘蓝型油菜核不育系绵9AB-1不育性的遗传规律研究及初步应用.四川农业大学学报,2002,20(4):328-329,353
    64.潘家驹.作物遗传育种总论[M].北京:中国农业出版社,1995:82-87
    65.潘涛,曾凡亚,吴书慧,赵云.甘蓝型低芥酸油菜雄性不育两用系的选育与利用研究.中国油料,1988,(3):5-8
    66. Aarts M G M, Dirkse W G, Stiekema W J, Pereira A. Transposon tagging of a male sterility gene in Arabidopsis. Nature, 1993, 363: 715-717
    67. Aarts M, Rachel H, Kriton K. The Arabidopsis MALE STERILITY2 protein shares similarity with reductases in elongation/condensation complexs. Plant J, 1997, 12(3): 615-623
    68. Ahrnadi N, Albar L, Pressoir G. Genetic basis and mapping of the resistance to rice yellow mottle virus Ⅲ. Analysis of QTL efficiency in introgressed progenies confirmed the hypothesis of complementary epistasis between two resistance QTLs. Theor Appl Genet, 2001, 103: 1084-1092
    69. Albani D, Robert L S, Donaldson P A, Altosaar I, Arnison P G, Fabijanski S F. Characterization of a pollen-specific gene family from Brassica napus which is activated during early microspore development. Plant Mol Biol, 1990, 15:605-622
    70. Albertsen M C, Howard J A. Induction of male sterility in plants by expression of high levels of avidin. WO Patent, 9904023.1999-04-02
    71. Arondel V, Lemieux B, Hwang I, Gibson S, Goodman H, Somerville C R. Map-based cloning of a gene controlling omega23 fatty acid desaturation in Arabidopsis. Science, 1992,258: 1353-1355
    72. Balzergue S, Dubreucq B, Chauvin S, Le-Clainche I, Le Boulaire F, De Rose R, Samson F, Biaudet V, Lecharny A, Cruaud C, Weissenbach J, Caboche M and Lepiniec L. Improved PCR-Walking for large-scale isolation of plant T-DNA borders. Biotechniques, 2001, 30: 496-504
    73. Bartkowiak-Broda I, Poplawska W. Characteristic of double low winter rapeseed lines with introduced restorer gene for CMS Ogura. Proc 10~(th) Int Rapeseed Cong, 1999, Canberra, Australia. 172
    74. Becker J, Vos P, Kuiper M. Combined mapping of RFLP and AFLP markers in barley. Mol Gen Genet, 1995, 249: 65-73
    75. Bennett M D, Leitch I J. Nuclear DNA amounts in angiosperms. Ann Bot, 1995, 76: 113-176
    76. Bernacchi D, Beck-Bunn T, Eshed Y, Inai S, Lopez J, Petiard V, Sayama H, Uhlig J, Zamir D, Tanksley S. Advanced backcross QTL analysis of tomato. Ⅱ. Evaluation of near-isogenic lines carrying single-donor introgressions for desirable wild QTL-alleles derived from Lycopersicon hirsutum and L. pimpinellifolium. Theor Appl Genet, 1998, 97: 170-180
    77. Brondani C, Rangel P, Brondani R. QTL mapping and introgression of yield-related traits from Oryza glumaepatulato cultivated rice (Oryza sativa) using microsatellite markers. Theor Appl Genet, 2002, 104: 1192-1203
    78. Brown GG, Formanova N, Jin H, Wargachuk R, Dendy C, Patil P, Laforest M, Zhang J F, Cheung WY, Landry B S. The radish Rfo restorer gene of Ogura cytoplasmic male sterility encodes a protein with multiple pentatrico peptide repeats. Plant J, 2003, 35: 262-272
    79. Browse J. Conditionally male-fertile plants and methods and compositions for restoring the fertility thereof. WO Patent no. 97/10703. 1997-10-07
    80. Camargo L E A, Savides L, Jung G, Nienhuis J, Osborn T C. Location of the self-incompatibility locus in an RFLP and RAPD map of Brassica oleracea. J Hered, 1997, 88:57-59
    81. Cavell A C, Lydiate D C, Parkin I A P, Dean C, Trick M. Colinearity between a 30-centimorgan segment of Arabidopsis thaliana chromosome 4 and duplicated regions within the Brassica napus genome. Genome, 1998, 41: 62-69
    82. Chalhoub B, Budin K, Aubourg S, Belcram H, Laffont P, Delourme R, Lecharny A, Renard M, Caboche M. Comparative genomic approaches for high-throughput physical and genetic mapping and gene cloning in oilseed rape (Brassica napus)
     and application to breeding. Proc. 11~(th) International Rapeseed Congress, 2003, Copenhagen, Vol. 1, p. 78.
