甘蓝型油菜显性细胞核雄性不育基因Ms/Mf的定位
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
1985年,李树林等报道了一批新型的甘蓝型油菜细胞核雄性不育材料,它具有败育彻底、不育性稳定、无不良胞质效应等特点;在遗传分析的基础上,认为这些核不育材料的育性是受两对显性基因互作控制的,一对为显性不育基因,一对为显性恢复基因,不育基因单独存在时能够导致不育,但若恢复基因存在时,则育性恢复。因此,显性核不育有保持系和恢复系,可以类似于细胞质雄性不育“三系”法来配制杂交种。最近,宋来强对其发现的显性核不育材料609AB经过深入、系统的研究后,认为甘蓝型油菜显性核不育(包括Rs1046AB)更符合一对复等位基因遗传的假设,使核不育的遗传陷入争论。因此,对显性核不育的深入研究显得非常必要。
     本研究的主要内容包括:利用Rs1046AB为基础材料,通过杂交、回交和测交的方法对两种遗传假设进行了初步的判别;利用与不育基因连锁的特异标记,展开了核不育纯合两型系的分子标记辅助转育;利用近等基因系Rs1046AB及衍生的F2群体定位了核不育相关的基因,并将结果与前人的相关研究进行了整合。主要的实验结果如下:
     1.通过不育系Rs1046AB杂交后代的育性分离情况,从16份品系(品种)中,筛选到10份核不育系的临保系,5份核不育系的恢复系;另有一份在恢复基因位点杂合的材料,它能恢复部分单株的育性。
     2.不育系可育株(Rs1046B)与临保系杂交,F1代可育株自交并继续回交,其F2和BC1代单株全部可育,表明Rs1046B的不育基因与恢复基因在减数分裂中发生分离,因此不育基因与恢复基因为等位基因。不育株(Rs1046A)与恢复系195A-14杂交F2代的20个不育株再与临保系7-5测交,后代育性全部表现不育,证明了该恢复系的恢复基因与不育系的不育基因等位。因此确认核不育系Rs1046AB符合复等位基因的遗传模式,即Rs1046AB不育株的基因型为MsMs,可育株的基因型为MsMf,而临保系的基因型为msms,恢复系195A-14的基因型为MfMf。
     3.前期按照两对基因互作遗传假设,利用两个与不育基因连锁的SCAR标记,开展了不育基因的标记辅助转育研究。两个受体亲本中,7-5由于在BC1代全部表现为可育,没有分离出预期的不育株而放弃。另一个材料195A是核不育的恢复系,通过标记跟踪和背景选择,在BC2F2代中出现了背景与195A比较一致的核不育株,表明标记辅助转育的过程有效。但是由于获得的不育株存在严重的雌性不孕现象,最终很难得到纯合型不育系。
     4.利用近等基因系并结合BSA法,对Rs1046AB的137个单株进行了标记分析。在筛选2048对AFLP引物后,获得了6个与恢复基因连锁较为紧密的标记,遗传距离分别为0.7 cM(HDA、HDC和HDF)、1.4 cM(HDB)和3.6 cM(HDE和HDG),且全部位于目标基因同一侧。将遗传距离较近的4个标记中的2个(HDF和HDB)直接转化成稳定的SCAR标记(SCHDF和SCHDB);而通过侧翼序列分离后,亦将另外2个标记(HDA和HDC)成功转化(SCWA和SCWC)。这些SCAR标记与原始AFLP标记定位到连锁图同一位置。
     5.利用1017个单株的较大近等基因系群体对彼此共分离的3个SCAR标记(SCWA、SCWC和SCHDF)进行了区分,结果表明:标记SCHDF与恢复基因的遗传距离比标记SCWA和SCWC更近,前者的遗传距离为1.1 cM;但三个标记之间的遗传距离仍然很小。
     6.为了获得两侧及更近的标记,又利用192个单株的F2群体(Rs1046A/195A-14)构建了显性核不育基因/恢复基因的局部遗传连锁图,它包括20个AFLP标记和2个SCAR标记,一共覆盖10.4 cM的遗传区间。其中14个标记位于Ms/Mf一侧,7个标记位于另外一侧,一个标记与Ms/Mf共分离。Ms/Mf位点两侧最近标记的遗传距离分别为0.1 cM(E3M10-580)和1.0 cM(E1M13-260)。
     7.根据作图结果,将遗传距离最近的6个标记(S8T13-160、S10T2-90、E3M10-580、S5T5-480、E1M13-260及E14M1-80)中的3个成功转化为SCAR标记,分别是SCDG1(E3M10-580)、SCDG2(S5T5-480)和SCDG3(E1M13-260)。群体分析显示,3个SCAR标记与Ms/Mf位点的遗传距离与原始AFLP标记一致。
     8.通过对上述两个定位群体中部分标记序列(或侧翼序列)的BLASTn分析,在拟南芥第一染色体短臂顶端鉴定出一个同源区。标记在连锁图上的排列顺序与其同源区在拟南芥上的排列顺序基本一致,表明甘蓝型油菜中核不育相关基因(Ms/Mf)所在区域与拟南芥同源区之间存在着较好的共线性关系,但进化过程中,该区域中亦存在少量的染色体倒位和易位事件。与陆光远和宋来强的标记比对结果进行整合后发现,核不育相关基因的标记同源区,覆盖拟南芥从AT1g04950到AT1g14340之间的大约3.4Mb的物理区间。
     9.利用相同的SCAR标记或拟南芥同源区的信息,将陆光远的BC1定位群体、宋来强的BC1定位群体及本研究中的两个不同定位群体的定位结果进行了整合。在本研究的F2定位群体的基础上,将宋来强定位群体上的2个SCAR标记整合到的标记ELM2-310和E4M9-150之间;该区域包含核不育相关基因(Ms/Mf),其界定的遗传图距为4.6 cM,共有11个标记(包括5个SCAR标记)。
A new kind of genie male sterility (GMS) in Brassica napus was reported by Li et alin 1985. Due to its complete and stable sterility, and almost no negative cytoplasmiceffect, this mutant is considered as a promising alternative to CMS in heterosis utilization.A hypothesis of two dominant genes with interaction was subsequently proposed tointerpret it, that the sterility is conditioned by a dominant male sterility gene (Ms) and arestorer gene (Mf), and Ms can result in male sterility alone, but Mf can restore it. Basedon this model, a three-line hybrid production system just like CMS was then presented.However, after a systematic investigation on a natural dominant GMS mutant (609AB),Song et al. regarded that the dominant GMS is prone to be explained by one gene withmultiple alleles, which makes the mechanism of dominant GMS involved in a debate.Consequently, a further research on dominant GMS is fairly necessary.
     Towards this goal, our research was developed in three main fields. First, wedifferentiated the two genetic hypotheses of dominant GMS by cross, backcross and testcross, Rs1046AB used as a fundamental material. Then, a marker-assisted backcrossbreeding program to transfer the Ms gene to two elite inbred lines was carried out, usingtwo SCAR markers developed earlier. Finally, two mapping population were adopted tolocalize genes responsible for dominant GMS phenotype, and the results from differentpopulations were integrated together according to the same SCAR markers andcollinearity relation between Arabidopsis and Brassica napus. Main results of the presentresearch are as follow:
