Ba_xSr_(1-x)TiO_3铁电薄膜的制备及漏电流机理分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
钛酸锶钡(BaxSr1-xTiO3,简记为BST)薄膜具有介电常数大、介电损耗低、非线性强、漏电流小、居里温度可调、热释电性高等特点,因此在超高密度集成的随机存储器(DRAM)、介质移相器、压控滤波器和非制冷红外探测等方面有着广泛的应用前景。在器件中,BST薄膜工作在外加直流电压下,过大的漏电流将严重影响薄膜器件的工作稳定性和使用寿命。本文围绕如何通过镁掺杂和制作钛酸锶钡与偏氟乙烯-三氟乙烯共聚物(P(VDF-TrFE))的复合膜来减小漏电流,以及低电场下漏电流机制的问题,通过实验制备和理论计算的方法来研究BST薄膜的漏电流相关特性。
     首先,采用溶胶凝胶法(Sol-Gel)在Pt(111)/Ti/SiO2/Si(100)基片上制备了Mg掺杂的钛酸锶钡薄膜Ba0.4Sr0.6MgyTiO3(BSMT),研究了不同掺杂Mg含量和不同退火温度对BSMT薄膜漏电流特性的影响。用X射线衍射、扫描电子显微镜确定薄膜样品的成分和微观结构,并对BSMT薄膜的电流-电压特性(I-V)进行了测量。研究表明,随着Mg的加入,BSMT薄膜漏电流随之减小。当薄膜在700°C退火时有最小的漏电流,这可以用在XRD观察的薄膜在700°C下退火时结晶度最差来解释。
     接着,分析了BSMT在低电场区(小于115kV/cm)的漏电流机制。用实验数据对比了两个模型------肖特基模型(Schottky current model)和肖特基限制电流模型(Schottky-limited current model),其中前者只适用于当绝缘体中的电子平均自由程大于或等于绝缘体厚度的情况,而后者则适用于相反的情况,实验结果对两种模型都符合得较好。文中提出了区分两种模型的方法,通过进一步比较从两种模型下所提取的光频介电常数? r,结论表明肖特基限制电流模型更加符合实验结果。在较高电场下,薄膜的漏电流机理为空间电荷限制电流(SCLC)。
     最后,在Pt(111)/Ti/SiO2/Si(100)基片上制备了Ba0.4Sr0.6TiO3/P(VDF-TrFE)双层复合膜,其中Ba0.4Sr0.6TiO3薄膜层采用磁控溅射法,P(VDF-TrFE)薄膜层采用溶胶凝胶法(Sol-Gel)制作。考察了不同厚度P(VDF-TrFE)薄膜层对复合膜漏电流和电容值的影响。对复合薄膜的电流-电压特性(I-V)、电容-电压特性(C-V)一一进行了测量。实验结果表明随着P(VDF-TrFE)有机薄膜层的增加,复合薄膜的介电常数和漏电流有所降低。5V电压下,当所加P(VDF-TrFE)有机层厚度为150nm时,BST薄膜漏电流从10-8A下降到2×10-9A。
Barium strontium titanate(BaxSr1-xTiO3, short for BST)thin films were widelyapplied in ultra-high density integrated DRAM, dielectric phase filters, tunable filtersand uncooled infrared detector, due to its high dielectric permittivity, low dielectricloss, high dielectric nonlinearity, low leakage current, variable Curie temperature, andgood pyroelectric properties. In devices, BST thin film was directly applied DCvoltage, large leakage current can impact seriously on the stability and life time ofdevices. In present work, Mg-doped BST thin films and BST/Poly(Vinylidenefluoride—trifluoroethylene)(P(VDF-TrFE)) bilayer composites ferroelectric thin filmswere investigated, we study the properties of BST thin film by experimental andtheoretical calculation approach.
     First, thin films of Mg-doped Barium strontium titanate (Ba0.4Sr0.6MgyTiO3,BSMT) thin films were deposited on Pt(111)/Ti/SiO2/Si(100) substrates by sol-geltechnique. The effects of Mg content and annealing temperature on the leakagecurrent properties were studied, respectively. The crystallized phase andmicrostructure were investigated using X-ray diffraction (XRD) and scanning electronmicroscope (SEM). Then leakage current-voltage (I-V) of the BSMT thin films weremeasured. The measured results showed that, as the Mg content in BST increased, theleakage current of BSMT thin films decreased. Meanwhile, the films annealed at700°C possessed the lowest leakage, which maybe explained byits worst crystallinityin the XRD spectra.