    83. Chen S, Xu C G, Lin X H, Zhang Q. Improving bacterial blight resistance of 6078, an elite restorer line of hybrid rice, by molecular marker-assisted selection. Plant breed,2001, 120: 133-137
    84. Cheung W Y, Friensen L, Rakow G F W, Seguin-Swartz G, Landry B S. A RFLP-based linkage map of mustard [Brassica juncea (L.) Czern and Coss]. Theor Appl Genet, 1997, 94: 841-851
    85. Churchill G A, Giovannoni J J, Tanksley S D. Pooled-sampling makes high-resolution mapping practical with DNA markers. Proc Natl Acad Sci USA, 1993, 90: 16-20.
    86. Clement C, Pacini E, Audran J C. Anther and Pollen: from biology to biotechnology. New York, USA: Springer-Verlag Berlin Heidelberg, 1999. 161-174
    87. Cottage A, Yang A P, Maunders H, De Lacy R C, Ramsay N A. Identification of DNA sequences flanking T-DNA insertions by PCR-Walking. Plant Mol Biol Rep, 2001, 19: 321-327
    88. Coulson A, Sulston J, Brenner S, Kam J. Towards a physical map of the genome of the nematode Caenornabditis elegans. Proc Nat Acad Sci USA, 1986, 83: 7821-7825
    89. Cullings K W. Design and testing of a plant-specific PCR primer for ecological and evolutionary studies. Molecular Ecology, 1992, 1: 233-240.
    90. Delourme R, Bouchereau A, Hubert A, Renard M, Landry B S. Identification of RAPD markers linked to a fertility restorer gene for the Ogura radish cytoplasmic male sterility of rapeseed (Brassica napus L.). Theor Appl Genet, 1994, 88: 741-748
    91. Delourme R, Foisset N, Horvais R, Barret P, Champagne G, Cheung W Y, Landry B S, Renard M. Characterisation of the radish introgression carrying the Rfo restorer gene for the Ogu-INRA cytoplasmic male sterility in rapeseed (Brassica napus L.). Theor Appl Genet, 1998, 97: 129-134
    92. Deng Z, Osborn T C, Jognson-Flangam A M. Molecular cloning of a new receptor-like kinase gene encoded at Lr10 disease resistance locus of wheat. Plant J, 1998,11:45-52
    93. Desloire S, Gherbi H, Laloui W, Marhadour S, Clouet V, Cattolico L, Falentin C, Giancola S, Renard M, Budar F, Small I, Caboche M, Delourme R, Bendahmane A. Identification of the fertility restoration locus, Rfo, in radish, as a member of the pentatricopeptiderepeat protein family. EMBO reports, 2003,4(6): 588-594
    94. Dirks R. Process for generating male sterile plants. WO Patent no. 94/29465. 1994-02-09
    95. Dixon M S, Jones D A, Hatzixanthis K, Ganal M W, Tanksley S D. High-resolution mapping of the physical location of the tomato Cf-2 gene. Mol Plant Microbe Interact, 1995, 8:200-206
    96. Dixon M S, Jones D A, Keddie J S, Thomas C M, Harrison K, Jones J D. The tomato Cf-2 disease resistance locus comprises two functional genes encoding leucine - rich repeat proteins. Cell, 1996, 84:451-459
