基于声学显微镜技术的小尺寸材料弹性常数超声测量方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着性能优异的新型材料不断出现,迫切需要对材料的力学及其他物理性能进行测定。但由于制备工艺的原因,一方面,制备满足常规力学性能测试用的大尺寸试件十分困难,如块体纳米材料、金属玻璃等;另一方面,材料的力学性能(如弹性常数等)时常会呈现各向异性。因此,研究这类材料/结构的力学性能(弹性性质)的表征方法与测量技术,对于评价材料的制备工艺和表征材料的力学性能,具有重要的学术意义和广阔的应用背景。
     本文针对小尺寸块体材料弹性常数的测定问题,主要完成了以下工作:
     (1)提出了一种基于声学显微镜技术的材料弹性常数超声测量方法。基于材料力学性能声学表征,利用纵波与漏表面波波速表征材料的弹性常数,建立了完备的小尺寸材料弹性常数超声表征与测量方法。
     (2)开发了一套完整的小尺寸材料弹性常数超声测量系统,包括:设计制作了高频无透镜大孔径柱面线聚焦PVDF超声探头;构建了以PXI总线嵌入式控制器为核心,以四轴精密运动机构为测量平台,利用超声波激励/接收装置,通过PVDF柱面线聚焦探头发射超声波和接收回波信号,经高速数字化分析仪等,可实现超声信号自动采集和分析处理的系统。开发了一套在空间域同时测定纵波与漏表面波速度的方法及波形处理算法程序,实现了小尺寸材料弹性常数自动测量。实验结果表明,回波信号清晰可辨,信噪比高,可满足信号分析与处理的需要,为小尺寸材料弹性常数的准确测量提供了可靠保证。
     (3)利用小尺寸材料弹性常数超声测量系统对常规材料,如:铝、铜、碳钢、钛合金等小尺寸试件材料弹性常数进行超声实验测量和误差分析。结果表明,测量结果准确度高,完全满足工程及科学研究的要求。
     (4)针对非晶材料、纳米材料和非金属小尺寸等非常规材料弹性常数进行了试验研究,并与其它方法所得结果进行了对比,结果吻合较好。说明超声无损测量法,克服了压痕法不能测试材料的泊松比,且为有损检测等不足。
     (5)利用超声测量系统对冷轧钢板、电子束焊焊缝等特殊材料或区域进行了实验研究。结果表明该方法可以用于测量像冷轧钢板这类由于加工工艺所致的各向异性材料。同时可用于测量微区的力学性能,以便研究材料的力学性能变化梯度。
     (6)在对表面波波速较低的材料(如钆)进行超声法力学性能测试时,针对耦合液中波速对漏表面波波速测量范围的影响与限制,采取了低波速耦合液。由此,解决了水浸法被测材料的表面波速过低引起测量结果奇异的问题,拓宽了现有系统可测试材料的范围。
Along with the emergence of new materials unceasingly, it is an urgent demand of the measurement for material mechanical and other physical properties. However, due to prepared technology, some new materials, such as bulk nano-materials and metal glasses, are hard to process large size samples to satisfy the requirement of common static tension experiment, furthermore, many materials exhibits anisotropic characteristics in their mechanical behaviors. Therefore, it has very important scientific values and wide application foreground for the investigation of characterization method and measurement technique to evaluate prepared technology and mechanical properties including elastic behaviors of these types of materials or structures.
     In this dissertation, aimed at the existing problem of elastic constant measurement of limited size bulk materials, the main technical contributions of the research work are shown as following.
     (1) Ultrasonic measurement method for material elastic constants based on low frequency acoustic microscopy technology. Based on acoustic characterization method of material mechanical properties, elastic constants characterization method and measurement technique of limited size bulk materials is fully developed by the relation between the velocities of longitudinal and leak surface waves and material elastic constants.