     1. By observing the fertility segregation of cross progenies, 10 temporary maintainers ofdominant GMS were identified from a total of 16 inbred lines. Other 5 inbred lines,which can restore the fertility of GMS, were selected as the restorers. Additional, oneinbred line which can restore the fertility of about a half progenies was concluded tocarry a heterozygous restorer gene.
     2. From the 1:1 segregation F1 population produced by crossing Rs1046B withmaintainers, fertile plants were selected to be selfed and baekcross to maintainers. Thesubsequent progenies were all fertile plants, suggesting that Ms and Mf werecompleted segregated in meiosis, so in Rs1046AB Mf is allelic to Ms. 20 sterile plantsfrom F2 progenies generated by crossing restorer 195A-14 with Rs1046A wererandomly selected to test crossing with maintainer 7-5, and no fertile individual wasobserved in test cross F1, indicating Mf from 195A-14 is allelic to Ms from Rs1046A,which confirmed the multiple allelism hypothesis again. Therefore, the genotypes of Rs1046A and Rs1046B are MsMs and MsMf and inbred line 195A-14 and 7-5 are ofgenotypes MfMf and msms, respectively.
     3. Two SCAR markers developed earlier were used to transfer Ms to two elite inbredlines, 7-5 and 195A-14, through a backcross breeding program. However, because nosterile plant was observed as expected in BC1 progenies, the program about 7-5 had tobe cancelled. By successive foreground selection and background selection for twotimes, Ms was successfully introgressed into 195A-14, and male sterile plants withsimilar appearance with 195A-14 were isolated, showing the MAS process is effective.Regretfully, due to the severely weak fecundity of female in sterile plants, thehomozygous dominant GMS line can't be obtained.
     4. Combining comparing NILs and BSA, 137 individuals from Rs1046AB were used formarker analysis. From the survey of 2, 048 pairs of AFLP primers, six fragments onthe same side were identified to be tightly linked to Mf, with a genetic distancevarying from 0.7 cM to 3.6 cM. Two of the four nearer AFLP fragments were thenconverted to SCAR markers directly. For the other two markers, after isolating theadjacent sequences by suppressed PCR, corresponding SCAR marker wassuccessfully obtained as well. All the SCAR markers have a same genetic distance toMf with original AFLP marker.
     5. By PCR analysis in a population of 1,017 individuals, three SCAR markerscosegregated with each other were differentiated, that SCHDF was mapped closer toMf than other two markers, with a distance of 1.1 cM.
     6. A local linkage map of Mf/Ms genomic region was constructed based on 192individuals of the F2 population from the Rs1046A/195A-14 cross. 20 AFLP markersand two SCAR markers, spanning a genetic distance of 10.4 cM, were identified to beassociated with the Mf/Ms locus. On this map, 14 markers and 8 markers reside oneach side of target gene. The Mf/Ms locus, cosegregated with marker S5T5-480, wasbracketed by E3M10-580 and ELM13-260, with a genetic distance of 0.1 cM and 1.0cM, respectively. Six markers with a nearer genetic distance were chosen for SCARconversion, and three of them were successfully converted, i.e. SCDG1 (E3M10-580),SCDG2 (S5T5-480) and SCDG3 (ELM13-260), which have a same genetic distanceto Mf/Ms with respect to original AFLP markers.
     7. BLASTn analysis of some markers' sequence (or flanking sequence) from above twopopulations on NCBI website can identify many homologues, most of whichdistribute on the short arm of Arabidopsis chromosomeⅠ. Comparison of the markerloci in linkage map and the homologous loci in Arabidopsis indicated that there was a collinearity relation between the region flanking Ms/Mf and Arabidopsis homologues,though it was likely disrupted by some chromosome inversion and translocationevents. Integrating the BLASTn result of earlier researches, the homologous region inArabidopsis chromosomeⅠcovered a physical distance of 3.4 Mb, betweenAT1g04950 and AT1g 14340.