    97. Doyle, J J. and J L Doyle. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochemistry Bulletin, 1987, 19:11-15.
    98. Engqvist G, Becker H C. Heterosis and epistasis in rapeseed estimated from generation means. Euphytica, 1991, 58:31-35
    99. Ferreira M E, Williams P H, Osborn T C. RFLP mapping of Brassica using doubled haploid lines. Theor Appl Genet, 1994, 89:615-621
    100. Feuillet C, Travella S, Stein N, Albar L, Nublat A, Keller B. Map-based isolation of the leaf rust disease resistance gene Lr10 from the hexaploid wheat (Triticum aestivum L.) genome. Proc Natl Acad Sci USA, 2003, 100 (25): 15253-15258
    101. Foisset N, Delourme R, Barret P, Hubert N, Landry B S, Renard M. Molecular mapping analysis of Brassica napus using isozyme, RAPD and RFLP markers on double haploid progeny. Theor Appl Genet, 1996, 93:1017-1025
    102. Frary A T, Nesbitt R C, Frary A. fw2.2: A quantitative trait locus key to the evolution of tomato fruit size. Science, 2000, 289:85-88
    103. Fu T-D. Production and research of rapeseed in the People's Republic of China. Eucarpia Cruciferae Newsl, 1981, (6): 6-7
    104. Gale M D, Devos K M. Comparative genetics in the grasses. Proc Natl Acad Sci USA, 1998, 95:1971-1974
    105. Garcia G M, Stalker H T, Shroeder E, Kochert G A. Identification of RAPD, SCAR and RFLP markers tightly linked to nematode resistance genes introgressed from Arachis cardenasii to A. hypogaea. Genome, 1996, 39:836-845
    106. Giraudat J, Hauge B M, Valon C, Smalle J, Parcy F, Goodman H M. Isolation of the Arabidopsis ABI3 gene by positional cloning. Plant Cell, 1992, 4(10): 1251-1261
    107. Girke A, Heiko C B, Gabriele M E. Resynthesized rapeseed as a new gene pool for hybrid breeding. Proc 10th Int Rapeseed Cong, 1999, Canberra, Australia, 90
    108. Glover J, Grelon M, Craig S, Chaudhury A and Dennis E. Cloning and characterization of MS5 from Arabidopsis: a gene critical in male meiosis. Plant J, 1998, 15(3): 345-356
    109. Grant M R, Godiard L, Straube E, Ashfield T, Lewald J, Sattler A, Innes R W, Dangl J L. Structure of the Arabidopsis RPM1 gene enabling dual specificity disease resistance. Science, 1995, 269:843-846
    110. Hansen M, Hallden C, Nilsson N O, Sall T. Marker-assisted selection of restored male-fertile Brassica napus plants using a set of dominant RAPD markers. Mol Breed, 1997, (3): 449-456
    111 .Hittalmani S, Parco A, Mew T V, Zeigler R S, Huang N. Fine mapping and DNA marker-assisted pyramiding of the three major genes for blast resistance in rice. TheorAppl Genet, 2000, 100: 1121-1128
    112.Hodge R, Paul W, Draper J. Cold plaque screening: a simple technique for isolation of low abundance, differentially expressed transcripts from conventional cDNA libraries. Plant J, 1997, (2): 257-260
    113.Horvath H, Rostoks N, Brueggeman R, Steffenson B, Wettstein D von, Kleinhofs A. Genetically engineered stem rust resistance in barley using the Rpgl gene. Proc Natl Acad Sci USA, 2003, 100: 364-369
    114.Hu J, Sadowski J, Osborn T C Landry B S, Quiros C F. Lingkage group alignment from four independent Brassica oleracea RFLP maps. Genomes, 1998,41:226-235
    115.Huang L, Brooks S A, Li W L, Fellers J P, Trick H N, Gill B S. Map-based cloning of leaf rust resistance gene Lr21 from the large and polyploid genome of bread wheat. Genetics, 2003,164: 655-664