     (2) Ultrasonic system for elastic constant measurement of limited size materials is wholly established. In this developed system, high frequency non-lens large aperture line focus cylindrical PVDF ultrasonic transducer is designed and manufactured. In this system, NI PXI bus embedded controller is the core and a four-axis moving precisely framework is used as measurement platform. Ultrasonic wave signals are excited and received by line focus cylindrical PVDF ultrasonic transducers driven by ultrasonic pulser/receiver. With the help of high velocity digital analyzer, automatic collection and analysis of ultrasonic signals can be achieved. The software program including measurement of the velocities of longitudinal and leaky surface waves simultaneously in spatial domain and waveform processing algorithm is developed. With the help of the combination of the method and software, automatic measurement of limited size materials can be achieved. Experimental results show that the system provides reliable guarantee of accurate measurement of limited size materials and the echoes with high signal-noise ratio can be obtained to satisfy the need of signal analysis and processing.
     (3) Common metal materials, such as aluminum, copper, carbon steel, titanium alloy, are measured by using this developed ultrasonic system for limited size material elastic constant measurement. In these experiments, elastic constants of these materials are obtained and measurement error factor is analyzed. Primary experimental results show that this measurement method with high precision and low error can satisfy the need of the engineering and scientific research.
     (4) Elastic constants of uncommon materials such as amorphous materials, nano-materials and non-metal materials are experimentally measured. Furthermore, the measurement value of Young’s module of amorphous materials by using ultrasonic method is agreement well with that by using other methods. Non-destructive Ultrasonic testing can overcome the shortcoming of limitation of indentation method which fails to measure Poisson’s ratio of materials and its intrinsic destructive nature.
     (5) Special property materials or areas such as cold rolled steel sheet and electronic beam welding are measured by using ultrasonic measurement system experimentally. Experimental results show that the method can be used for the measurement of cold rolled steel sheets which exhibit anisotropic characteristics induced by machining process. Furthermore, material mechanical properties of micro areas can be measured to evaluate their gradient.
     (6) When mechanical properties of gadolinium with relatively low surface wave velocity are measured by ultrasonic method, a coupling liquid with a low wave velocity is employed for conquering the effect of the velocity of coupling liquid and its restriction to measurement range of leaky surface wave velocity. Therefore, the singularity problem induced by excessively low surface wave of measured samples when water immersion method is adopted can be solved and extend the range of material applications.
