合成双射流激励器流场特性及其控制机翼分离流动研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
作为一种新兴的主动流动控制技术,合成射流正日益受到广大科技工作者的关注。合成射流激励器是合成射流技术发展的核心,其设计水平和工作性能决定了合成射流技术的应用方向和应用效果。合成双射流激励器作为合成射流技术的最新发展成果,不仅具有普通单腔体激励器的工作特点,还具有能量利用率高,结构紧凑、易于小型化,环境适应能力强等优点。
     本文采用理论分析与数值模拟相结合的方式,研究了不同激励器结构构型下的合成双射流流场,及合成双射流在机翼分离流动控制方面的应用。本文的研究内容和结论主要体现在以下四个方面:
     (1)数值模拟结果表明合成双射流是由两股相位差为180°的射流融合而成,在整个周期内合成双射流流场中始终存在一对较强的旋涡控制着下游流动。相对于单腔体合成射流,合成双射流一个周期内具有两个速度峰值,在靠近激励器出口处合成双射流具有更强的射流“穿透力”,在远离出口的下游,合成双射流具有更稳定的流动特征和更高的流动速度。
     (2)通过改变合成双射流激励器左右腔体设计可以实现射流的矢量性偏转,并且偏转效果随激励器结构参数和驱动参数不同而变化;通过改变两出口间距离的大小,可以控制两股射流间的融合效果,改变下游流场分布;斜出口合成双射流可以在近壁面形成一股附壁流,以实现对周围流体有方向性的动量和能量传递。
     (3)合成双射流对平板流动具有两种不同的影响效果:当射流垂直进入外部主流时,对主流起到“阻拦”作用,会在激励器出口产生“虚拟气动外形”效应,并使下游边界层变厚;当合成双射流以一定夹角进入外流时,可以实现对边界层的动量注入效应,使边界层厚度变薄,速度型更“饱满”。
     (4)合成射流和合成双射流均可以改善失速状态下的机翼气动特性,合成双射流具有更好的控制效果和控制能力,对最大升力和失速攻角的增加量都可达到单腔体合成射流的2倍。以外部主流流动特征频率倍频和较大动量系数工作的合成双射流激励器具有更好的改善机翼气动特性的能力。
As a novel method of active flow control technology, synthetic jet is attractingmore researchers’attention. The application of synthetic jet technology to flow controlsystem is based on the synthetic jet actuator’s design level and work performance. As anup-to-the-minute result of the synthetic jet technology, dual synthetic jets actuator notonly has the property of the existing synthetic jet actuator, but also has the superiority ofhigh energy efficiency, compact structure, easy miniaturization and strongenvironmental adaptation.
     In this paper, the flow field of different actuator structure and the application inseparate flow control of an airfoil are studied in theory and numerical, the main workincludes four parts as follows:
     (1) The dual synthetic jets are merged by two jets with phase difference of 180degree, on the whole actuator cycle the downstream of the dual synthetic jets flow-fieldis controlled all along by a pair of strong vortexes. Compared with synthetic jet, dualsynthetic jets have two velocity peaks within one actuator cycle, in the near fielddownstream, the dual synthetic jets have stronger jet penetration and in the far fielddownstream, the merged jet is more stable and has higher velocity.
     (2) By changing the left and right cavity could vector the direction of the mergedjet, and the deflection is varied with different structural parameters and drivenparameters; by changing the distance between the exits could control the merge of theadjacent jet, and then influence the far flow-field; an increase in the exit angle couldlead to a wall-flow near the wall, it means that the energy and mass flux of fluid nearthe exit could be transmitted horizontally.
     (3) Dual synthetic jets have two different influence to the flat plate boundary layer:if the jets are injected perpendicular to the cross-flow, they will play a blocking role tothe mainstream and alter the effective shape of the body through“virtual aeroshaping”effect, then increase the thickness of the boundary layer; if the jets are injectedobliquitous, they will have the effective of increase the momentum of the boundarylayer, thin the boundary layer down and make the speed-type fuller.
     (4) Both of synthetic jet and dual synthetic jets could control flow separation of anairfoil, but dual synthetic jets have better performance and stronger capability, theincrement of the maximum lift and stall angle of attack can be up to 2 times higher thanthe synthetic jet. The dual synthetic jets actuator, which works with 1 or 2 times of thecharacteristics frequency of the cross-flow and with higher momentum coefficient, hasbetter ability to improve the aerodynamic characteristics of the airfoil.