    116.Jean M, Brown G G, Landry B S. Genetic mapping of nuclear fertility restorer genes for 'Polima' cytoplasmic male sterility in canola (Brassica napus L.) using DNA markers. Theor Appl Genet, 1997, 95: 321-328
    117.Jean M, Brown G G, Landry B S. Targeted mapping approaches to identify DNA markers linked to the Rfp1 restorer gene for the 'Polima' CMS of canola (Brassica napus L.). Theor Appl Genet, 1998, 97: 431-438
    118.Kerarsey M J. Higher recombination frequencies in female compared to male meiosis in Brassica oleracea. Theor Appl Genet, 1996, 92: 363-367
    119.Kianian S F, Quiros C F. Generation of a Brassica oleracea composite RFLP map:linkage arrangements among various populations and evolutionary implications.Theor Appl Genet, 1992, 84: 544-554
    120. Kosambi D D. The estimation of map distances from recombination values. Ann Eugen, 1944,12:172-175
    121.Kowalski P, Lan T H, Feldmann K A, Paterson A H. Comparative Mapping of Arabidopsis thaliana and Brassica oleracea Chromosomes Reveals Islands of Conserved Organization. Genetics, 1994,138: 499-510
    122.Lagercrantz U, Lydiate D J. RFLP mapping in Brassica nigra indicates differing recombination rates in male and female meiosis. Genome, 1995, 38: 255-264
    123.Lagercrantz U. Comparative mapping between Arabidopsis thaliana and Brassica nigra indicates that Brassica genomes have evolved through extensive genome replication accompanied by chromosome fusions and frequent rearrangements. Genetics, 1998, 150: 1217-1228
    124.Lander E S, Green P, Abrahamson J, Barlow A, Daly M J, Lincoln S E, Newburgl. MAPMAKER: an interactive computer package for constructing primary genetic
    ??linkage maps of experimental and natural populations. Genomics, 1987, (1):174-181
    125.Landry B S, Hubert N, Crete R, Chang M S, Lincoln S E, Etho T. A genetic map of Brassica oleracea based on RFLP markers detected with expressed DNA sequences and mapping of resistance genes to race 2 of Plasmodiophora brassicae (Woronin).Genome, 1992,35:409-420
    126.Landry B S, Hubert N. A genetic map for Brassica napus based on restriction fragment length polymorphisms detected with expressed DNA sequences. Genome,1991, 34:543-552
    127.Lelotto M, Afanador L, Kelly J D. Development of a SCAR marker linked to the I gene in common bean. Genome,1996,39 (6): 1216-1219
    128.Li X Y, Qian Q, Fu Z M, Wang Y H, Xiong G S, Zeng D L, Wang X Q, Liu X F, Teng S, Hiroshi F, Yuan M, Luo D, Han B, Li J Y. Control of tillering in rice.Nature, 2003, 422: 618-621
    129.Lincoln S, Daly M and Lander E. Constructing genetic maps with Mapmaker/Exp 3.0. Whitehead Institute Technical Report, Cambridge, MA, USA, 1992
    130.Lionneton E, Ravera S, Sanchez L, Aubert G, Delourme R, Ochatt S. Development of an AFLP-based linkage map and localization of QTLs for seed fatty acid content in condiment mustard (Brassica juncea). Genome, 2002, 45(6): 1203-1215
    131.Lombard V, Delourme R. A consensus linkage map for rapeseed (Brassica napus L.): construction and integration of three individual maps from DH populations.Theor Appl Genet, 2001, 103: 491-507
    132.Lu G Y, Yang G S, Fu T D. Molecular mapping of a dominant genic male sterility gene Ms in rapeseed (Brassica napus). Plant breed, 2004, 123: 262-265