引文
1曹新,向文华. 21世纪的高新技术发展与经济社会变革.南方经济. 2002, (3): 23~31
    2王坚.美国纳米科技发展趋势和特点.全球科技经济瞭望. 2004, 223(7): 62~64
    3武步宇,武步宙,史晓菲.走近纳米科技.现代物理知识. 2004, 16(4): 12~14
    4李景新,黄因慧.纳米材料及其技术研究进展.材料导报. 2001, 15(8): 29~31
    5孙伟成.纳米材料的力学性能.兵器材料科学与工程. 2003, 3(26): 59~62
    6刘孝敏.工程材料的微细观结构和力学性能.中国科学技术大学出版社. 2003
    7 Peter Balaz, Erika Godocikova, Laszlo Takacs, et al. Mechanochemical Ppreparation of Metal/sulphide Nanocomposite Particles. International Journal of Materials and Product Technology. 2005, 23(1-2): 26~41
    8顾长志,罗强,杨海方等.微纳米加工技术在纳米物理与器件研究中的应用.物理. 2006, 35(1): 40~46
    9薛增泉.纳米科技探索.清华大学出版社, 2002
    10张中太,林元华,唐子龙等.纳米材料及其技术的应用前景.材料工程. 2000, (3): 42~47
    11谢峰,张崇高,刘宁. Ti(C,N)基金属陶瓷刀具与纳米改性.中国机械工程. 2002, 13(12): 1062~1064
    12彭英才,赵新为,刘明.纳米量子器件研究的若干前沿问题.自然杂志. 2003, 25(3): 145~149
    13徐国财,张立德.纳米复合材料.化学工业出版社材料科学与工程出版中心. 2002
    14何德林,杨惠娣.纳米聚合物复合材料开发.中国塑料, 1999, 13(2): 8~15
    15容敏智,章明秋,梁海春等.修饰纳米CdS/聚合物的界面相互作用与光学性能.材料研究学报. 2004, 18(2): 130~138
    16张立德,季美.纳米材料和纳米结构.科学出版社, 2001
    17居志兰,戈晓岚,许晓静.块体纳米材料的研究现状与发展思路.江苏大学学报(自然科学版). 2002, 23(4): 47~51
    18周宇松,吴希俊.大尺寸纳米铜和银的制备及其微观缺陷与力学性能.中国有色金属学报. 2000, 10(4): 465~469
    19魏伟,陈光.大塑性变形制备块体纳米材料.机械工程学报. 2002, 38(7): 1~5
    20文玉华,周富信,刘曰武.纳米材料的研究进展.力学进展. 2001, 31(1): 47~61
    21 P G Sandes, G E Fougere, L J ThomPson, et al. Improvements in the Synthesis and Compaction of Nanocrystalline Materials. Nanostructured Mater. 1997, (3): 243~252
    22 T D Shen, C C Koch, T Y Tsui, et al. On the Elastic Modulus of Nanocrystalline Fe, Cu, Ni and Cu-Ni Alloys Prepared by Mechanical Milling/Alloying. J Mater Res. 1995, 10(11): 2892~2896
    23张东涛,张久兴,周美玲.状纳米材料研究进展.金属功能材料. 2002, (8): 5~19
    24雷振坤,亢一澜,王怀文等.单纤维细丝微力学性能实验研究.实验力学. 2005, 20 (1): 72~76
    25谢惠民,刘战伟,方岱宁等.单壁碳纳米管力学行为的数字散斑相关法实验研究.光学技术. 2004, 30(4): 449~454
    26 Mingwu Bai. Koji Kato, Umehara Noritsugu, et al. Nanoindentation and FEM study of the effect of internal stress on micro/nano mechanical property of thin CNx films. Thin Solid Films. 2000, 377-378:138~147
    27刘东旭,张泰华,郇勇.宏观深度测量压入仪器的研制.力学学报. 2007, 39(3): 350~355
    28 R. Pastorelli, A. Ferrari, M. Beghi, et al. Elastic Constants of Ultrathin Diamond- like Carbon Films. Diamond and Related Materials. 2000, 9(3-6): 825~830
    29 C. Comte, J. von Stebut. Microprobe-type Measurement of Young′s Modulus and Poisson Coefficient by Means of Depth Sensing Indentation and Acoustic Microscopy. Surface and Coatings Technology. 2002, 154: 42~48
    30 G. H. Li, Z. X. Hu, L. D. Zhang. Elastic Modulus of Nano-alumina Composite. Journal of Materials Science Letters. 1998, 17(14): 1185~1186
    31 Jianfeng Xu, Jianrong Zhang, Youwei Du, et al. Ultrasonic Velocity and Attenuation in Nano-structured Zn Materials. Materials Letters. 1996, 29(1-3): 131~ 134
    32 F. Simonetti, P. Cawley. On the Measurement of the Young′s Modulus of Small Samples by Acoustic Interferometry. Acoust. Soc. Am. 2005, 118(2): 832~840
    33张锐,万明习,李刚.低频多模式超声兰姆波超薄层状横观各向同性复合材料定征方法:理论与实验.声学学报. 2001, 26(1): 79~84
    34杨京,崔连军,徐健等.单向纤维增强复合板弹性常数的反演方法研究.声学学报. 2005, 30(4): 354~361