     8. Utilization of the same SCAR markers or information of Arabidopsis homologues, weintegrated the mapping results of two earlier BC1 populations and two maps in thepresent research. Finally, the Ms/Mf gene can be positioned in an interval restricted bymarker E1M2-310 and E4M9-150, which contains 11 markers (including five SCARmarkers) and covered a genetic distance of 4.6 cM.
引文
1.方明镜.利用MAS技术改良华玉四号的实践和理论探讨.[硕士学位论文].武汉:华中农业大学,2004.
    2.方宣钧,吴为人,唐纪良.作物DNA标记辅助育种.北京:科学出版社,2001.
    3.王军,张太平,魏忠芬,李德文.甘蓝型油菜隐性核不育材料ZWA的遗传利用研究.种子,2004,23:8-11.
    4.王华,汤晓华,赵继献.甘蓝型油菜核不育材料H90S的遗传研究.中国油料作物学报,2001,23:11-15.
    5.王华,赵继献,汤晓华.甘蓝型油菜新型细胞核雄性不育材料的选育.中国油料,1997,19:8-11.
    6.王丽侠,赵建伟,徐芳森,刘仁虎,孟金陵.与甘蓝型油菜重要经济性状有关的cDNA克隆在拟南芥遗传图谱中的整合.遗传学报,2002,29:741-746.
    7.王俊霞.甘蓝型油菜Pol CMS育性恢复基因图谱定位及其抗菌核病恢复系的分子标记辅助选择.[博士学位论文].武汉:华中农业大学,2000.
    8.王通强,田筑萍,黄泽素,魏忠芬,邵明波.甘蓝型双低油菜细胞核显性核不育系黔油2AB的选育.贵州农业科学,1999,27:14-18.
    9.王瑞,李加纳.甘蓝型油菜隐性上位核不育×恢复系遗传判别.西南农业大学学报(自然科学版),2004,26:26-28.
    10.冯辉,魏毓棠,许明.大白菜核基因雄性不育系遗传假说及其验证.中国科协第二届青年学会(园艺学论文集).北京:北京农业大学出版社,1995,453-466.
    11.石华娟,董云麟.川油15核不育三系制种技术的应用研究.西南农业学报,2004,17:12-15.
    12.刘仁虎,孟金陵,MapDraw,在Excel中绘制遗传连锁图的宏.遗传,2003,25:317-321.
    13.刘玉梅,方智远,Michael D,McMullen,庄木,杨丽梅,王晓武,张杨勇,孙培田.一个与甘蓝显性雄性不育基因连锁的RFLP标记.园艺学报,2003,30:717-723.
    14.刘志文.人工合成甘蓝型黄籽油菜的分子标记和利用研究.[博士学位论文].武汉:华中农业大学,2004.
    15.刘定富.植物显性核不育恢复性遗传的理论探讨.遗传,1992,14:31-36.
    16.孙超才,方光华,赵华,王伟荣,钱小芳,李延莉.甘蓝型油菜(Brassica rrapus L.)隐性核不育两型系22118AB的基因型分析及利用途径探讨.上海农业学报,1997,13:11-15.
    17.孙超才,王伟荣,李延莉,周熙荣,钱小芳.甘蓝型双低隐性核不育杂交种“沪油杂2号”的选育.上海农业学报,2005,21:1-3.
    18.孙超才,赵华,王伟荣,李延莉,钱小芳,方光华.甘蓝型双低隐性核不育杂交种沪油杂1号的选育.中国油料作物学报,2004,26:63-65.
    19.孙超才,赵华,王伟荣,李延莉,钱小芳,方光华.甘蓝型油菜隐性核不育系20118A的遗传 与利用探讨.中国油料作物学报,2002,24:1-4.
    20.朱光琴,陈雪婷,朱静林,吴权明,张建刚.谷子显性雄性不育基因“MSch”的细胞质转换.西北植物学报,1994,14:33-35.
    21.许明,冯辉,魏毓棠,王世刚.大白菜核复等位基因向可育品系92-11的转育.沈阳农业大学学报,2000,31:324-327.
    22.许明,白明义,魏毓棠.大白菜细胞核雄性不育基因向自交系97A407的转育.中国蔬菜,2003:8-10.
    23.许绍斌,陶玉芬,杨昭庆,褚嘉佑.简单快速的DNA银染和胶保存方法.遗传,2002,24:335-336.
    24.余凤群,傅廷栋.甘蓝型油菜几个雄性不育系花药的细胞形态学观察.武汉植物研究,1990,8:209-216.
    25.宋来强,傅廷栋,杨光圣,涂金星,马朝芝.1对复等位基因控制的油菜(Brassica napus L1)显性核不育系609AB的遗传验证.作物学报,2005,31:869-875.
    26.宋来强,傅廷栋,杨光圣,涂金星,马朝芝.甘蓝型油菜显性核不育基因及与恢复基因的等位性分析.中国农业科学,2006a,39:456-462.
    27.张书芳,周帮福,武兴丽,张瑞君,那红梅,靖发顺.白菜双位点复等位雄性不育遗传模型.辽宁农业科学,2003,3:1-4.
    28.张璞,田建华,李殿荣.甘蓝型油菜隐性核不育的遗传与应用研究.西北农业学报,2004,13:16-19.
    29.李树林,周志疆,周熙荣.甘蓝型油菜隐性核不育系S45AB的遗传.上海农业学报,1993,9:1-7.
    30.李树林,周志疆,周熙荣.油菜显性核不育三系法制种.上海农业学报,1995,11:21-26.
    31.李树林,周熙荣,周志疆,钱玉秀.显性核不育油菜的遗传与利用.作物研究,1990,4:27-32.
    32.李树林,钱玉秀,吴志华.甘蓝型油菜细胞核雄性不育性的遗传规律探讨及其应用.上海农业学报,1985,1:1-12.
    33.李树林,钱玉秀,吴志华.甘蓝型油菜细胞核雄性不育性的遗传验证.上海农业学报,1986,2:1-8.
    34.李树林,钱玉秀,周熙荣.显性核不育油菜的遗传.上海农业学报,1987,3:1-8.
    35.李殿荣.甘蓝型油菜(Brassica napus L.)雄性不育系、保持系、恢复系选育成功并已大面积推广.中国农业科学.1986,19:94.
    36.杨光圣,傅廷栋,Brown C G.甘蓝型油菜细胞质雄性不育的遗传分类研究.中国农业科学,1998,31:27-31.
    37.杨光圣,傅廷栋.油菜杂种优势利用的一条可能途径—细胞核+细胞质雄性不育.华中农业大学学报,1993,12:307-316.
    38.杨光圣,瞿波,傅廷栋.三个甘蓝型油菜隐性细胞核雄性不育系小孢子发生的细胞学研究. 华中农业大学学报,1999b,18:520-523.
    39.杨光圣,瞿波,傅廷栋.甘蓝型油菜显性细胞核雄性不育系宜3A花药发育的解剖学研究.华中农业大学学报,1999a,18:405-408.
    40.陆光远,杨光圣,傅廷栋.甘蓝型油菜分子标记连锁图谱的构建及显性细胞核雄性不育基因的图谱定位.遗传学报,2004b,31:1309-1315.
    41.陆光远,杨光圣,傅廷栋.甘蓝型油菜显性细胞核雄性不育基因的AFLP标记.作物学报,2004,30:104-107.
    42.陆光远,杨光圣,傅廷栋.应用于油菜研究的简便银染AFLP标记技术的构建.华中农业大学学报,2001,20:413-415.
    43.陆光远.甘蓝型油菜显性细胞核雄性不育基因和上位抑制基因的分子标记及其应用.[博士学位论文].武汉:华中农业大学,2003.
    44.陈凤祥,胡宝成,李成,李强生,陈维生,张曼琳.甘蓝型油菜细胞核雄性不育性的遗传研究Ⅰ.隐性核不育系9012A的遗传.作物学报,1998,24:431-438.
    45.陈凤祥,胡宝成,李强生,侯树敏,吴新杰,费维新,李成,陈维生.甘蓝型油菜隐性上位互作核不育双低杂交种皖油14号的选育.中国油料作物学报,2003,25:63-65,68.
    46.陈凤祥,胡宝成,李强生,侯树敏,吴新杰,费维新.甘蓝型油菜隐性上位互作核不育双低杂交种“皖油18”的选育.安徽农业科学,2002,30:535-537.
    47.陈风祥,胡宝成,李强生.细胞核不育材料9012A的发现与初步遗传.见:全国植物雄性不育及杂种优势利用青年学术讨论会论文集.北京农业大学学报(增刊),1993,2:20-25.
    48.陈升.应用分子标记辅助选择培育光谱、高抗白叶枯病的杂交水稻恢复系.[博士学位论文].武汉:华中农业大学,1999.
    49.卓宇红,彭武生,祁怀风.甘蓝型油菜核不育材料821A的遗传研究与利用.种子,1999,18:23-26.
    50.周熙荣,李树林,周志疆,庄静,顾龙弟.甘蓝型(Brassica napus L.)显性核不育双低油菜杂交新品种核杂3号的选育.上海交通大学学报(农业科学版),2003,21:304-308.
    51.周熙荣.甘蓝型油菜显性核不育三系杂交种“核杂7号”[J].农业科技通讯,2005,33:62.
    52.侯国佐,王华,张瑞茂.甘蓝型油菜细胞核雄性不育材料117A的遗传研究.中国油料,1990,2:7-10.
    53.娄平.甘蓝显性细胞核雄性不育遗传定位及基因表达分析.[博士学位论文].北京:中国农业科学院,2003.
    54.柯丽萍.甘蓝型油菜隐性细胞核雄性不育的基因定位.[博士学位论文].武汉:华中农业大学,2005.