引文
[1] Kumar, Hefner J N. Future challenges and opportunities in aerodynamics[C].ICAS 2000 Congress, ICAS 2000-0.2.
    [2]庄逢甘,黄志澄.未来高技术战争对空气动力学创新发展的需求[C]. 2003空气动力学前沿研究论文集.北京: 2003: 73-80.
    [3] Kral L D. Active flow control technology[C]. ASME Paper No. FEDSM2001-18196, 2001.
    [4] Lachman G. Boundary layer and flow control, vols. 1, 2[M]. Oxford: PergamonPress, 1961.
    [5] Gad-el-Hak M, Pollard A, Bonnet J. Flow control: fundamentals and practices[M].Berlin: Springer, 1998.
    [6] Bushnell D M, Hefner J N. Viscous drag reduction in boundary layer, progress inaeronautics and astronautics[C]. Vol 123, AIAA Washington, D C.
    [7] Collis S S et al. Issues in active flow control: theory, control, simulation, andexperiment[J]. Progress in Aerospace Sciences, 2004,40:237-289.
    [8]罗振兵.合成射流流动机理及应用技术研究[D].长沙:国防科技大学(硕士学位论文),2002.
    [9] Bechert D W, Bartenwerfer M. The viscous flow on surfaces with longitudinalribs[J]. J Fluid Mech, 1989, 206:105–129.
    [10]赵宏.激励射流及控制问题的研究[D].北京:北京航空航天大学(博士后出站报告), 2002.
    [11]庄礼贤,尹协远,马晖扬.流体力学[M].中国科学技术大学出版社, 1991.
    [12]Anwar A, Zafar B. Bifurcation and connectivity in synthetic jet vertox train[C].AIAAPaper 2001-3031, 2001.
    [13]Ingard U, Labate S. Acoustic circulation effects and the nonlinear impedance oforifices[J]. J Acoust Soc Am, 1950, 22:211-19.
    [14]Lebedeva I V. Experimental study of acoustic streaming in the vicinity oforifices[J]. Sov Phys Acoust, 1980, 26:331-33.
    [15]Savas O, Coles D. Coherence measurements in synthetic turbulent boundarylayers[J]. J Fluid Mech, 1985, 160:421.
    [16]明晓,戴昌晖,史胜熙.声学整流效应的新现象[J].力学学报, 1992,1(24):48-54.
    [17]Mittal R, Rampunggoon P. On the virtual aero-shaping effect of synthetic jets[J].Phys Fluids, 14 (4): 1533-1536, 2002.
    [18]Catlynne E, Rumiggny N, Amitay M. Virtual aero-shaping of a Clark-Y airfoilusing synthetic jet actuators[C]. AIAA Paper 2001-0732, 2001.
    [19]Pack L G, Seifert A. Periodic excitation for jet vectoring and enhancedspreading[J]. Journal of Aircraft, 38(3): 486-495, 2001.
    [20]Guo D H, Cary A. Numerical simulation of vectoring control of a primary jetwith a synthetic jet [J]. AIAA Journal, 2003, 41(12): 2364-2370.
    [21]赵宏,杨治国,娄慧娟.合成射流流动特性实验研究及在燃烧中的应用探讨[J].航空动力学报, 2004, 19(4): 513-519.
    [22]郝礼书,乔志德.合成射流用于翼型分离流动控制的研究[J].西北工业大学学报, 2006, 24(4): 528-531.
    [23]Gilarranz J L. Development of high-power, compact synthetic jet actuators forflow separation control[D]. Texas A&M University(PHD), 2001.
    [24]Liang Y, Taya M, Yasuo K. Design of diaphragm actuator based onferromagnetic shape memory alloy composite[C]. Pro of the SPIE. 2002:206-216.
    [25]Yao C S, Chen F J. Synthetic jet flow field database for CFD validation[C].AIAA Paper 2004-2218, 2004.
    [26]Luo Z B, Xia Z X, Liu B. New generation of synthetic jet actuators[J]. AIAAJournal, 2006, 44(10):2418-2419.
    [27]罗振兵.合成射流/合成双射流机理及其在射流矢量控制和微泵中的应用研究[D].长沙:国防科技大学(博士学位论文), 2006.
    [28]Grossman K R, Cybyk B Z, VanWie D M. Sparkjet actuators for flow control[C].AIAAPaper 2003-0057, 2003.
    [29]Lee C, Hong G, Ha Q. A piezoelectrically actuated micro synthetic jet for activeflow control[J]. Sensors and Actuators A: Physical, 2003, 108: 168-174.