    35 A. Mouchtachi, R. Guerjouma, J. Baboux. Ultrasonic study of elastic anisotropy of material composite. Applied Composite Materials. 2004, 11(6): 341~351
    36季颖斐,马学鸣,董远达等.新型Zr-Nb基大块非晶合金的形成及性能.材料科学与工程. 2000, 18(3): 39~42
    37 Lugen Wang, Stanislav I. Rokhlin. Time-Resolved Line Focus Acoustic Microscopy of Layered Anisotropic Media: Application to Composites. IEEE Transactions on UFFC. 2002, 49(9): 1231~1244
    38田家万,韩增虎.硬质涂层力学性能可靠测量的两步压入法.功能材料. 2002, 33(4): 384~386
    39杨力,翟长生,王滨等.纳米压痕技术表征Al2O3/3%TiO 2爆炸喷涂涂层的各向异性.机械工程材料. 2006, 30(5): 95~98
    40杨班权,陈光南,张坤等.涂层/基体材料界面结合强度测量方法的现状与展望.力学进展. 2007, 37(1): 67~79
    41 K. C. Tang, R. D. Arnell. Determination of Coating Mechanical Properties Using Spherical Indenters. Thin Solid Films. 1999, 355-356(1): 263~269
    42 Pal-Jen Wei, Jen-Fin Lin. A new Method Developed to Evaluate both the Hardness and Elastic Modulus of a Coating Substrate System. Surfave & Coatings Technology. 2005, 200(7): 2489~2496
    43陈凡秀,何小元,林保平.显微数字散斑相关测量新型薄膜的力学性能.中国激光. 2006, 33(8): 1104~1108
    44张泰华,刘东旭,郇勇等.基体对氮化钛膜的微力学和摩擦性能的影响.中国表面工程. 2003, 16(4): 23~26
    45亢一澜,高英剑,赵志岗.用数字散斑相关技术测定导电薄膜的力学性能.内蒙古工业大学学报. 1997, 16(3): 65~67
    46 C. Bescond, S. Kruger, D. Levesque, et al. In-situ Simultaneous Measurement of Thickness, Elastic Moduli and Density of Thermal Sprayed WC-Co Coatings by Laser-ultrasonic. Journal of Thermal Spray Technology. 2007, 16(2): 238~244
    47 S. Dixon, B. Lanyon, G. Rowlands. Coating Thickness and Elastic Modulus Measurement Using Ultrasonic Bulk Wave Resonance. Applied Physics Letters. 2006, 88(14): 141907.1~3
    48 Stuart B. Palmer, S. Dixon, B. Lanyon, et al. Measurement of Coating Thickness Using Ultrasonic Resonance Spectroscopy. Proceedings of SPIE. 2006, 6179: 65~72
    49 Anton I. Lavrentyev, Stanislav I. Rokhlin. An Ultrasonic Method for Determination of Elastic Moduli, Density, Attenuation and Thickness of aPolymer Coating on a Stiff Plate. Ultrasonics. 2001, 39: 211~221
    50 Feifei Zhang, Sridhar Krishnaswamy, Dong Fei, et al. Ultrasonic Characterization of Mechanical Properties of Cr- and W-doped Diamond-like Carbon Hard Coatings. Thin Solid Films. 2006, 503(1-2): 250~258
    51 Yung-Chun Lee, Sheng-Wen Cheng. Measuring Lamb Wave Dispersion Curves of a Bi-layered Plate and Its Application on Material Characterization of Coating. IEEE Transactions on UFFC. 2001, 48(3): 830~837
    52 Yung-Chun Lee, KO Shin-Pin. Measuring Dispersion Curves of Acoustic Waves Using PVDF Line-focus Transducers. NDT&E International. 2001, 34(3): 191~197
    53 V. Jipson, C. F. Quate. Acoustic Microscopy at Optical Wavelengths. Applied Physics Letters. 1978, 32: 789~791
    54 J. Kushibiki, C. Chabachi. Material Characterization by Line-focus-beam Acoustic Microscopy. IEEE Trans. Sonics Ultrason. 1985, 32: 189~212
    55 G. D. Briggs. Oxford University Press. Acoustic Microscopy. 1992
    56 D. Xiang, N. N. Hs, G. V. Blessing. The Design, Constraction and Application of a Large Aperture Lens-less Line-focus PVDF Transducer. Ultrasonics. 1996, 34: 641~647
    57 D. Xiang, N. N. Hsu, G. V. Blessing. Material Characterization by a Time- resolved and Polarization-sensitive Ultrasonic Technique. QNDE. 1996, 15: 1431~ 1438