    55.段红梅,王文秀,常汝镇等.大豆SSR标记辅助遗传背景选择的效果分析.植物遗传资源学报,2003,4:36-42.
    56.胡胜武,于澄宇,赵惠贤,路明,张春红,俞延军.甘蓝型油菜核不育材料Shaan-GMS恢复 基因的筛选及其遗传分析.西北农林科技大学学报(自然科学版),2004,32:9-12.
    57.胡胜武,于澄宇,赵惠贤.甘蓝型油菜新型不育源的发现及其初步研究.西北农业学报,2000,9:90-94.
    58.胡胜武,刘胜毅,于澄宇,郭学兰,赵惠贤,胡小加,路明,刘越英.甘蓝型油菜核不育材料Shaan-GMS不育基因的RAPD标记.中国油料作物学报,2003,25:5-7.
    59.胡胜武.甘蓝型油菜新型核不育材料Shaan-GMS的遗传及核不育的分子机制研究.[博士学位论文].杨凌:西北农林科技大学,2003.
    60.胡琼,李云昌,梅德圣,方小平,Hansen L N,Andersen S B.属间体细胞杂交创建甘蓝型油菜细胞质雄性不育系及其鉴定.中国农业科学,2004,37:333-338.
    61.贺华良.甘蓝型油菜细胞核雄性不育的基因表达研究.[硕士学位论文].武汉:华中农业大学,2003.
    62.贺浩华,刘宜柏,蔡跃辉,余秋英,李季能,刘建萍.水稻显性核不育及其恢复性的遗传规律研究.中国水稻科学,1999,13:143-146.
    63.夏军红,郑用琏.玉米恢复系的分子标记辅助回交选育与效益分析.作物学报,2002,28:339-344.
    64.席代汶,陈卫江,宁祖良.甘蓝型油菜温敏核不育系“湘91S”的选育.湖南农业科学,1994,4:25-27.
    65.涂金星,傅廷栋,郑用琏,杨光圣,马朝芝,杨小牛.甘蓝型油菜隐性核不育遗传标记的初步研究Ⅱ.P6-9紫茎基因与可育基因连锁的分子证据.作物学报,1999,25:669-673.
    66.涂金星,傅廷栋,郑用琏.甘蓝型油菜核不育材料90-2441A的遗传及其等位性分析.华中农业大学学报,1997,16:255-258.
    67.袁力行,傅骏华,Warburton M,李新海,张世煌.利用RFLP, SSR,AFLP, RAPD标记分析玉米自交系遗传多样性的比较研究.遗传学报,2000,27:725-733.
    68.康俊根.四种类型甘蓝雄性不育系花药败育特征及基因表达谱分析.[博士学位论文].北京:中国农业科学院,2006.
    69.黄邦全,罗鹏,吴书惠.甘蓝型油菜雄性不育材料$90-8-7的获得及细胞学研究.湖北大学学报(自然科学版),2000,22:182-184.
    70.傅廷栋,杨小牛,杨光圣.甘蓝型油菜波里马雄性不育的选育与研究.华中农业大学学报,1989,3:201-207
    71.傅廷栋.杂交油菜的育种与利用.武汉:湖北科学技术出版社,2000。
    72.程勇.甘蓝型油菜显性核不育基因的AFLP标记及品种(系)的SSR指纹图谱研究.[硕士学位论文].北京:中国农业科学院,2005.
    73.董云麟,杜禾.一个甘蓝型油菜菜显性核不育材料的选育及利用研究.西南农业学报,1993,6:6-10.
    74.董振生,刘创社,景军胜,冉隆贵,张修森.白菜型油菜(B.campestris L.)双显性核不育 896AB的选育.西北植物学报,1997,6:35-38.
    75.董振生,刘创社,景军胜,庄顺琪,冉隆贵.白菜型油菜(B.campestris L.)双显性核不育896AB的选育.作物学报,1998,24:188-192.
    76.蒋梁材,蒲晓斌,王瑞,张启行,蔡平钟.甘蓝型油菜核不育基因的RAPD标记.中国油料作物学报,2000,22:1-4.
    77.蒙大庆,袁代斌,李芝凡,蒲定福,胥岚.甘蓝型油菜核不育系绵9AB-1不育性的遗传规律研究及初步应用.四川农业大学学报,2002,20:328-329,353.
    78.蔡明,刘贵华,秦选佑.甘蓝型油菜雄性不育的遗传研究.Ⅰ,NCa甘蓝型油菜异核型雄性不育材料选育初报.中国油料,1993,15:1-3.
    79.潘涛,曾凡亚,吴书慧,赵云.甘蓝型低芥酸油菜雄性不育两用系的选育与利用研究.中国油料,1988,3:5-8.
    80. Aarts M G M, Dirkse W G, Stiekema W J, Pereira A. Transposon tagging of a male sterility gene in Arabidopsis. Nature, 1993, 363:715-717.
    81. Aarts M, Rachel H and Kriton K. The Arabidopsis MALE STERILITY2 protein shares similarity with reductases in elongation/condensation complexs. Plant J, 1997, 12(3):615-623.
    82. Ahmadi N, Albar L, Pressoir G. Genetic basis and mapping of the resistance to Rice yellow mottle virus Ⅲ. Analysis of QTL efficiency in introgressod progenies confirmed the hypothesis of complementary epistasis between two resistance QTLs. Theor Appl Genet, 2001, 103:1084-1092.
    83. Allard.R.W. 1960. Principle of plant breeding. John Wiley & Sons. New York.
    84. Amagai M, Ariizumi T, Endo M, Hatakeyama K, Kuwata C, Shibata D, Toriyama K, Watanabe M. Identification of anther-specific genes in a cruciferous model plant, Arabidopsis thaliana by using a combination of Arabidopsis macro array and mRNA derived from Brassica oleracea. Sex Plant Reprod, 2003, 15:213-220.
    85. Bai X, Peirson BN, Dang F, Xue C, Makaroff CA. Isolation and characterization of SYN1, a RAD21-1ike gene essential for meiosis in Arabidopsis. Plant Cell, 1999, 11:417-430.
    86. Barret P, Guerif J, Reynoird J P, Delourme R, Eber F, Renard M, Chevre A M. Selection of stable Brassica napus-Brassica juncea recombinant lines resistant to blackleg (Leptosphaeria maculans). 2. A 'to and fro' strategy to localise and characterise interspecific introgressions on the B. napus genome. Theor Appl Genet, 1998, 96:1097-1103.
    87. Bartkowiak-Broda I and Poplawska W. Characteristic of double low winter rapeseed lines with introduced restorer gene for CMS Ogura. Proc 10th Int Rapeseed Cong (Canberra, Australia), 1999, 172.
    88. Bennett, M D, Smith, J B. 1976. Nuclear DNA amounts in angiosperms. Philos. T. Roy. Soc. B. 274:227-274.
    89. Bernacchi D, Beck-Bunn T, Eshed Y, Inai S, Lopez J, Petiard V, Sayama H, Uhlig J, Zamir D and Tanksley S. Advanced backcross QTL analysis of tomato. II. Evaluation of near-isogenic lines carrying single-donor introgressions for desirable wild QTL-alleles derived from Lycopersicon hirsutum and L. pimpinellifolium. Theor Appl Genet, 1998,97:170-180.
    