     Second, the electrical conduction leakage mechanism in the low-field region,below 115 kV/cm, was investigated. Our experimental data fit both the Schottkycurrent model and the Schottky-limited current model well. The former is applicableto insulators onlyif the electronic mean-free path in the insulator is equal to or greaterthan the thickness of the insulator, but the latter is applicable when the situation is theopposite. Amethod to distinguish them was proposed in this work. By comparing theextracted values of optical dielectric constantε, the Schottky-limited current modelprovides a better fit to the experiment results. At higher field region the conductionmechanism is a space-charge-limited conduction (SCLC) current.
     Finally, the Ba0.4Sr0.6TiO3/P(VDF-TrFE) bilayer composites ferroelectric thinfilms were fabricated on Pt(111)/Ti/SiO2/Si(100) substrates, Ba0.4Sr0.6TiO3 and P(VDF-TrFE) thin films were prepared by RF Magnetron Sputtering and sol-gelmethods, respectively. The effects of different thickness of P(VDF-TrFE) thin filmson leakage current and dielectric permittivity were studied. Leakage current-voltage(I-V) and capacitance-voltage loops(C-V) of the Ba0.4Sr0.6TiO3/P(VDF-TrFE) thin filmwere measured. As the P(VDF-TrFE) thin films thickness increased, leakage currentand dielectric permittivity were reduced. When the thickness of P(VDF-TrFE) layerincreased to 150nm, the leakage of BST thin film decreased to 2×10-9Afrom 10-8Aat5V.
引文
[1]殷之文主编.电介质物理(第二版),北京:科学出版社, 2003.
    [2]冯端,师昌绪,刘治国.材料科学导论[M].北京:化学工业出版社, 2002.
    [3] Lines M E, Glass A M.铁电体及有关材料的原理和应用[M].钟维烈译.北京:科学出版社, 1989.
    [4]钟维烈.铁电体物理学[M].北京:科学出版社, 1996:1-10.
    [5] P. Muralt. Piezoelectric and pyroelectric microsystems based on ferroelectric thin films [J].Ferroelectrics, 1996, 1:145-151.
    [6] I. L. Baginsky, E. G. Kostsov and L. N. Sterelykhina. Electronic devices based on niobatebarium-strontium thin film [M]. IEEE 7th International Symposium on Applications ofFerroelectrics, 1990, 302-305.
    [7] F. Y. Chen, Y. K. Fang, C. Y. Shu et al. Numerical analysis of a PbTiO3 ferroelectric thin-filminfrared optical diode [J]. IEEETransactions on Electron Devices, 1997, 44:937-942.
    [8] M. Quaddari, S. Delprat, F. Vidal et al. Microwave characterization of ferroelectric thin filmmaterials [J]. IEEETransactions on MicrowaveTheoryandTechniques, 2005, 53:1390-1397.
    [9] L. Li, C. T. Lin. Effects of laser radiation on photo-conductivity in PZT thin films [J].Integrated Ferroelectrics, 1995, 7:33-44.
    [10] C. A. Paz de Araujo and G. W. Taylor. Integrated Ferroelectrics [J]. Ferroelectrics, 1991,116:215-228.
    [11] O. Norgorden. The inverse piezoelectric properties of rochelle salt at audio frequencies [J].Physical Review, 1936, 49:820-828.
    [12] S. Mathews, R. Ramesh, T. Venkatesan et al. Ferroelectric field effect transistor based onepitaxial perovskite heterostructures [J]. Science, 1997, 276:238-240.
    [13] C. A. Paz de Araujo, L. D. McMillan, B. M. Melnick, J. D. Cuchiaro, J. F. Scott. Ferroelectricmemories [J]. Ferroelectrics, 1990, 104:241-256.
    [14] G.A. Smolenskii and K. I. Rozgachev. Zh.Tech. Fiz. [M], 1954, 24:1751-1755.
    [15] A. K. Tagantsev, V. O. Sherman and K. F. astafiev. Ferroelectric materials for microwavetunable applications [J]. Joumal of Electroceramics, 2003, 11:5-66.
    [16] R. Waser. Microstructure-property relationships of (Ba, Sr)TiO3 films [J]. J. Korean Phys.Soc., 1998, 32:1340-1343.