    58 D. Xiang, Hsu Nelson, N. Blessing, et al. A Simplified Ultrasonic Immersion Technique for Materials Evaluation. Materials Evaluation. 1998, 56(7): 854-859
    59 Yung-Chun Lee, Shi Hoa Kuo. Double-layer PVDF Transducer and V(z) Measurement System for Measuring Leaky Lamb Waves in a Piezoelectric Plate. Ultrasonics. 2007, 46: 25~33
    60 Yung-Chun Lee. Measurements of Dispersion Curves of Leaky Lamb Waves Using a Lend-less Line-focus Transducers. Ultrasonics. 2001, 39: 297~308
    61 Wei Zou, Steve Holland, Kwang Yul Kim, et al. Wideband High-frequency Line-focus PVDF Transducer for Material Characterization. Ultrasonics. 2003, 41: 157~161
    62李家伟,陈积懋.无损检测手册.机械工业出版社, 2002
    63简念保.金属和非金属材料力学性能的超声研究.中山大学学报(自然科学版). 1998, 37(增刊): 65~67
    64 Hyunjo Jeong, David K. HSU, Robert E. Shannon, et al. Characterization ofAnisotropic Elastic Constants of Silicon-carbide Particulate Reinforced Aluminum Metal Matrix Composites: PartⅠ.Experiment. Metallurgical and Meterials Transactions A. 1994, 25A(4): 799~809
    65冯若.超声手册.南京大学出版社, 1999
    66 H. S. Cao, J. J. Hunsinger, O. Elkedim. Determination of Elastic Modulus of Nanocrystalline Iron and Titanium by Means of Acoustic Microscopy. Scripta Materialia. 2002, 46: 55~60
    67 R. S. Gilmmore, K. C. Tam, J. D. Young, et al. Howard. Acoustic Microscopy from 10 to 100MHz for Industrial Applications. Acoustic Microscopy for Industry. 1986, A320: 215~235
    68 Jin O. Kim, Jan D. Achenbach. Acoustic-microscopy of the Elastic Properties of TiN/(VxNb1-x)N Superlattices. Physical Review B. 1993, 48(3): 1726~1737
    69 J. D. Aussel, A Brun. Le, Baboux J. C. Generating Acoustic Waves by Laser : Theoretical and Experimental Study of the Emission Source. Ultrasonics. 1988, 26(5): 245~255
    70 Dayal, V ikram K. Leaky Lamb Waves in an Anisotropic Plate-I. an Exact Solution and Experiments. J A Coust Soc Am. 1989, 85(6): 2268~2276
    71 D. E. Chimentia, R. W Martin. Nondestructive Evaluation of Composite Laminates by Leaky Lamb Waves. Ultrasonics. 1991, 29(1): 13~21
    72 N. Guo, P. Cawley. Lamb Wave Reflection for the Quick Nondestructive Evaluation of Large Composite Laminates. Materials Evaluation. 1994, 52(3): 404~ 411
    73 I. A. Viktorov. Rayleigh and Lamb Wave: hysical Theory and Application. Plenum Press, NewYork. 1967
    74 Yungchun Lee, Jin O, Jan D. Achenbach. Acoustic Microscopy Measurement of Elastic Constants and Mass Density. IEEE Transactions on Ultrasonic Ferroelectrics and Frequency Control. 1995, 42(2): 253~264
    75 J. Kushibiki, H. Ishiji, N. Chubachi, et al. Characterzation of 36o YX-LiTaO3 Wafers by Line-Focus-Beam Acoustic Microscopy. IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control. 1995, 42(1): 83~90
    76 T. Mihara, M. Obata. Elastic Constant Measurement by Using Line-focus-beam Acoustic Microscope. Experimental Mechanics. 1992, (3): 30~33
    77 Z. L. Li. Effect of Periodic Surface Roughness on V(Z) Curves for the Line-focus Acoustic Microscope. IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control. 1993, 40(6): 680~686