    133.Maheswaran M, Subudhi P K, Nandi S. Polymorphism, distribution, and segregation of AFLP markers in a double haploid rice population. Theor Appl Genet, 1997,94:39-45
    134.Malek B V, Graaff E V D, Schneitz K, Keller B. The Arabidopsis male-sterile mutant dde2-2 is defective in the ALLENE OXIDE SYNTHASE gene encoding one of the key enzymes of the jasmonic acid biosynthesis pathway. Planta, 2002, 216:187-192
    135.Mariani C, de Beuckeleer M, Truettner J, Leemans J, Goldberg R B. Induction of male sterility in plants by a chimaeric ribonuclease gene. Nature, 1990, 347:737-741
    136.Mariani C, Gossele V, De Beuckeleer M, De Blcok M, Goldberg M, De Greef R,Leemans J. A chimaeric robonuclease inhibitor gene restores fertility to male sterile plants. Nature, 1992, 357: 384-387
    137.Martin G B, Brommonschenkel S H, Chunwongse J. Map-based cloning of protein kinase gene conferring disease resistance in tomato. Science, 1993, 262: 1432-1436
    138.McConn M, Browse J. The critical requirement for linoleic acid in pollen development, not photosynthesis, in an Arabidopsis mutant. Plant Cell, 1996, 8:403-416
    139.Michelmore R W, Parau I, Kesseli P U. Isolation of disease resistance genes from crop plants. Current opinion in biotechnology, 1995, 6: 145-152
    140.Miyoshi K, Ahn B O, Kawakatsu T, Ito Y, Itoh J I, Nagato Y, Kurata N. PLASTOCHRON1, a timekeeper of leaf initiation in rice, encodes cytochrome P450.Proc Natl Acad Sci USA, 2004, 101: 875-880
    141.Mo Y, Nagel C, Taylor L P. Biochemical complementation of chalcone synthase mutants defines a role for flavonols in functional pollen. Proc Natl Acad Sci USA, 1992, 89: 7213-7217
    142.Mohring S, Esch E, Wricke G. Breeding hybrid varitiles in winter rapeseed using recessivly inherited self-incompatibility. Proc 10th Int Rapeseed Cong, 1999, Canberra, Australia, 72
    143.Muangprom A, Osborn T C. Characterization of a dwarf gene in Brassica rapa, including the identification of a candidate gene. Theor Appl Genet, 2004, 108:1378-1384
    144.Mueller U G, Wolfenbarger L L. AFLP genotyping and fingerprinting. Trends Ecol Evol, 1999, 14(10): 389-394
    145.Murayama S , Yamagishi H , Terachi T. Identification of RAPD and SCAR markers linked to a restorer gene for Ogura cytoplasmic male sterility in radish (Raphanus sativus L) by bulked segregant anlysis. Breeding Science, 1999,49(2):115-121
    146.Murayama S, Habuchi T, Yamagishi H, Terachi T. Identification of a sequence-tagged site (STS) marker linked to a restorer gene for Ogura cytoplasmic male sterility in radish (Raphanus sativus L.) by non-radioactive AFLP analysis.Euphytica, 2003, 129 (1): 61-68
    147.Nakamura S, Asakawa S, Ohmido N, Fukui K, Shimizu N, Kawasaki S.Construction of an 800-kb contig in the near-centromeric region of the rice blast resistance gene Pi-ta 2 using a highly representative rice BAC library. Mol Gen Genet, 1997,254:611-620
    148.Negi M S, Devic M, Delseny M, Lakshmikumaran M. Identification of AFLP fragments linked to seed coat colour in Brassica juncea and conversion to a SCAR marker for rapid selection. Theor Appl Genet, 2002, 101: 146-152
    149.O'Neill, Bancroft I C. Comparative physical mapping of the genome of Brassica oleracea var. alloglabra that are homeologous to sequenced regions of chromosome 4 and 5 of Arabidopsis thaliana. Plant J, 2000, 23: 233-243
