低孔渗含钙砂泥岩薄互层电阻率求真处理方法
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于大庆长垣以西地区萨尔图、高台子油层具有典型的含泥含钙、砂泥薄互出现的特点,一般单层厚度小于1m,薄互层内砂岩厚度小于0.4m,超出了各种测井方法的垂向分辨能力,加之含泥含钙,致使油水层解释尤其是水淹层解释符合率一直处于较低水平。针对油田具体特点,通过理论与经验校正方法相结合,开展双侧向电阻率层厚围岩校正、井眼校正、岩性校正,突出电阻率与储层流体内在关系,达到较准确评价油水层的目的。
     本文给出的电阻率校正方法首先采用理论校正图版消除侧向测井井眼泥浆分流影响,进而以密闭取芯井的岩石物理实验资料为基础,建立有效孔隙度、钙质含量、泥质含量、胶结指数、含水饱和度计算模型.最终通过回归分析手段建立起岩心分析含水饱和度与储层电阻率、泥质含量、钙质含量、层厚、围岩电阻率、地层水电阻率关系方程,从侧向测井原理出发确定了各种地质参数、环境参数对测井响应的贡献大小,实现电阻率测井的岩性校正、层厚围岩校正。以经典的阿尔奇模型为桥梁,检验校正方法的校正效果。经实际资料检验,校正后电阻率计算含水饱和度平均绝对误差达到5.48pu。,平均相对误差8.75%,较校正前计算含水饱和度分别提高了2.83pu。及4.15个百分点,对提高油水层解释符合率,尤其水淹层解释符合率具有非常重要意义。
In west of Daqing Changyuan , Saertu and Gaotaizi oil layers contain clay shale and calcium, sand and shale in reservoir have thin mutually characteristic, and because the thickness of thin interbed layer is is smaller than 0.4m, has surpassed the resolution of each kind of well logging method, causing the explanation coincidence rate of interpretation continuously to be in a lower level , particular in water-flooded zones. Based on the characteristic and basic theory for logging interpretation, combined with the experience of correction method, this article develops formation thickness and the adjacent formation correction, the borehole correction, the lithological correction of the dual laterolog, prominenting electronic resistivity and the reservoir fluid intrinsic relations, achieved the goal of evaluating reservoir accurately.
     the electronic resistivity correction method firstly uses the theory correction chart to eliminate the mud divergence influence, and this article establishes the calcareous content, the shale content, the effective porosity, the cementation exponent, the water saturation computation model through petrophysics experimental data of sealing core, Finally establishes the core sample analysis water saturation and the reservoir electronic resistivity, the shale content, the calcareous content, the adjacent formation electronic resistivity, the resistivity of the formation water relations equation. Based the laterolog principle, it had determined the contribution of each geological parameter, the environment parameter to the log response, achieved formation thickness and the adjacent formation correction, the lithological correction. Taking the classics Archie's formula , the examinated the effect of correction. After the actual material examination, the average absolute error of computing the water saturation achieved 5.48pu. the average relative error achieved 8.75it have much significance in enhancing the explanation coincidence rate, especially in the explanation of water-flooded zones.
引文
[1]萧德铭,迟元林,蒙启安,付广.松辽盆地北部向斜区岩性油藏勘探认识与实践[M].北京:石油工业出版,2005.
    [2]辛仁臣,蔡希源.松辽盆地北部埋藏历史对大庆长垣油藏成藏的控制[J].中国地质大学学报,2004:29(4):457-460.
    [3]J.Yan;M.Tucker;T.Liu.Reservoir Description from Well-log and Reservoir Engineering;An Example from Triassic Reservoirs in Northwest China[J].Petroleum Science and Technology,2006,24(12):1417-1430.
    [4]Shuwen Sun;Liangshu Shu,Yanwei Zeng,Jian Cao and Zhiqiang Feng.Porosity-permeability and textural heterogeneity of reservoir sandstones from the Lower Cretaceous Putaohua Member Of Yaojia Formation,Weixing Oilfield,Songliao Basin,Northeast China[J].Marine and Petroleum Geology,2007,Feb,24(2),109-127.
    [5]文政,徐广田,葛百成.大庆长垣以西地区复杂油水层成因及测井解释方法[J].大庆石油地质与开发,2005,24(2):100-102.
    [6]常明澈,付有升.大庆长垣以西含钙砂泥岩薄互层测井解释[J].测井技术信息,1996,9(1):13-15.
    [7]刘国庆,石才艳,刘江.含钙储层测井响应特征分析[J].物探与化探,2002,26(5):395-397.
