用户名: 密码: 验证码:
金属支撑型固体氧化物燃料电池的制备与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
金属支撑型固体氧化物燃料电池(solid oxide fuel cell,SOFC)是一种不同于传统的电解质支撑或阳极支撑的新型的电池构型。随着SOFC向中低温化和低成本发展,采用金属支撑的SOFC能够同时满足二者的要求,因此越来越成为大家关注的热点。
     本论文利用高速率、大面积沉积的电子束物理气相沉积技术(electron beam physical vapor deposition,EB-PVD),通过调整工艺参数,在多孔不锈钢支撑体430L上连续沉积了阳极功能涂层NiO/YSZ和电解质层YSZ,通过涂刷Pt阴极组装了金属支撑型SOFC。采用XRD、SEM结合能谱等对各部件的微观结构和成分组成进行了表征;采用自制装置对单电池输出性能进行了测量;采用阻抗分析仪对单电池的阻抗进行了测试。根据测试结果提出并进行了电解质致密化试验,进一步优化了单电池的输出性能。
     研究结果表明:(1)利用EB-PVD连续沉积的NiO/YSZ阳极和YSZ电解质,其组分和微观结构均满足要求,经过H2还原后,阳极功能涂层表现为可观的孔隙率,能够提供大量的三相反应区界面,而电解质从SEM中,未观察到明显的孔洞。(2)制备态电解质组装的单电池在800℃下,开路电压为0.5V,最大功率密度为110mW/cm2。开路电压低的主要原因是电解质致密性不够。通过阻抗谱拟合,得到欧姆阻抗的活化能为80.7kJ/mol,界面阻抗的活化能为88.1 kJ/mol,主要与电解质的柱状晶特征以及阳极、集流体的电阻性质有关。(3)电解质经8YSZ溶胶6次浸渍致密化和经过SiO2溶胶2次浸渍致密化后,其气体泄漏率由制备态的2.3×10-4 cm4·N-1·s-1分别降低至9×10-5cm4·N-1·s-1和6.7×10-5cm4·N-1·s-1,致密性明显提高。组装电池后在800℃的开路电压分别为0.74V和0.9V,最高功率密度分别为140mW/cm2和125mW/cm2,比起制备态均有所提高。
Metal-supported solid oxide fuel cell (SOFC) is a novel kind of cell construction which differs from traditional electrolyte-supported or anode-supported SOFC. With the development of SOFC operated at medium and low temperature and at low cost, combining both of them, metal-supported SOFC becomes the hotspot increasingly people focus on.
     In this project, with the advantages of high deposition rate and large deposition area, electron beam physical vapor deposition (EB-PVD) was applied to deposit anode functional layers of NiO/YSZ and electrolytes of YSZ successively on porous stainless steel 430L. And then unit cell was fabricated by coating platinum paste cathodes. XRD、SEM and EDX techniques were utilized to characterize the microstructures and composition of the cell components; self-made device was utilized to test discharge performances; impedance data were obtained by frequency-response analyzer. In order to improve its performance, post densifica- tion treatment was conducted.
     Based on the testes and analyses above,the following results are obtained: (1) the microstructures and composition of anode functional layers NiO/YSZ and electrolytes YSZ prepared by EB-PVD continuously met the requirements of SOFC. The anode functional layers Ni/YSZ were porous enough after reducing NiO to Ni and no distinct pores were observed from SEM for electrolytes; (2) unit cell prepared by as-deposited electrolyte showed 0.5V in open-circuit voltage (OCV) and 110mW/cm2 in the maximum power density at 800℃. Low open-circuit voltage was attributed to poor density of electrolyte. Analysis of the impedance spectra indicated that the activation energies of the interfacial resistance and the ohmic resistance were 80.7kJ/mol and 88.1 kJ/mol, respectively, which were related to columnar crystals of electrolyte and resistance properties of anode and current collectors; (3) The coeffcients of gas permeability for coating samples after different times of infiltration treatment and different sols were calculated. It dropped from 2.3×10-4 cm4·N-1·s-1 for as-deposited coating to 9×10-5cm4·N-1·s-1 for six- time infiltration by 8YSZ sol and 6.7×10-5cm4·N-1·s-1 for two-time infiltration by SiO2 sol, respectively. The OCVs increased from 0.5V for the cell with as-deposited electrolyte coating to 0.74V and 0.9V respectively for the cells with the coatings after six-time of 8YSZ sol infiltration and two-time of SiO2 sol infiltration at 800℃. The maximum power densities also were improved to 140mW/cm2 and 125mW/cm2, respectively.