    150.Ogura H. Studies on the new male sterility in Japanese radish, with special references to the utilization of this sterility towards the practical raising of hybrid seed. Men Fac Agric Kagoshima Univ, 1968, 6(2): 39-78
    151.Paran I, Michelmore. R W. Development of reliable PCR-based markers linked to downy mildew resistance genes in lettuce. Theor Appl Genet, 1993, 85: 985-993
    152.Parkin I A P, Lydiate D J, Trick M. Assessing the level of collinearity between Arabidopsis thaliana and Brassica napus fox A. thaliana chromosome 5. Genome,2002,45:356-366
    153.Parkin I A P, Sharpe A G, Keith D J, Lydiate D J. Identification of the A and C genomes of amphidiploid Brassica napus (oilseed rape). Genome, 1995, 38:1122-1131
    154 .Perez-Prat E, Lookeren Campagne M M. Hybrid seed production and the challenge of propagating male sterile plants. Trends in Plant Science, 2002, (7): 199-203
    155.Pradhan A K, Gupta V, Mukhopadhyay A, Arumugam N, Sodhi Y S, Pental D. A high-density linkage map in Brassica juncea (Indian mustard) using AFLP and RFLP markers. Theor Appl Genet, 2003,106: 607-614
    156.Preston J, Wheeler J, Heazlewood J, Li S F, Parish R W. AtMYB32 is required for normal pollen development in Arabidopsis thaliana. Plant J, 2004, 40: 979-995
    157.Ramsay L D. The construction of substitution library of recombinant backcross lines in Brassica oleracea for the precision mapping of quantitative loci. Genome,1996,39:558-567
    158.Robbelen G. Citation at the occasion of presenting the GCIRC Superior Scientist Award to Fu Tingdong. Proc 8th Int Rapeseed Cong, Sasktoon Canada, 1991, (1):2-5
    159.Ross K J, Frans Z P, Armstrong S J. Cytological characterization of four meiotic mutants of Arabidopsis isolated from T-DNA transformed lines. Chrom Res, 1997,(5): 551-559
    160.Ryder C D, Smith L B, Teakle G R, King G J. Contrasting genome organisation:two regions of the Brassica oleracea genome compared with collinear regions of the Arabidopsis thaliana genome. Genome, 2001, 44(5):808-17
    161.Sadowski J, Gaubier P, Delseny M, Quiros C F. Genetic and physical mapping in Brassica diploid species of a gene cluster defined in Arabidopsis thaliana. Mol Gen Genet, 1996,251:298-306
    162.Sadowski J, Quiros C F. Organization of an Arabidopsis thaliana gene cluster on chromosome 4 including the RPS2 gene, in the Brassica nigra genome. Theor Appl Genet, 1998,41: 226-235
    163.Sanders P M, Bui A Q, Weterings K, Mclintire K N, Hsu Y C, Lee P Y, Truong M T, Beals T P, Goldberg R B. Anther developmental defects in Arabidopsis thaliana male-sterile mutants. Sex Plant Reprod, 1999, (11): 297-322
    164.Sanders P M, Lee P Y, Biesgen C, Boone J D, Beals T P, Weiler E W, Goldberg R B. The Arabidopsis DELAYED DEHISCENCE1 gene encodes an enzyme in the jasmonic acid synthesis pathway. Plant Cell, 2000, (12): 1041-1061
    165.Schiefthaler U, Balasubramanian S, Sieber P, Chevalier D, Wisman E and Schneitz K. Molecular analysis of NOZZLE, a gene involved in pattern formation and early sporogenesis during sex organ development in Arabidopsis thaliana. Proc Natl Acad Sci USA, 1999, 96: 11664-11669
    166.Schneider K A, Brothers M E, Kelly J D. Marker-assisted selection to improve drought resistance in common bean. Crop Sci, 1997, 37: 51-60
    167.Scoot R, Dagless E, Hodge R, Soufleri I, Draper J, Patterns of gene expression in developing anthers of Brassica napus. Plant Mol Biol, 1991, 17: 195-207