    [17] D. Bondurant. Ferroelectric RAM memory family for critical data storage [J]. Ferroelectrics,PartB, 1990, 112:273-282.
    [18]陈纲,廖理几.介电晶体的电学性质[M].北京:科学出版社, 1992.
    [19]惠春,徐爱兰,高顺华.一种用于相控阵天线的新型钛酸锶钡电光相移器[J].西安电子科技大学学报, 1999, 26(4):514-519.
    [20]李宗全,陈湘明.材料结构与性能[M].杭州:浙江大学出版社, 2001.
    [21]金宇龙,周洪庆,吴洪忠等.钛酸锶钡(BST)铁电移相器材料的研究现状[J].电子元件与材料, 2003, 22(2):38-40.
    [22] P. Rundqvist, A. Vorobiev et al. Large signal circuit model of parallel-plate ferroelectricvaractors [J]. J.Appl. Phys., 2006, 100:074101.
    [23] A. Vorobiev et al. Silicon substrate integrated high Q-factor parallel-plate ferroelectricvaractors for microwave/millimeterwave applications[J]. Appl. Phys. Lett., 2003,83(15):3144-3146.
    [24]李彬.溶胶-凝胶薄膜科学与技术的由来和发展[J].材料导报, 1992, 6:42-44.
    [25] W. Geffcken and E. Berger. Verfahren zur Anderung des Reflexionsvermogens OptischerGlaser [J]. German Pat., 1939, 736411:5.
    [26] S. Y. Chen, I. W. Chen. Temperature-time texture transition of Pb(Zr1-xTix)O3 thin films: I roleof Pb rich intermediate phase [J]. J.Am. Ceram. Soc., 1994, 77(9):2332-2336.
    [27] W. Zhu, Z. Q. Liu, W. Wu et al. A systematic study on structural and dielectric properties oflead zirconate/(Pb, La)(Zr1-xTix)O3 thin film deposited by metal-organic decompositiontechnology[J]. J.Appl. Phys., 1996, 79(8): 4283-4290.
    [28] C. S. Chen et al. Heteroepitaxial growth of Ba1?xSrxTiO3/YBa2Cu3O7?x by plasma-enhancedmetal organic chemical vapor deposition [M].Appl. Phys. Lett., 1994, 64 (23): 3181-3183.
    [29] Senguptal, E. Ngo, M. E. Oday. Fabrication and characterization of barium strontium titanateand non-ferro-electric oxide composites for use in phased array antennas and other electronicdevices [J]. Proceedings of ninth IEEE Int. Symp. Appl. Ferroelectrics, Piscataway, N J: IEEE,1994:622-625.
    [30] T. S. Kalkur, J. Kulkami, Y. C. Lu et al. Metal-Ferroelectric-Semiconductor characteristics ofbismuth titanate films on silicon [J]. Ferroelectrics, 1991, 116:135-146.
    [31]张磊,梁辉,徐廷献.钛酸锶钡电介质材料的掺杂改型及其应用[J].硅酸盐学报, 2002,30(6):786-788.
    [32]山水.扬长补短发展FeRAM [EB/OL]. (2007-04-04) [2009-05-25]. http://www.eepw.com.cn/article/47335.htm.
    [33] ed-china.铁电存储器的技术原理[EB/OL]. (2006-01-11) [2009-05-25]. http://www.ed-china.com/ART_8800012111_400005_500008_TS_10bfbd18.htm.
    [34] O. Auciello, J. F. Scott, R. Ramesh. The physics of ferroelectric memories [J]. Physics Today,1998, 3(7):22-27.
    [35] S. B. Liu, M. D. Liu, S. L. Jiang, et al. Fabrication of SiO2-doped Ba0.85Sr0.15TiO3glass-ceramics films and the measurement of their pyroelectric coefficient [J]. Mater. Sci. inSemi. Proc., 2003, 99:511-515.
    [36] J. C. Shin, J. Park, C. S. Hwang and H. J. Kim. Dielectric and electrical properties of sputtergrown (Ba,Sr)TiO3 thin films [J]. J. Appl. Phys., 1999, 86:506-511.
    [37] S. Y. Lee and T. Y. Tseng. Electrical and dielectric behavior of MgO doped Ba0.7Sr0.3TiO3thin films on Al2O3 substrate [J]. Appl. Phys. Lett., 2002, 80:1797-1799.