引文
1衣宝廉.燃料电池-原理.技术.应用.化学工业出版社, 2005:428~512
    2 N. Q. Minh. Ceramic Fuel Cells. J. Am. Ceram. Soc. 1993,76(3):563~588
    3 N. Q. Minh, T. Takahashi. Science and Technology of Ceramic Fuel Cells. Elsevier Science B.V.,1995:92~96
    4 Fuel Cell Handbook (Fifth Edition), Science Applications International Corporation, Technology of Ceramic Fuel Cells, by EG&G Services Parsons, Inc. 2000:158~159
    5韩敏芳,彭苏萍.固体氧化物燃料电池材料及制备.科学出版社, 2004:7~8
    6孙雪丽.低温固体氧化物燃料电池阴极材料制备及其性能研究.大连海事大学博士学位论文. 2007:5~6
    7 Brian. C. Steele. Survey of Materials Selection for Ceramic Fuel Cells(II) Cathodes and Anodes. Solid State Ionics. 1996,86-88:1223~1234
    8黄端平,徐庆,陈文,张枫.新型中低温固体氧化物燃料电池阴极材料的研究.陶瓷学报. 2006,27(3):275~280
    9傅献彩,沈文霞,姚天扬.物理化学.高等教育出版社, 1990:152~300
    10姜彩荣.固体氧化物燃料电池的性能优化.中国科技大学博士学位论文. 2007:2~6
    11田彦婷,吕喆,陈孔发,艾娜,黄喜强,苏文辉.微米粉体制备阳极支撑的YSZ薄膜.电源技术. 2009,33(1):24~26
    12 H. P. Buchkremer, U. Diekmann, L. G. J. de Haart, H. Kabs, U. Stimming, D. Stover, in: U. Stimming, S. C. Singhal, H. Tagawa, W. Lehnert (Eds.). Proc. 5th Int. Conf. Solid Oxide Fuel Cells, Electrochemical Society, Pennington, NJ, 1997:160
    13 N. Q. Minh, K. Montgomery, in: U. Stimming, S. C. Singhal, H. Tagawa, W. Lehnert (Eds.), Proc. 5th Int. Conf. Solid Oxide Fuel Cells. Electrochemical Society, Pennington, NJ, 1997:153
    14 M. C. Willams, J. P. Strakey, S. C. Singhal, U. S. Distributed Generation Fuel Cell Program, J.Power Sources. 2004,131:79~85
    15 J. Will. Fabrication of Thin Electrolytes for Second-generation Solid Oxide Fuel Cells. Solid State Ionics. 2000,131(1-2):79~96
    16 L. G. J. de Haart, Th. Hauber, K. Mayer, U. Stimming, in: B. Thorstensen (Ed.).Proc. 2nd European Solid Oxide Fuel Cell Forum, European SOFC Forum, Oberrohrdorf, Switzerland, 1996:229
    17 K. Krist, J. D. Wright, in: S. C. Singhal, H. Iwahara (Eds.). Proc. 3rd Int. Symp. on Solid Oxide Fuel Cells, Electrochemical Society, Pennington, NJ,1993:782
    18 K. Honegger, B. Batawi, Ch. Sprecher, R. Dietheim, in: U. Stimming, S.C. Singhal, H. Tagawa, W. Lehnert (Eds.), Proc. 5th Int. Conf. Solid Oxide Fuel Cells, Electrochemical Society, Pennington, NJ,1997:321
    19 Hassan, A. A. E, et al. Development of an Optimized Anode Functional Layer for Solid Oxide Fuel Cell Applications. Advanced Engineering Materials. 2002, 4(3): 125~129
    20 D. Waldbillig, A. Wood, and D.G. Ivey. Enhancing the Redox Tolerance of Anode-supported SOFC by Microstructural Modification. Journal of the Electr- ochemical Society. 2007,154(2):133~138
    21 S. D. Kim. Effects of Anode and Electrolyte Microstructures on Performance of Solid Oxide Fuel Cells. Journal of Power Sources. 2007,169(2):265~270