    [30]顾蕴松,明晓.应用PIV技术研究“零质量”射流的非定常流场特性[J].实验流体力学, 2005, 19(1): 83-86.
    [31]Li Y, Ming X. Control of 2D jets using mininature zero mass flux jets[J]. ChineseJournal of Aeronautics, 2000, 13(3): 129-133.
    [32]Zdenek T, Vaclav T. Annular synthetic jet used for impinging flowmass-transfer[J]. Int J of Heat and Mass Transfer, 2003, 46: 3291- 3297.
    [33]Kelly C B, Diann E B, Frederick T. Investigation of PVdF active diaphragms forsynthetic jets[C]. Proc of the SPIE 2000: 220-231.
    [34]Smith B L and Glezer A. The formation and evolution of synthetic jets[J]. PhysFluids,1998,10(9): 2281-2297.
    [35]Arvind S, Jamey D, Jacob. On plasma synthetic jet actuators[C]. AIAA Paper2006-317, 2006.
    [36]Scott C M, Thomas C C, Daniel V N. Tip clearance control using plasmaactuators[C]. AIAA Paper 2005-782, 2005.
    [37]李应红,吴云等.大气等离子体流动控制实验[J].空军工程大学学报,2006,7(3):1-3.
    [38]张攀峰,王晋军等.等离子体激励低速分离流动控制试验研究[J].实验流体力学, 2007, 21(2).
    [39]梁华,李应红等.等离子体气动激励抑制翼型失速分离的仿真研究[J].航空动力学报, 2008, 23(5).
    [40]Klaus Bremhorst, Peter G H. Velocity field of an axisymmetric pulsed, subsonicair jet [J]. AIAA Journal, 1990, 28(12).
    [41]Donovan J F, Kral L D, Cary A W. Activity flow control applied to an airfoil[J].AIAA Paper 1998, NO.98-0210, 36th AIAA Aerospace Science Meeting, Reno,January.
    [42]罗振兵,夏智勋.合成射流技术及其在流动控制中应用的进展[J].力学进展,35(2): 220-234, 2005.
    [43]林建忠,阮晓东等.流体力学[M].北京:清华大学出版社, 2005.
    [44]杨弘炜,高歌.一种新型边界层控制技术应用于湍流减阻的实验研究[J].航空学报. 18(4): 455-457, 1997.
    [45]Lee C, Hong G, Ha Q. A piezoelectrically actuated micro synthetic jet for activeflow control[J]. Sensors and Actuator A: Physical, 2003, 108: 168-174.
    [46]Mittal R, Rampunggoon P. On the virtual aero-shaping effect of synthetic jets[J].Phy. Fluids, 2002, 14(4): 1533-1536.
    [47]Mittal R, Rampunggoon P, Udaykumar H S. Interaction of a synthetic jet with aflat plate boundary layer[C]. AIAA Paper 2001-2773, 2001.
    [48]McCrosky W J, etal. Dynamic stall experiments on oscillating airfoils[J]. AIAAJournal, 1976, 14(1): 573.
    [49]Maresca C, etal. Experiments on an airfoil at angle of incidence in longitudinaloscillations[J]. Journal of Fluid Mechanism, 92, 1974.
    [50]Carr L W. Progress in analysis and prediction of dynamic stall[J]. Journal ofAircraft, 1988, 25:67.
    [51]Youngwhe P, Soogab L, et al. Stall control oscillatory local surface movement onan airfoil[C]. AIAA Paper, 2001-0254, 2001.
    [52]Nagib H M. On the dynamic scaling of forced unsteady separated flows[C].AIAA Paper, 1985-0553, 1985.
    [53]Godstein M E, Hultgren L S. Boundary-layer receptivity to long-wave free streamdisturbance[J]. Ani Rev Fluid Mech, 1989, 21:137-166.
    [54]Martiqua L P, Thomas C C. Separation control on high angle of attack airfoilusing plasma actuators[C]. AIAA Paper 2003-1024, 2003.
    [55]Gilarranz J L, Traub L W, Rediniotis O K. A new class of synthetic jet actuatorspartⅠdesign, fabrication and bench top characterization[J]. Journal of FluidsEngineering, 2005, 127: 367-376.
    [56]Gilarranz J L, Traub L W, Rediniotis O K. A new class of synthetic jet actuatorspartⅡapplication to flow separation control[J]. Journal of Fluids Engineering,2005, 127: 377-387.