    [38] K. H. Yoon, J. C. Lee, J. Park, D. H. Kang, C. M. Song and Y. G. Seo. Electrical properties ofMg doped (Ba0.5Sr0.5)TiO3Thin Films [J]. Jpn.J.Appl. Phys., 2001, 40(1):5497-5500.
    [39] P. C. Joshi and M. W. Cole. Mg-doped Ba0.6Sr0.4TiO3 thin films for tunable microwaveapplications [J].Appl. Phys. Lett., 2000, 77:289-291.
    [40] M. C. Chiu, Y. C. Lee, and F. S. Shieu. Effect of MgO dopant on the microstructure anddielectric properties of rf-sputtered Ba0.5Sr0.5TiO3 thin films [J]. J. Electrochem. Soc., 2005,152(11):F194-F201.
    [41] A. R. Chaudhuri and S. B. Krupanidhi. dc leakage behavior in vanadium-doped bismuthtitanate thin films [J]. J.Appl. Phys., 2005, 98:094112.
    [42] F. D. Morrison, P. Zubko, D. J. Jung, and J. F. Scott. High-?eld conduction in barium titanate[J].Appl. Phys. Lett., 2005, 86:152903.
    [43] J. T. Li, X. L. Dong, Y. Chen, et al. Space-charge-limited leakage current characteristicsinfluenced by field-dependent permittivity in high dielectric constant and ferroelectric thinfilms [J].Appl. Phys. Lett., 2006, 88:212905.
    [44] W. Y. Hsu, J. D. Luttmer, R. Tsu, et al. Direct current conduction properties of sputteredPt/(Ba0.7Sr0.3)TiO3/Pt thin films capacitors [J].Appl. Phys. Lett., 1995, 66(22):2975-2977.
    [45] Y. P. Wang and T. Y. Tseng. Electronic defect and trap-related current of (Ba0.4Sr0.6)TiO3 thinfilms [J]. J.Appl. Phys., 1997, 81(10):6762-6766.
    [46] J. G. Simmons. Conduction in thin dielectric films [J]. J. Phys. D: Appl. Phys., 1971,4:613-657.
    [47] Y. H. Lee, Y. S. Kim, D. H. Kim, et al. Conduction mechanisms in bariumtantalates filmsandmodification of interfacial barrier height [M]. IEEE Trans. Electron Devices, 2000,47(1):71-76.
    [48] H. Yang, B. Chen, K. Tao, et al. Temperature-and field-dependent leakage current ofPt/Ba0.7Sr0.3TiO3 interface [J].Appl. Phys. Lett., 2003, 83(8):1611-1613.
    [49] M. A. Lampert. Injection currents in insulators [J]. Proceedings of the IRE, 1962,50(8):1781-1796.
    [50] J. Frenkel. On pre-breakdown phenomena in insulators and electronic semi-conductors [J].Phys. Rev., 1938, 54:647-648.
    [51] S. Saha, S. B. Krupanidhi. Study of the electrical properties of pulsed laser ablated(Ba0.5Sr0.5)TiO3 thin films [J]. Materials Science and Engineering, 1999, B57:135-146.
    [52] H. Yang, K. Tao, B. Chen, et al. Leakage mechanism of Ba0.7Sr0.3TiO3 thin films in thelow-temperature range [J].Appl. Phys. Lett., 2002, 81(25):4817-4819.
    [53] S. T. Chang and J. Y. Lee. Electrical conduction mechanism in high dielectric constant(Ba0.5Sr0.5)TiO3 thin films [J].Appl. Phys. Lett., 2002, 80(4):655-657.
    [54] A. S. Riad. Infuence of dioxygen and annealing process on the transport properties of nickelphthalocyanine Schottky-barrier devices [J]. Physica B, 1999, 270:148-156.
    [55] T. D. Anthopoulos, T. S. Shafai. Electrical properties of a-nickel phthalocyanine/aluminiuminterfaces: effects of oxygen doping and thermal annealing [J]. Journal of Physics andChemistryof Solids, 2003, 64:1217-1223.
    [56] D. R. Uhlmann, et al., Opportunities for new materials [C]. Mat. Res. Soc. Symp. Proc., 1984,32:59-71.
    [57] B. J. J. Zelinski and D. R. Uhlman. Gel technology in ceramics [J]. Journal of Physics andChemistryof Solids, 1984, 45(10):1069-1090.
    [58]杨邦朝,王文生.薄膜物理与技术[M].成都:电子科技大学出版社, 1994:137-138.