    22 A. N. Lu, Z. Chen, K. F. Huang, X. Q. Du, X. B. Su, W. H. Effects of Anode Surface Modification on the Performance of Low Temperature SOFCs. Journal of Power Sources. 2007,171(2):489~494
    23 N. P. Brandon. Development of Metal Supported Solid Oxide Fuel Cells for Operationat 500~600℃. Journal of Fuel Cell Science and Technology. 2004, 1:61~64
    24王忠利,韩敏芳,陈鑫.铁素体不锈钢在氧化物燃料电池中的应用.真空电子技术. 2006,51(4):51~54
    25 Jong Hoon Joo, Gyeong Man Choi. Simple Fabrication of Micro-solid Oxide Fuel Cell Supported on Metal Substrate, Journal of Power Sources. 2008,182:589~593
    26 T. G. Kollie. Phys.Rev. 1977,16:4872~4881
    27 J. W. Adams, H. H. Nakamura, R. P. Ingel, R. W. Rice. Thermal Expansion Behavior of Unit-crystal Zirconia. J.Am.Ceram.Soc. 1985,68(9):228~231
    28美国金属学会主编.金属手册,性能与选择:不锈钢工具材料及特殊用途金属材料.第九版,第三卷.机械工业出版社, 1980:37
    29 Y. B. Matus, C. P. Jacobson, S. J. Visco. Metal-supported Solid Oxide Fuel Cell Membranes for Rapid Thermal Cycling. Solid State Ionics. 2005,176:443~449
    30 Mchael. C. Tucker, Grace. Y. Lau, Craig. P. Jacobson, Lutgard. C. De Jonghe,Steven. J. Visco. Performance of Metal-supported SOFCs with Infiltrated Electrodes, Journal of Power Sources. 2007,171:477~482
    31 Sebastian Molin, Boguslaw Kusz, Maria Gazda, Piotr Jasinski. Evaluation of Porous 430L Stainless Steel for SOFC Operation at Intermediate Temperatures. Journal of Power Sources. 2008,181:31~37
    32 N. P. Brandon. Development of Metal Supported Solid Oxide Fuel Cells for Operation at 500~600 Degrees C. Journal of Materials Engineering and Perfor- mance. 2004,(3):253~256
    33 I. Villarreal, et al. Metal-supported Solid Oxide Fuel Cells. Electrochemical and Solid State Letters. 2003,6(9):178~179
    34 Y. B. Matus, et al. Performance of Metal-supported SOFCs With Infiltrated Electrodes. Solid State Ionic. 2005,176:443~449
    35 M. LANG, et al. Electrochemical Characterization of Vacuum Plasma Sprayed Thin-film Solid Oxide Fuel for Reduced Operating Temperatures. Journal of Applied Electrochemistry. 2002,32:871~874
    36 M. LANG, T. FRANCO, G. SCHILLER. Electrochemical Characterization of Vacuum Plasma Sprayed Thin-film Solid Oxide Fuel Cells (SOFC) for Reduced Operating Temperatures. Journal of Applied Electrochemistry. 2002,32: 871 ~874
    37 K. A. Khor and Gu. Hot Isostatic Pressing of Plasma Sprayed Yttria-stabilized Zirconia. Mater.Lett. 1998,34:263~268
    38 K. A. Khor, L. G. Yu, S. H. Chan. Densification of Plasma Sprayed YSZ Electr- olytes By Spark Plasma Sintering (SPS), Journal of the European Ceramic Society. 2003,23:1855~1863
    39 Chang-Jiu Li, Cheng-Xin Li, Xian-Jin Ning. Performance of YSZ Electrolyte Layer Deposited by Atmospheric Plasma Spraying for Cermet-supported Tubular. Vacuum. 2004,73:699~703