    90. Bhatt AM, Lister C, Page T, Fransz P, Findlay K, Jones GH, Dickinson HG, Dean C. The DIF1 gene of Arabidopsis is required for meiotic chromosome segregation and belongs to the REC8/RAD21 cohesin gene family. Plant J, 1999,19:463-72.
    
    91. Brondani C, Rangel P, Brondani R. QTL mapping and introgression of yield-related traits from Oryza glumaepatulato cultivated rice (Oryza sativa) using microsatellite markers. Theor Appl Genet, 2002,104:1192-1203.
    
    92. Cai X, Dong F, Edelmann R E, Makaroff C A. The Arabidopsis SYN1 cohesin protein is required for sister chromatid arm cohesion and homologous chromosome pairing. J Cell Sci, 2003, 116:2999-3007.
    
    93. Cavell A C, Lydiate D C, Parkin I A P, Dean C, Trick M. Colinearity between a 30-centimorgan segment of Arabidopsis thaliana chromosome 4 and duplicated regions within the Brassica napus genome. Genome, 1998, 41:62-69.
    
    94. Chaudury A M. Nuclear genes controlling male fertility. Plant cell, 1993, 5:1277-1283.
    
    95. Chen S, Lin X H, Xu C G, Zhang Q F. 2000. Improvement of bacterial blight resistance of "Minghui 63", an elite restorer line of hybrid rice by molecular marker-assisted selection. Crop Sci, 2000,40:239-244.
    
    96. Chen S, Lin X H, Xu C G, Zhang Q F.. Improving bacterial blight resistance of "6078", an elite restorer line of hybrid rice, by molecular marker-assisted selection. Plant Breeding, 2001, 120:133-137.
    
    97. Chen X, Temnykh S, Xu Y, Cho Y G, McCouch S R. Development of a microsatellite framework map providing genome wide coverage in rice (Oryza sativa L.). Theor Appl Genet, 1997, 95:553-567.
    
    98. Chen Y C, McCormick S. Sidecar pollen, an Arabidopsis thaliana male gametophytic mutant with aberrant cell divisions during pollen development. Development, 1996,122:3243-3253.
    
    99. Delourme R, Foisset N, Horvais R, Barret P, Champagne G, Cheung W Y, Landry B S, Renard M. Characterisation of the radish introgression carrying the Rforestorer gene for the Ogu-INRA cytoplasmic male sterility in rapeseed (Brassica napus L.). Theor Appl Genet, 1998,97:129-134.
    
    100. Desloire, S., H.Gherbi, W. Laloui, S. Marhadour, V. Clouet, L. Cattolico, C. Falentin, S. Giancola, M. Renard, F. Budar, I. Small, M. Caboche, R. Delourme & A. Bendahmane.. Identification of the fertility restoration locus, Rfo, in radish, as a member of the pentatricopeptide repeat protein family. EMBO J, 2003,4:588-594.
    101. Doyle, J J, Doyle J L. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull, 1987, 19: 11-15.
    102. Frary A T, Nesbitt C, Frary A. fw2. 2: A quantitative trait locus key to the evolution of tomato fruit size. Science, 2000, 289: 85-88.
    103. Gale M D, Devos K M. Comparative genetics in the grasses. Proc Natl Acad Sci USA, 1998, 95: 1971-1974.
    104. Glover J, Grelon M, Craig S, Chaudhury A, Dennis E. Cloning and characterization of MS5 from Arabidopsis: a gene critical in male meiosis. Plant J, 1998, 15: 345-356.
    105. Guo P G, Bai G H, Shaner G E. AFLP and STS tagging of a major QTL for Fusarium head blight resistance in wheat. Theor Appl Genet, 2003, 106: 1011-1017.
    106. Hansen M, Hallden C, Nilsson N O, Sail T. Marker-assisted selection of restored male-fertile Brassica napus plants using a set of dominant RAPD markers. Mol Breed, 1997, 3: 449-456.
    107. Harrison J C, Haber J E. Surviving the Breakup: The DNA Damage Checkpoint[J]. Annu Rev Genet, 2006, 19 (2): 209-235.
    108. Heyn F W. Transfer of restorer genes from Raphanus to cytoplasmic male sterile Brassica napus. 1976, Crueiferae News, 1: 15-16.
    109. Hittalmani S, Parco A, Mew T V, Zeigler R S, Huang N. Fine mapping and DNA marker-assisted pyramiding of the three major genes for blast resistance in rice. Theor Appl Genet, 2000, 100: 1121-1128.
    110. Hong D F, Wan L L, Liu P W, Yang G S, He Q B. AFLP and SCAR markers linked to the suppressor gene (Rf) of a dominant genetic male sterility in rapeseed (Brassica napus L. ). Euphytica, 2006, 151: 401-409.
    111. Hospital F, Chevaiet C, Mulsant P. Using markers in gene introgression breeding programs. Genetics, 1992, 132: 1199-1210.
    112. Hospital F, Charcosset A. Marker-assisted introgression of quantitative trait loci. Genetics, 1997, 147: 1469-1485.
    113. Hospital, F. (2002) Marker-assisted Baekeross Breeding: A Case-Study in Genotype Building Theory. In Manjit S. Kang (ed. ) "Quantitative Genetics, Genomies, and Plant Breeding", CABI Publishing, Wallingford, UK.
    114. Hu Q, Andersen SB, Dixelius C, Hansen LN. Production of fertility intergenerie somatic hybrids between Brassica napus and Sinapis arvensis for the enrichment of the rapeseed gene pool. Plant Celll Report. 2002, 21: 147-152.
    115. Hu S W, Fan Y F, Zhao H X, Guo X L, Yu C Yu, Sun G L, Dong H C, Liu S Y, Wang H Z. Analysis of MS2Bnap genomie DNA homologous to MS2 gene from Arabidopsis thaliana in two dominant digenie male sterile accessions of oilseed rape (Brassica napus L. ). Theor Appl Genet, 2006,113:397-406.
    