    168.Sharpe A G, Parkin I A P, Keith D J, Lydiate D J. Frequent nonreciprocal translocations in the amphidiploid genome of oilseed rape (Brassica napus).Genome, 1995,38: 1112-1121
    169.Siebert P D, Chenchick A, Kellogg D E, Lukyanov K A, Lukyanov S A. An improved PCR method for walking in uncloned genomic DNA. Nucl Acids Res, 1995,23:1087-1088
    170.Sillito D, Parkin I A, Mayerhofer R, Lydiate D J, Good A G. Arabidopsis thaliana: a source of candidate disease resistance gene for Brassica napus. Genome, 2000,43(3): 452-460
    171.Singh S, Sidhu J S, Huang N. Pyramiding three bacterial blight resistance genes (xa5, xa13, Xa21) using marker-assisted selection. Theor Appl Genet, 2001, 102:1011-1015
    172.Slocum M K, Figdore S S, Kennard W C, Suzuki J Y, Osborn T C. Linkage arrangement of restriction fragment length polymorphism loci in Brassica oleracea.Theor Appl Genet, 1990, 80: 57-64
    173.Snowdon R J, Friedt W. Molecular markers in Brassica oilseed breeding: current status and future possibilities. Plant Breed, 2004,123: 1-8
    174.Snowdon R J, Kohler W, Kohler A. Genomic in situ hybridization in Brassica amphidiploids and interspecific hybrids. Theor Appl Genet, 1997, 95: 1320-1324
    175.Song K M, Slocum M K, Osborn T C. Molecular marker analysis of genes controlling morphological variation in Brassica rapa (syn. Campestris). Theor Appl Genet, 1995,90: 1-10
    176.Song K M, Suzuki J Y, Slocum M K, Williams P H, Osborn T C. A linkage map of Brassica rapa (syn. Campestris) based on . restriction fragment length polymorphism loci. Theor Appl Genet, 1991, 82: 296-304
    177.Song W Y, Wang G L, Chen L, Kim H S, Pi L Y, Holsten T, Gardner J, Wang B,Zhai W X, Zhu L H, Fauquet C M, Ronald P. A receptor Kinase-like protein encoded by the rice disease resistance gene, Xa21. Science, 1995,270: 1804-1806
    178.Stintzi A, Browse J. The Arabidopsis male-sterile mutant, opr3, lacks the 12-oxophytodienoic acid reductase required for jasmonate synthesis. Proc Natl Acad Sci USA, 2000, 97(19): 10625-10630
    179.Stuber C. Mapping and manipulating quantitative trait in maize. Trend genet, 1995,11:477-481
    180.Tanhuanpaa P, Vilkki J. Marker-assisted selections for oleic acid content in spring turnip rape. Plant breed, 1999,118: 543-550
    181.Tanksley S D, Ganal M W, Martin G B. Chromosome landing: A paradigm for map-based gene cloning in plant with large genome. Trends Genet, 1995, (11): 63-68
    182.Theerakulpisut P H, Xu M B, Singh J, Pettitt M, Knox R B. Isolation and developmental expression of Bcpl, an anther-specific cDNA clone in Brassica campestris. Plant Cell, 1991, (3): 1073-1084
    183.Thomas C M. Identification of amplified restriction fragment polymorphism markers tightly linked to the tomato Cf-9 gene for resistance to the Cladosporlum Fulvum. Plant J, 1995, 8(5): 785-794
    184.Thompson K F. Heterosis for yield in winter rape. Plant breeding Institute Annual Report, 1972:95-96
    185.Truco M J, Quiros C F. Structure and organization of the B genome based on a linkage map in Brassica nigra. Theor Appl Genet, 1994, 89: 590-598
    186.Ulrike Bellin, Becker H C. Evaluation B-genome intergration in Brassica napus with GISH. Proceeding of the 10~(th) international Rapeseed Congress, 1999,Canberra, Australia