    40 T. IDE, T. NAMIKAWA, Y. YAMAZAKI. Preparation of 8YSZ Thin Films on Porous LSM by Electron Beam Evaporation. Denki Kagaku. 1996,64:681~683
    41 Shiqiang(Rob) Hui, Dongfang Yang, Zhenwei Wang, Sing Yick. Metal- supported Solid Oxide Fuel Cell Operated at 400℃~600℃. Journal of Power Sources. 2007,167:336~339
    42 Qiu-AnHuang, JorgOberste-Berghaus, DongfangYang. Polarization Analysis for Metal-supported SOFCs from Different Fabrication Processes. Journal of Power Sources. 2008,177:339~347
    43 A. F. Jankowski, J. P. Hayes. Reactive Sputter Deposition of Yttria-stabilized Zirconia. Surface and Coatings Technology. 1995,76-77:126~131
    44 J. Will, A. Mittendorfer, C. Kleinlogel, D. Perednis, L. J. Gauckler. Fabrication of Thin Electrolytes for Second-generation Solid Oxide Fuel Cells. Solid State Ionics. 2000,131:79
    45简家文,杨邦朝,张益康.交流阻抗谱测试技术在固体电解质氧传感器研究中的应用.功能材料. 2004,4( 35):464~465
    46李英等. Y2O3稳定ZrO2材料的电导活化能.无机材料学报. 2002,17 (4):811~816
    47郭建伟,毛宗强,徐景明.采用交流阻抗法对质子交换膜燃料电池(PEMFC)电化学行为的研究.高等学校化学学报. 2003,24:1477~1481
    48曹楚南,张鉴清.电化学阻抗谱.科学出版社, 2002:26~27
    49 X. H. Deng and A. Petric. Geometrical Modeling of the Triple-phase-boundary in Solid Oxide Fuel Cells. Journal of Power Sources. 2005,140(2):297~303
    50艾刚等.阳极支撑型单气室固体氧化物燃料电池的性能.催化学报. 2006,27( 10):885~889
    51 A. E. SCHEIDEGGER. The Physics of Flow through Porous Media. Third Edition. University of Toronto Press,1972:73~97
    52 K. OKUMURA, Y. AIHARA, S. ITO, et al. Development of Thermal Spraying- sintering Technology for Solid Oxide Fuel Cells. Journal of Thermal Spray Technology. 2000,9:354~359
    53 K. A. Khor, S. H. Chan, J. Chen. Densification of Plasma Sprayed YSZ Electrolytes by Spark Plasma Sintering SPS. Journal of the European Ceramic Society.2003,23:1855~1863
    54 A. Petitbon, L. Boquet and D. Delsart. Laser Surface Sealing and Strengthening of Zirconia Coatings. Surf. Coat. Technol. 1991,49:57~61
    55 Xian-Jin Ning, et al. Modification of Microstructure and Electrical Conducti- vity of Plasma-sprayed YSZ Deposit through Post-densification Process. Materials Science and Engineering A. 2006,428:98~105
    56 J. Knuuttila, et al. Sealing of Thermal Spray Coatings by Impregnation. Journal of Thermal Spray Technology. 1999,8(2):249~251
    57 Bin Meng. Xiaodong He, Yue Sun, Mingwei Li. Preparation of YSZ Electrolyte Coatings for SOFC by Electron Beam Physical Vapor Deposition Combined with a Sol Infiltration Treatment. Materials Science and Engineering B.2008,150:83~85
    58王国光,水森,岳林海. X射线衍射分析非晶二氧化硅结构及其物化性质的研究.无机化学学报. 2002,18(10):991~995

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700