    116. Huang G, Zhang L, Birch R G Rapid amplification and cloning of Tn5 flanking fragments by inverse PCR. Lett Appl Microbiol, 2000, 31:149-153.
    
    117. Ito T, Shinoxzki K. The Male Sterility Gene of Arabidopsis, encoding a nuclear protein with PHD-finger motif, is expressed in tapetal cells and is required for pollen maturation. Plant cell physiol, 2002,43:1285-1292.
    
    118. Jean M, Brown G G and Landry B S. Targeted mapping approaches to identify DNA markers linked to the Rfp1 restorer gene for the 'Polima' CMS of canola (Brassica napus L.). Theor Appl Genet, 1998,97:431-438.
    
    119. Kaul M L H. Male sterility in higher plants. Spring Verlag, Berlin Heidelberg, 1988. 78-96.
    
    120. Ke L P, Sun Y Q, Hong D F, Liu P W, Yang G S. Identification of AFLP markers linked to one recessive male sterility gene in oilseed rape, Brassica napus. Plant Breed, 2005,124:367-370.
    
    121. Ke, L P, Sun Y Q, Liu P W, Yang G S. Identification of AFLP fragments linked to one recessive genie male sterility (RGMS) in rapeseed (Brassica napus L.) and conversion to SCAR markers for marker-aided selection. Euphytica, 2004, 138:163-168.
    
    122. Kowalski P, Lan T H, Feldmann K A, Paterson A H. Comparative mapping of Arabidopsis thaliana and Brassica oleracea chromosomes reveals islands of conserved organization. Genetics, 1994, 138:499-510.
    
    123. Lagercrantz U. Comparative mapping between Arabidopsis thaliana and Brassica nigra indicates that Brassica genomes have evolved through extensive genome replication accompanied by chromosome fusions and frequent rearrangements. Genetics, 1998,150:1217-1228.
    
    124. Lagerstrom M, Parik J, Malmgren H, Stewart J, Pettersson U, Landegren U. Capture PCR: efficient amplification of DNA fragments adjacent to a known sequence in human and YAC DNA. PCR Methods Appl, 1991,1:111-119.
    
    125. Lander E, Green P, Abrahamson J, Barlow A, Daley M, Lincoln S, Newburg L. MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics, 1987,1:174-181.
    
    126. Li H Z, Liu D P, Liang C C, Modified inverse PCR method for cloning the flanking sequences from human cell pools. Biotechniques, 1999,27:660-662.
    
    127. Lincoln S, Daly M, Lander E. Constructing genetic maps with MAPMAKER/EXP 3.0. Whitehead Institute Technical Report, 3rd ed., 1992, Whitehead Technical Institute, Cambridge, Mass.
    
    128. Liu Y G, Whittler R F. Thermal asymmetric interlaced PCR: automatable amplification and sequencing of insert end fragments from PI and YAC clones for chromosome walking. Genome, 1995,25:674-681.
    129. Liu Z W, Fu T D, Tu J X, Chen BY. Inheritance of seed colour and identification of RAPD and AFLP markers linked to the seed eolour gene in rapeseed (Brassica napus L. ). Theor Appl Genet, 2005, 110: 303-310.
    130. Lu G Y, Yang G S, Fu T D. Molecular mapping of a dominant genie male sterility gene Ms in rapeseed (Brassica napus)[J]. Plant Breed, 2004, 123: 262-265.
    131. Mariani C, Beekeleer M D, Truettner J, Leemans J, Goldberg R B. Induction of male sterility in plant by a ehimaede ribonuelease gene. Nature, 1990, 347: 737-741.
    132. Mathias R. A new dominant gene for male sterility in rapeseed (Brassica Napus L. ). Z Pflanzenzuchtg, 1985, 94: 170-173.
    133. MeCouch S R, Koehert G, Yu Z H, Wang Z Y, Khush G S, Coffman W, Tanksley S D. Molecular mapping of rice chromosome. Theor Appl Genet, 1988, 76: 815-829.
    134. McCouch S R, Teytelman L, Xu Y B, Lobos K B, Clare K, Walton M, Fu B Y, Maghirang R, Li Z K, Xing Y Z, Zhang Q F, Kono I, Yano M, Fjelistrom R, Declerek G, Schneider D, Cartinhour S, Ware D, Stein L. Development and mapping of 2240 new SSR markers for rice (Oryza sativa L. ). DNA Res, 2002, 9: 199-207.
    135. Mercier R, Vezon D, Bullier E, Motamayor J C, Sellier A, Lefevre F, Pelletier G, Hodow C. Switchl (SWII): a novel protein required for the establishment of sister chromatid cohesion and for bivalent formation at meiosis. Gene Dev, 2001, 15: 1859-1871.
    136. Michelmore R, Paran W I, Kesseli R V. Identification of markers linked to disease-resistance genes by bulked segregant analysis: a rapid method detect markers in specific genomic regions by using segregating populations. Proc Natl Acad Sci USA, 1991, 88: 9828-9832.
    137. Minami M, Poussin K, Breehot C, Paterlini P. A novel PCR technique using Alu-specific primers to identify unknown flanking sequences from the human genome. Genomics, 1995, 29: 403-408.
    138. Miura Y, Ding C, Ozaki R, Hirata M, Fujimod M, Takahashi W, Cai H, Mizuno K. Development of EST-derived CAPS and AFLP markers linked to a gene for resistance to ryegrass blast (Pyrieularia sp. ) in Italian ryegrass (Lolium multiflorum Lam. ). Theor Appl Genet, 2005, 111: 811-818.
    139. Motamayor J C, Vezon D, Bajon C, Sauvanet A, Grandjean O, Marehand M, Bechtold N, Pelletier G, Horlow C. Switch (swil), an Arabidopsis thaliana mutant affected in the female meiotic switch. Sex Plant Reprod, 2000, 12: 209-218.
    140. Muangprom A, Osborn T C. Characterization of a dwarf gene in Brassica rapa, including the identification of a candidate gene. Theor Appl Genet, 2004, 108: 1378-1384.
    141. Negi M S, Devic M, Delseny M, Lakshmikumaran M. Identification of AFLP fragments linked to seed coat eolour in Brassica juncea and conversion to a SCAR marker for rapid selection. Theor Appl Genet, 2000, 101: 146-152.
    142. Nicot N, Chiquet V, Gandon B, Amilhat L, Legeai F, Leroy P, Bernard M, Sourdille P. Study of simple sequence repeat (SSR) markers from wheat expressed sequence tags (ESTs). Theor Appl Genet, 2004, 109:800-805.
    
    143. O'Neill, Bancroft 1 C. Comparative physical mapping of the genome of Brassica oleracea var. alloglabra that are homeologous to sequenced regions of chromosome 4 and 5 of Arabidopsis thaliana. Plant J, 2000,23:233-243.
    