    [59]陈庆华,曹自平,孙俊赛.溶胶-凝胶法在材料复合制备技术中的应用[J].有色金属,2001, 53(2):71-76.
    [60]夏奕东.微波介电薄膜材料钛酸锶钡和钛酸钕[D].南京:南京大学材料物理与化学专业博士论文, 2005.
    [61]龚健,陶明德.溶胶-凝胶法制备BaTiO3系薄膜[J].功能材料, 1998, 29(4):348-352.
    [62] N. V. Giridharan, S. Madeswaran, R. Jayavel. Structural morphology and electrical studies onferroelectric bismuth titanate thin films prepared by sol-gel technique [J]. Journal of CrystalGrowth, 2002, 237-239(1): 468-472.
    [63] A. V. Prasada Rao, A. I. Robin, S. Komarneni. Bismuth titanate from nanocomposite andsol-gel process [J]. Materials Letters, 1996, 28(4): 469-473.
    [64] S. Madeswaram, N. V. Giridharan, R. Jayavel. Material science communication sol-gelsynthesis and property studies of layered perovskite bismuth titanate thin films [J]. MaterialsChemistryand Physics, 2003, 80(1):23-28.
    [65] J. K. Kim, T. K. Song, S. S. Kim et al. Ferroelectric properties of tungsten-doped bismuthtitanate thin filmprepared by sol-gel route [J]. Materials Letters, 2002, 57(4):964-968.
    [66] A. Hardy, D. Mondelaers, G. Vanhoyland, et al. The formation of ferroelectric bismuthtitanate (Bi4Ti3O12) from an aqueous metal-chelate gel. [J]. Journal of Sol-Gel Science andTechnology, 2003, 26(26):1103-1107.
    [67]周玉,武高辉.材料分析测试技术:材料X射线衍射与电子显微分析[M].哈尔滨:哈尔滨工业大学出版社, 1998:183-195.
    [68] J. G. Simmons. Richardson-schottkyeffect in Solids [J]. Phys. Rev. Lett. 1965, 15. 967-968.
    [69] Y. B. Zheng, S. J. Wang, A. C. H. Huan, S. Tripathy, J. W. Chai, L. B. Kong, C. K. Ong.Band-gap energies and structural properties of doped Ba0.5Sr0.5TiO3 thin ?lms [J]. J. Appl. Phys., 2006, 99:014106.
    [70] M. W. Cole, W. D. Nothwang, C. Hubbard, E. Ngo, M. Ervin. Low dielectric loss andenhanced tunability of Ba0.6Sr0.4TiO3 based thin ?lms via material compositional design andoptimized ?lm processing methods [J]. J. Appl. Phys., 2003, 93:9218-9225.
    [71] M. W. Cole, C. Hubbard, E. Ngo, M. Ervin, M. Wood, R.G. Geyer. Structure-propertyrelationships in pure and acceptor-doped Ba1-xSrxTiO3 thin ?lms for tunable microwave device applications [J]. J.Appl. Phys., 2002, 92:475-483.
    [72] J. F. Scott.铁电存储器[M].北京:清华大学出版社, 2004:74-75.
    [73] R. Liu, Motorola, Mesa,Arizona (private communication).
    [74] S. Zafar, R. E. Jones, B. Jiang, B. White, V. Kaushik, S. Gillespie. The electronic conductionmechanism in barium strontium titanate thin ?lms [J]. Appl. Phys. Lett., 1998, 73(24):3533-3535.
    [75] G. W. Dietz, R.Waser, S. K. Steiffer, C. Basceri, A. I. Kingon. Leakage currents inBa0.7Sr0.3TiO3 thin films for ultrahigh-density dynamic random access memories [J]. J. Appl.Phys., 1997, 82(5):2359-2364.
    [76]程建功,孟祥建,唐军等.溶胶-凝胶法制备Ba0.8Sr0.2TiO3薄膜的结构及铁电性质研究[J].物理学报, 2000, 49(5):1006-1008.
    [77] S. Gevorgian and P. K. Petrov, et al. Tailoring the temperature coefficient of capacitance inferroelectric varactors [J].Appl. Phys. Lett., 2001, 79(12):1861-1863.
    [78] F. A. Yildirim, C. Ucurum, R. R. Schliewe and W. Bauhofer. Spin-cost composite gateinsulation for low driving voltages and memory effect in organic field-effect transistors [J].Appl. Phys. Lett., 2007, 90:083501.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700