    [57]He Y Y, Cary A W, Peters D A. Parametric and dynamic modeling for syntheticjet control of a post-stall airfoil[C]. AIAA Paper 2001-0733, 2001.
    [58]Wu J Z, Lu X Y, et al. Post-stall flow control on an airfoil by local unsteadyforcing[J]. JFM, 1998, 371:21-58.
    [59]薛帮猛,杨永.翼型前缘分离流动在等离子体激励器控制下的响应[J].计算物理. 25(6): 689-693, 2008.
    [60]李应红,吴云,张朴等.等离子体激励抑制翼型失速分离的实验研究[J].空气动力学报. 26(3): 372-377, 2008.
    [61]李应红,梁华,马清源等.脉冲等离子体气动激励抑制翼型吸力面流动分离的实验[J].航空学报. 29(6): 1429-1435, 2008.
    [62]Kral L D, Donovan J F. Numerical simulation of synthetic jet actuators[C]. AIAAPaper 1997-182, 1997.
    [63]何高让,汪亮.微射流作动器出口流场数值分析[J].空气动力学学报, 2000.4.
    [64]Rizzetta D P, Visbal M R, Stanek M J. Numerical investigation of synthetic jetflow fields[C]. AIAA Paper 1998-2910, 1998.
    [65]Guo D H, Cary A. Numerical simulation of vectoring control of a primary jetwith a synthetic jet [J]. AIAA Journal, 2003, 41(12): 2364-2370.
    [66]Lee C Y, Goldstein D B. Two-dimensional synthetic jet simulation[J]. AIAAJournal, 2002, 40(3): 510-516.
    [67]谭晓茗,张靖周.自耦合射流冲击冷却的数值计算[J].工程热物理学报, 2004,25(4): 646-678.
    [68]Luo Z B, Xia Z X. Numerical simulation of synthetic jet flow field and parameteranalysis of actuator[J]. Journal of Propulsion Technology, 2004, 25(3): 199-206.
    [69]Jameson A, Schmidt W, Turkel. Numerical solution of the Euler equation byfinite methods with Runge-Kutta time stepping schemes[C]. AIAA Paper1981-1259, 1981.
    [70]Jameson A, Yoon S. Lower-upper implicit schemes with multiple grids for theEuler equation[J] AIAA Journal, 1987, 25(7): 929-935.
    [71]Yakhot V, Orzag S A. Renormalization group analysis of turbulence: basetheory[J]. J Scient Comput, 1986, 1: 3-11.
    [72]Smith B L, Glezer A. Vectoring a high aspect ratio rectangular air jet using azero-netmass-flux control jet[J]. Bull Am Phys Soc, 1994, 39: 1894-1905.
    [73]Pack L G, Seifert A. Periodic excitation for jet vectoring and enhancedspreading[J]. Journal of Aircraft, 2001, 38(3): 486-495.
    [74]Hammond D A, Redekopp L G. Global dynamics and aerodynamic flowvectoring of wakes[J]. Journal of Fluid Mechanism, 1997, 338: 231-248.
    [75]李念.自耦合射流及其对主射流矢量偏转研究[D].南京:南京航空航天大学(博士学位论文), 2006.
    [76]Newman B G. The deflection of plane jets by adjacent boundaries—Coandaeffect. In: Lachman GV, editor. Boundary layer and flow control[M]. Oxford:Pergamon Press, 1961.
    [77]Smith B L, Trautman M A, Glezer A. Controlled inter-actions of adjacentsynthetic jets [C] . AIAA Paper 1999-0669, 1999.
    [78]Guo D G, Kral L D. Numerical simulation of the interaction of adjacent syntheticjet actuators[C]. AIAA Paper 2000-2565, 2000.
    [79]Luo Z B, Xia Z X, Liu B. PIV measurements of dual synthetic jets actuatordriven by electrical factors[J]. Modern Physics Letters B, 2008-22.
    [80]Amitay M, Smith, B L, Glezer. Aerodynamic flow control using synthetic jettechnology[C]. AIAA Paper 1998–0208, 1998.
    [81]Melissa B, Richard A. Comparison of computation and experiment results for asupercritical airfoil[C]. NASA-TM-4601.
    [82]Sheldahl R E, Klimas P C. Aerodynamic characteristics of seven airfoil sectionsthrough 180 degree angle of attack for use in aerodynamic analysis of verticalaxis wind turbines[R]. SAND80-2114, Unlimited Release, 1981.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700