    [8]刘传平,施龙.龙虎泡油田含钙储层测井响应机理研究[J].大庆石油地质与开发,2000,19(5):37-38.
    [9]Mostafa H.Kamel,Walid M.Mabrouk.Estimation of shale volume using a combination of the three porosity logs[J].Journal of Petroleum Science and Engineering,2003,40(3):145-157.
    [10]Thomas D.Barber,Zlatko Sijercic,Gerald Minerbo,Tracy E.Broussard.Method and apparatus for evaluating the resistivity of invaded formations[P].US.:6047240,Jan 16,1998.
    [11]谢然红.低电阻率油气层测井解释方法[J].测井技术,2001,25(3);199-203.
    [12]Zemanek J.Low-resistivity hydrocarbon-bearing sand reservoirs[J].SPE Formation Evaluation,1989,4(6):515-521.
    [13]Wyatt W.Givens.Method for determining the effective water saturation in a low-resistivity[P].U.S.:4752882,Jun 21,1988.
    [14]Givens W W.A Conductive rock matrix model(CRMM) for the analysis of low-contrast resistivity formation[J].The Log Analyst:1987,28(2):138-151.
    [15]张建荣.复杂砂岩储层测井解释方法研究[J].石油天然气学报,2006:28(6):91-93.
    [16]王青,李国平,赵新民.复杂储集空间储集层测井解释方法研究[J].测井技术,2003,27(5):398-393.
    [17]G.G.Tenchov.Evaluation of electrical conductivity of shaly sands using the theory of mixtures[J].Journal of Petroleum Science and Engineering,1998,21(3):263-271.
    [18]Dermot M.Malone,John L.Anderson.Diffusional boundary-layer resistance for membranes with low porosity[J].Wiley InterScience,2004.23(2):177-184.
    [19]Han D H,Nur A.The effects of porosity and clay content on wave velocities in sandstones[J].Expanded Abstract of 56th Annual International SEG Mtg,1986,1-3.
    [20]Hilmi S.Salem.Computer Modeling of Porosity and Lithology for Complex Reservoirs Using Well-Log Measurements[J].Energy Sources,2000,22(6):515-524.
    [21]Naum Ruhovets,Houston,Tex.Method for determining porosity,clay content and mode of distribution in gas and oil bearing shaly sand reservoirs[P].U.S.:4584874,Apr 29,1986.
    [22]G.TAO2,M.S.KING.Porosity and pore structure from acoustic well logging data[J].Geophysical Prospecting,1993,41(4):435-451.
    [23]诸葛月英,王向公,杜宝会,胡涛,陈俊,刘萍.华北大王庄复杂砂岩储层钙质校正方法研究[J].测井技术,2006,30(5):435-437.
    [24]刘之的,夏宏泉,陈福煊,李英,肖承文,刘兴礼.岩电实验过程中误差产生的原因及校正方法研究[J].测井技术,2003,27(4):274-277.
    [25]李国全.自然伽马计算泥质含量新方法[J].国外测井技术,1992,7(3):92-95.
    [26]Tenchov.G.G.Theoretical Study of Gamma Ray Index(Igr:Shale Content (Vsh) Relationship for Shaly Sands[J].Bulgarian Geophysical Journal,1997,13:110.
    [27]王建民,王元波,裴江云,王丽娜,关昕,刘国友.高分辨率处理技术在松辽盆地中、浅层岩性油藏勘探中的应用[J].大庆石油地质与开发,2004,23(5):107-109.
    [28]潘保芝房德斌侧向测井曲线分辨率匹配方法及其在松辽盆地的应用[J].石油物探,2004,43(3),:306-308,312.
    [29]Chu-Chiu Fu,Stanley C.Gianzero,David O.Torres.Method for enhancing vertical resolution of nuclear well logging instruments[P].US.:5506769,Aug 2,1994.
    [30]师永民.高分辨率砂泥岩薄互层储层综合预测技术[J].石油地球物理勘探,2000,35(5):661-668.
    [31]冯春珍,林忠霞,崔丽香.低孔低渗储层含水饱和度的确定[J].国外测井技术,2007,22(1):27-30.
    [32]范月荣,刘正峰,高彩红,万其力.超薄层电阻率测井(TBRt)的评价方法及应用[J].测井技术,2004,28(4):324-326.
    [33]Austin Joseph Boyd.Jean-Baptiste Nicolas Clavaud.Determining water saturation for oil bearing thin-bedded formation having anisotropic resistivity[P].U.S.:20050114029,May 26,2005.
    [34]James D.Klein,Lucas.Tex.Method for locating thin bed hydrocarbon reserves utilizing electrical anisotropy[P].U.S:5550473 Mar29,1995.