    187.Uzunova M, Ecke W, Weissleder K, Robbelen G. Mapping the genome of rapeseed (Brassica napus L.) I. Construction of an RFLP linkage map and localization of QTLs for seed glucosinolate content. Theor Appl Genet, 1995, 90: 194-204
    188. Vos P, Hogers R, Bleeker M, Reijans M, van de Lee T, Hornes M, Freijters A, Pot J,Peleman J, Kuiper M, Zabeau M. AFLP: a new technique for DNA fingerprinting. Nucl Acid Res, 1995, 23(21): 4407-4414
    189.Wang J X, Yang G S, Fu T D, Meng J L. Development of PCR - based markers linked to the fertility restorer gene for the polima cytoplasmic male sterility in rapeseed Brassica napus L). Acta Genet Sin, 2000, 27(11) :1012-1017
    190.Wilson Z A, Morroll S M, Dawson J, Swarup R, Tighe P J. The Arabidopsis MALE STERILITY1 (MS1) gene is a transcriptional regulator of male gametogenesis, with homology to the PHD-finger family of transcription factors. Plant J, 2001, 28(1):27-39
    191.Worrall D, Hird D L, Hodge R, Paul W, Draper J, Scott R. Premature dissolution of the microsporocyte callose wall causes male sterility in transgenic tobacco. Plant Cell, 1992, (7): 759-771
    192.Xie D X, Feys B F, James S, Nieto-Rostro M, Turner J G. Coll: An Arabidopsis gene required for jasmonate-regulated defense and fertility. Science, 1998, 280: 1091-1094
    193. Yan L, Loukoianov A, Tranquilli G, Helguera M, Fahima T, Dubcovsky J. Positional cloning of the wheat vernalization gene VRN1. Proc Natl Acad Sci USA, 2003, 100: 6263-6268
    194. Yang G S, Duan Z H, Fu T D, Wu C S. A promising alternative way of utilizing pol CMS for hybrid breeding in Brassica napus L. Proc 10th Int Rapeseed Cong, 1999, Canberra, Australia, 73
    195. Yang M, Hu Y, Lodhi M, McCombie W R, Ma H. The Arabidopsis SKP1-LIKE1 gene is essential for male meiosis and may control homologue separation. Proc Natl Acad Sci USA, 1999, 96:11416-11421
    196. Yang X H, Makaroff C A, Ma H. The Arabidopsis MALE MEIOCYTE DEATH1 gene encodes a PHD-finger protein that is required for male meiosis. Plant Cell, 2003, 15:1281-1295
    197. Ylstra B, Busscher J, Franken J, Hollman P C H, Mol J N M, van Tunen A J. Flavonols and fertilization in Petunia hybrida: localization and mode of action during pollen-tube growth. Plant J, 1994, 6:201-212
    198. Yoshimura S, Umehara Y, Kurata N. Identification of a YAC clone carrying the Xa-1 allele, a bacterial blight resistancegene in rice. Theor Appl Genet, 1996, 93: 117-122
    199. Yoshimura S, Yoshimura A, Iwata N, McCouch S R, Abenes M L, Baraoidan M R, Mew T W, Nelson R J. Tagging and combining bacterial blight resistance genes in rice using RAPD and RFLP markers. Mol Breed, 1995, (1): 375-387
    200. Zhao D Z, Wang G F, Speal B, Ma H. The EXCESS MICROSPROCYTES1 gene encodes a putative leucine-rich repeat receptor protein kinase that controls somatic and reproductive cell fates in the Arabidopsis anther. Genes & Development, 2002, 16:2021-2031
    201. Zhou P, Tan Y, He Y, Zhang Q. Simultaneous improvement for four quality traits of Zhenshan 97, an elite parent of hybrid rice, by molecular marker-assisted selection. Theor Appl Genet, 2003, 106:326-331
    202. Zhu Q, Briceno G, Dovel R. Improvement of hybrid yield by advanced backcross QTL analysis in elite maize. Theor Appl Genet, 2002, 105 (2): 440-448

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700