    144. Ochman H, Gerber A S, Hartl D L. Genetic applications of an inverse polymerase chain reaction. Genetics, 1988, 120:621-623.
    
    145. Ogura H. Studies on the new male sterility in Japanese Radish, with special references to the utilization of this sterility towards the practical raising of hybrid seed. Mem Fac Agric Kagoshima Univ, 1968, 6:39-78.
    
    146. Park S K, Yoon Y H, Kim B C, Hwang Y H, Chung I K, Nam H G, Kim D U. Pollen of a male-sterile mutant of Arabidopsis thaliana isolated from a T-DNA insertion pool is not effectively released from the anther locule. Plant Cell Physiol, 1996, 37:580-585.
    
    147. Parker J D, Rabinovitch P S, and Burmer G. C. Targeted gene walking polymerase chain reaction. Nucleic Acids Res, 1991, 19:3055-3060.
    
    148. Parkin I A P, Gulden S M, Sharpe A G, Lukens L, Trick M, Osborn T C , Lydiate D J, Segmental Structure of the Brassica napus Genome Based on Comparative Analysis With Arabidopsis thaliana. Genetics, 2005, 171:765-781.
    
    149. Parkin I A P, Lydiate D J, Trick M. Assessing the level of collinearity between Arabidopsis thaliana and Brassica napus for A. thaliana chromosome 5. Genome, 2002,45:356-366.
    
    150. Pelaz S, Ditta G S, Baumann E, Wisman E, Yanofsky M F. B and C floral organ identity functions require SEPALLATA MADS-box genes. Nature, 2000,405:200-203.
    
    151. Peng J H, Lapitan N L V. Characterization of EST-derived microsatellites in the wheat genome and development of eSSR markers. Funct Integr Genomics, 2005, 5:80-96.
    
    152. Plieske J, Struss D. STS markers linked to Phoma resistance genes of the Brassica B-genome revealed sequence homology between Brassica nigra and Brassica napus. Theor Appl Genet, 2001,102:483-488.
    
    153. Preuss D, Rhee SY, Davis RW. Tetrad analysis possible in Arabidopsis with mutation of the QUARTET (QRT) genes. Science, 1994,264:1458-1460.
    
    154. Prins R, Groenewald J Z, Marais G F, Snap J W, Koebner R M D. AFLP and STS tagging of Lr19, a gene conferring resistance to leaf rust in wheat. Theor. Appl. Genet, 2001,103:618-624.
    
    155. Rana D, Boogaart T, O'Neill C M, Hynes L, Bent E, Macpherson L, Park J Y, Lim Y P, Bancroft I. Conservation of the microstructure of genome segments in Brassica napus and its diploid relatives. Plant J, 2004,40:725-733.
    156. Reddy T V, Kaur J, Agashe B, Sundaresan V, Siddiqi I. The DUET gene is necessary for chromosome organization and progression during male meiosis in Arabidopsis and encodes a PHD finger protein. Development, 2003, 130: 5975-5987.
    157. Rhee S Y, Somerville C R. Tetrad pollen formation in quartet mutants of Arabidopsis thaliana is associated with persistence of pectic polysaccharides of the pollen mother cell wail. Plant J, 1998, 15: 79-88.
    158. Robbelen G. Citation at the occasion of presenting the GCIRC Superior Scientist Award to Fu Tingdong. Proc 8th Int Rapeseed Cong (Sasktoon Canada), 1991. 1: 2-5
    159. Rosenthal A, Jones D S C. Genomic walking and sequencing by oligo-cassette mediated polymerase chain reaction. Nucleic Acids Res, 1990, 18: 3095-3096.
    160. Rubinelli P, Hu Y, Ma H. Identification, sequence analysis and expression studies of novel anther-specific genes of Arabidopsis thaliana. Plant Mol. Biol, 1998, 37: 607-619.
    161. Sablowski R W M, Meyerowitz E M. A homolog of NO APICAL MERISTEM is an immediate target of the floral homeotic genes APETALA3/PISTILLATA. Cell, 1998, 92: 93-103.
    162. Saiki R K, Scharf S, Faloona F, Mullis KB, Horn GT, Erlich H A, Arnheim N. Enzymatic amplification of beta-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia. Science, 1985, 230: 1350-135.
    163. Sanders P M, Bui A Q, Weterings K, Mcintire K N, Hsu Y C, Lee P Y, Truong M T, Beals T P, Goldberg R B. Anther development defects in Arabidopsis thaliana male-sterile mutants. Sex. Plant Reprod, 1999, 11: 297-322.
    164. Sarkar G, Turner R T, Bolander M E. Restrictionsite PCR: a direct method of unknown sequence retrieval adjacent to a know locus by using universal primers. PCR Methods Appl, 1993, 2: 318-322.
    165. Schiefthaler U, Balasubramanian S, Sieber P, Chevalier D, Wisman E and Schneitz K. Molecular analysis of NOZZLE, a gene involved in pattern formation and early sporogenesis during sex organ development in Arabidopsis thaliana. Proc Natl Acad Sci USA, 1999, 96: 11664-11669.
    166. Schierholt A, Becker H C, Ecke W. Mapping a high oleic acid mutation in winter oilseed rape (Brassica napus L). Theor Appl Genet, 2002, 101: 897-901.
    167. Schneider K A, Brothers M E, Kelly J D. Marker-assisted selection to improve drought resistance in common bean. Crop Sci, 1997, 37: 51-60.
    168. Sharpe A G, Parkin I A P, Keith D J, Lydiate D J. Frequent non-reciprocal translocations in the amphidiploid genome of oilseed rape. Genome, 1995, 38: 1112-1121.
    169. Shen X, Zhou M, Lu W, Ohm H. Detection of Fusarium head blight resistance QTL in a wheat population using bulked segregant analysis. Theor. Appl. Genet, 2003, 106: 1041-1047.
    170. Siebert P D, Chenchick A, Kellogg D E, Lukyanov K A, Lukyanov S A. An improved PCR method for walking in uncloned genomic DNA. Nucl Acids Res, 1995,23:1087-1088
    
    171. Sillito D, Parkin I A, Mayerhofer R, Lydiate D J, Good A G. Arabidopsis thaliana: a source of candidate disease resistance gene for Brassica napus. Genome, 2000,43:452-460.
    
    172. Silver J, Keerikatte V. Novel use of polymerase chain reaction to amplify cellular DNA adjacent to an integrated provirus. J Virol, 1989,63:1924-1928.
    
    173. Singh S, Sidhu J S, Huang N. Pyramiding three bacterial blight resistance genes (xa5, xa13, Xa21) using marker-assisted selection. Theor Appl Genet, 2001,102:1011 -1015.
    
    174. Sobir T, Ohmori M, Murata F, Motoyoshi. Molecular characterization of the SCAR markers tightly linked to the Tm-2 locus of the genus Lycopersicon. Theor Appl Genet, 2000, 101:64-69.
    