    [35]宋延杰,印长海.葡萄花油田储层参数解释方法研究[J].大庆石油地质与开发,2004,23(1):67-69.
    [36]Archie G E.The electrical resistivity log as an aid in determining some reservoir characteristics.Trans.A.I.M.E.,1942.146:54-62.
    [37]申梅英,陈家阔,姚伟.薄层测井解释技术的进展[J].国外测井技术,2005:20(3):59-63.
    [38]田国华,刘江,韩波.低孔渗储层油水层判别分析方法[J].黑龙江大学自然科学学报,2004,21(1):35-38.
    [39]张建华.泥浆侵入储层电阻率测井动态反演多解性研究[J].测井技术,2000,24(2):102-107.
    [40]张友生,魏斌,杨慧珠.低阻油层双侧向测井的反演研究[J].地球物理学进展,2003,18(1):85-89.
    [41]宋延杰,石颖,唐晓敏.三种泥质砂岩双电层电导率模型比较[A].测井技术,2005,29(6):488-492.
    [42]宋延杰,刘宪伟,黄宝华.混合泥质砂岩有效介质通用HB电阻率模型在高泥储层中的应用[J].测井技术,2003,27(6):508-512.
    [43]申梅英,陈家阔,姚伟.骨架导电的混合泥质砂岩通用孔隙结合电阻率模型研究[J].地球物理学进展,2005,20(3):747-756.
    [44]Brown G A.A Mathematical Comparison of Common Saturation Equations [A].SPWLA 27th Annual Logging Symposium[C],1986,June:1-24.
    [45]Waxman M H,Smits L J M.Electrical Conductivities in Oil-Bearing Shaly Sands[J].SPE J,1968,June:107-122.
    [46]Charles R B.Effeetive-medium resistivity model for caleulating water saturation in shaly sands[J].The Log Analyst,1996,37(3):16-28.
    [47]郑庆林,王钰森,赵雨.低孔隙度条件下阿尔奇含水饱和度解释模型改进[J].测井技术,2006:30(1):57-59.
    [48]云美厚,高君,贺玉山,张国富.储层速度和密度与孔隙度、泥质含量以及含水饱和度的关系[J].勘探地球物理进展,2004,27(2):104-107.
    [49]Eberhart-Phillips D,Han D H,Zoback M D.Empirical relationships among seismic velocity,effective pressure,porosity,and clay content in sandstone[J].Geophysics,1989,54(1):82-89.
    [50]Eberhart-Phillips A E.A Comparison of Shaly Sand Models[A].SPWLA 24th Annual Logging Symposium[C].1983,June:1-10.
    [51]Jing X D,Archer J S.An improved Waxman-Smits Model for Interpreting Shaly Sand Conductivity at Reservoir Conditions[A].SPWLA 32nd Annual Logging Symposium[C].1991,June:1-25.
    [52]Clavier C,Coates G and Dumanoir J.The Theoretical and Experimental Bases for the Dual-Water Model for Interpretation of Shaly Sands[J].SPEJ,1984,April :153-168.
    [53]Silva L P,Bassioni Z.A Shaly Sand Conductivity Model Based on Variable Equivalent Counter-ion Conductivity and Dual Water Concepts[A].SPWLA 26th Annual Logging Symposium[C].1985,June:1-21.
    [54]Worthington P F,Johnson P W.Quantitative Evaluation of Hydrocarbon Saturation in Shaly Freshwater Reservoirs[J].The Log Analyst,1991,July-August:358-368.
    [55]Worthington P F.The Evolution of Shaly-sand Concepts in Reservoir Evaluation [J].The Log Analyst,1985,January-February:23-40.
    [56]宋延杰,印长海.S-B电导率模型:确定泥质砂岩储层含水饱和度的新方法[J].测井技术,1995,19(4):244-249,
    [57]Silva L P and Bassioni Z.Statistical Evaluation of the S-B Conductivity Model for Water-bearing Shaly Sand[J].The Log Analyst,1986,May-June:9-19.
    [58]楚泽涵黄隆基高杰肖立志.地球物理测井方法与原理[M].北京:石油工业出版社,2007.
    [59]Toby Darling.Well Logging and Formation Evaluation[M].Technology & Engineering,2005.
    [60]李云雁,胡传荣.试验设计与数据处理[M].北京:化学工业出版社,2005.
    [61]赵永军,李汉林.石油数学地质[M].北京:石油大学出版社,1998.
    [62]Robert Freedman,Tracy E.Broussard.Method for determining borehole corrections for well-logging tools[P].US.:7076370,Dec 16,2004.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700