    175. Sodhi, Y. S., Pradhan, A. K., Verma, J. K., Arumugam, N., Mukhopadhyay, A. & Pental, D. (1994). Identification and inheritance of fertility restorer genes for "tour" CMS in rapeseed (Brassica napus L.). Plant Breed, 112:223-227.
    
    176. Somers D J, Friesen K R D, Rakow G. Identification of molecular markers associated with linoleic acid desaturation in Brassica napus. Theor Appl Genet, 1998,96:897-903.
    
    177. Song L Q, Fu T D, Tu J X, Ma C Z, Yang G S. Molecular validation of multiple allele inheritance for dominant genie male sterility gene in Brassica napus L. Theor Appl Genet, 2006, 113:55-62.
    
    178. Stuber C. Mapping and manipulating quantitative trait in maize. Trend genet, 1995,11:477-481.
    
    179. Tanksley S D, Young N D, Paterson A H. RFLP mapping in plant breeding: New tools for an old science. Biotechnology, 1989, 7:257-264.
    
    180. Temnykh S, DeCklerck G, Lukashova A, Lipovich L, Cartinhiur S, McCouch S. Computational and experimental analysis of microsatellites in rice (Oryza sativa L.): frequency, length variation, transposon associations, and genetic marker potential. Genome Res, 2001, 11:1441-1452.
    
    181. Triglia T, Peterson M G, Kemp D J. A procedure for in vitro amplification of DNA segments that lie outside the boundaries of known sequence. Nucleic Acids Res, 1988, 16:8186.
    
    182. Tuteja N, Singh M B, Misra M K, Bhalla P L, Tuteja R. Molecular mechanisms of DNA damage and repair: progress in plants. Crit Rev Biochem Mol Biol, 2001, 36 (4): 337-397.
    
    183. Udall J, Quijada P, Osborn T C. Detection of chromosomal rearrangements derived from homologous recombination in four mapping populations of Brassica napus L. Genetics, 2004, 169:967-979.
    
    184. Ujino-Ihara T, Matsumuto A, Iwata H, Yoshimura K, Tsumura Y. Single-strand conformation polymorphism of sequence-tagged site markers based on partial sequences of cDNA clones in Cryptomeria japonica. Genes Genet Syst, 2002, 77:251-257.
    
    185. Vos P, Hogers R, Bleeker M, Reijans M, Van de Lee T, Hornes M, Frijters A, Pot J, Peleman J, Kuiper M, Zabeau M. AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res, 1995, 23: 4407-4414.
    186. Wang XW, Lou P, Bonnema G, Yang B, He HJ, Zhang YG and Fang ZY. Linkage mapping of a dominant male sterility gene DGMS in Brassica oleracea. Genome, 2005, 48: 848-854.
    187. Wilson Z A, Morroll S M, Dawson J, Swamp R, Tighe P J. The Arabidopsis MALE STERILITY (MSI) gene is a transcriptional regulator of male gametogenesis, with homology to the PJ3D-finger family of transcription factors. Plant J, 2001, 28: 27-39.
    188. Xia Jun-hong, Zheng Yong-lian. Molecular marker-assisted backcross breeding of maize Rf_3 NIL and its efficient analysis. Acta Agron Sinica, 2003, 28: 339-344.
    189. Xu D H, Ban T. Conversion of AFLP markers associated with FHB resistance in wheat into STS markers with an extension-AFLP method. Genome, 2004, , 47: 660—665.
    190. Yan Y X, An C C, Li L, Gu J Y, Tan G H, Chen Z L. T-linker-specific ligation PCR (T-linker PCR): an advanced PCR technique for chromosome walking or for isolation of tagged DNA ends, Nucleic Acids Res, 2003, 31: e68.
    191. Yang C Y, Spielman M, Coles J P, Li Y, Ghelani S, Bourdon V, Brown R C, Lemmon B E, Scott R J, Dickinson H G. TETRASPORE encodes a kinesin required for male meiotic cytokinesis in Arabidopsis. Plant J, 2003a, 34: 229-240.
    192. Yang M, Hu Y, Lodhi M, McCombie W R, Ma H. The Arabidopsis SKP1-LIKE1 gene is essential for male meiosis and may control homologue separation. Proc Natl Acad Sci USA, 1999b, 96: 11416-11421.
    193. Yang W C, Ye D, Xu J, Sundaresan V. The SPOROCYTELESS gene of Arabidopsis is required for initiation of sporogenesis and encodes a novel nuclear protein. Gene Dev, 1999a, 13: 2108-2117.
    194. Yang X, Makaroff C A, Ma H. The Arabidopsis MALE MEIOCYTE DEATHI gene encodes a PHD-finger protein that is required for male meiosis. Plant Cell, 2003b, 15: 1281-1295.
    195. Yi B, Chen Y N, Lei S L, Tu J X, Fu T D. Fine mapping of the recessive genie male-sterile gene (Bnmsl) in Brassica napus L. Theor Appl Genet, 2006, 113: 643-650.
    196. Ying M, Dreyer F, Cal D G, Jung C. Molecular markers for genie male sterility in Chinese cabbage. Euphytica, 2003, 132: 227-234.
    197. Yoshimura S, Yoshimura A, Iwata N, MeCoueh S R, Abenes M L, Baraoidan M R, Mew T W and Nelson R J. Tagging and combining bacterial blight resistance genes in rice using RAPD and RFLP markers. Mol Breed, 1995, 1: 375-387.
    198. Young N D, Zamir D, Ganal M W, Tanksley S D. Use of isogenic lines and simultaneous probing to identify DNA markers tightly linked to the Tm-2a Gene in Tomato. Genetics, 1988, 140: 579-585.
    199. Young N D, Tanksley S D. Restriction fragment length polymorphism maps and the concept of graphical genotypes. Theor Appl Gene, 1989, 77:95-101.
    
    200. Yu J K, Rota M L, Kantety R V, Sorrells M E. EST derived SSR markers for comparative mapping in wheat and rice. Mol Gen Genomics, 2004, 271:742-751.
    
    201. Zhou P, Tan Y, He Y and Zhang Q. Simultaneous improvement for four quality traits of Zhenshan 97, an elite parent of hybrid rice, by molecular marker-assisted selection. Theor Appl Genet, 2003, 106:326-331.
    
    202. Zhou Y M, Bai H H. Identification and genetic studies of the inhibition of dominant male sterility in Brassica napus. Plant Breed, 1994, 113:222-226.
    
    203. Zhu Q, Briceno G, Dovel R. Improvement of hybrid yield by advanced backcross QTL analysis in elite maize. Theor Appl Genet, 2002, 105:440-448.
    
    204. Zik M, Irish V F. Global identification of target genes regulated by APETALA3 and PISTILLATA floral homeotic gene action. Plant cell, 2003, 15:207-222

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700