    78张俊哲.无损检测技术及其应用.科学出版社, 1993
    79刘晓芳.改性PZT/PVDF体系压电复合材料的介电和压电性能.高分子材料科学与工程. 2005, 21(3): 204~207
    80曹建芳等.声频定向PVDF超声波传感器的设计与测试.实验科学与技术. 2005, 3(3): 1~4
    81赵海云. PVDF压电膜的性能及其应用.传感器世界. 2003, (3): 23~26
    82袁希光.传感器技术手册.国防工业出版社, 1986
    83吴琼.聚偏氟乙烯压电薄膜的应用及国内发展动态.声学学报. 1994, (6): 52~53
    84 P. D. Wilcox, R. S. C. Monkhouse, P. Cawley, et al. Development of a Computer Model for an Ultrasonic Polymer Film Transducer System. NDT&E International. 1998, 31(1): 51~64
    85 N. N. Hsu, D. Xiang, G. V. Blessing. Time-resolved Ultrsonic Bady Wave of Material Anisotropy Using a Lensless Line-focus Transducer. IEEE Ultrasonics Symposium. 1998: 1261~1264
    86 M. Sherar, F. S. Foster. The Design and Fabrication of High Frequency Poly(vinylidence Fluoride) Transducers. Ultrasonic Imaging. 1989, 11 (2): 75~94
    87 R. S. C. Monkhouse, P. D. Wilcox, P. Cawley. Flexible Interdigital PVDF Transducers for the Generation of Lamb Waves in Structures. Ultrasonics. 1997, 35(7): 489~498
    88 R. S. C. Monkhouse, P. D. Wilcox, P. Cawley. Development of a Computer Model for an Ultrasonic Polymer Film Transducer System. NDT & E International. 1998, 31(2): 51~64
    89 Martha Castillo, Pedro Acevedo. KLM Model for Lossy Piezoelectric Transducers. Ultrasonics. 2003, 41(8): 671~679
    90栾桂冬等.压电换能器和换能器阵(上).北京大学出版社, 1990
    91刘晓宙,叶式公,龚秀芬等.压电薄膜超声换能器的特性研究.声学学报. 1999, 24(4): 429~437
    92黄垚.材料弹性常数超声测量法实验研究与专用探头的研制.北京工业大学硕士论文. 2007: 17~24
    93何存富,周辛庚,戴福隆.一种非接触式测定材料弹性常数的新方法.力学学报. 1997, 29(6): 720~725
    94陈煌,林新华,曾毅等.热喷涂纳米陶瓷涂层研究进展.硅酸盐学报. 2002, 30(2): 236~239
    95张涛,门华,云洁. Cu2Zr2Ti块体非晶合金的形成及其力学性能.北京航空航天大学学报. 2004, 30(10): 926~929
    96夏阳华,熊惟皓.粉末分散对Ti(C, N)基金属陶瓷力学性能的影响.硅酸盐学报. 2005, 33(3): 391~395
    97张勇,赵德乾,庄艳歆等. Zr基块体金属玻璃的形成与性能.金属学报. 2000, 36(11): 1153~1156
    98 Inoue A. Stabilization and High Strain-rate Superplasticity of Metallic Supercooled Liquid. Mater Sci and Eng. 1999, A267: 171~183
    99 T. D. Shen, R. B. Schwarz. Bulk ferromagnetic Glasses Prepared by Flux Melting and Water Quenching. Applied Physics Letters. 1999, 75(1): 49~51
    100陈飞,张勇,董伟等. Mg65Cu25Gd10和Mg65Cu20Zn5Gd10基大块非晶合金的制备及其力学性能.中国稀土学报. 2007, 25(5): 592~596
    101 H. Ma, L. L. Shi, J. Xu. Discovering Inch-diameter Metallic Glasses in Three-dimensional Composition Space. Applied Physics Letters. 2005, 87(18): 181915.1~3
    102孙琴,王宁,陈刚.块体金属玻璃的研究现状.上海有色金属. 2005, 26(12): 93~96
    103谢存毅.纳米压痕技术在材料科学中的应用.物理. 2001, 30(7): 432~435
    104朱瑛,姚英学,周亮.纳米压痕技术及其试验研究. 2004, 38(8): 12~16
    105高栋,姚英学,袁哲俊.纳米级显微硬度试验研究.航空机密制造技术. 2001, 37(1): 7~10
    106张泰华,杨业敏,赵亚溥等. MEMS材料力学性能的测试技术.力学进展. 2002, 32(4): 545~562
    107张海霞,张泰华,郇勇.纳米压痕和划痕法测定氧化硅薄膜材料的力学特性.微纳电子技术. 2003, (7-8): 245~248
    108 S. I. Bulychev, V. P. Alekhin, M. K. Shorshorov, et al. Determining Young’s Modulus from the Indentor Penetration Diagram. Zavod. Lab. 1975, (4): 1137~1140
    109 J. Ding, Y. Meng, S. Wen. Mechanical Properties and Fracture Toughness of Multilayer Hard Coatings Using Nanoindentation. Thin Solid Films. 2000, 371: 178~182
    110 S. Suresh, A. E. Giannakopoulos. A New Method for Estimating Residual Stresses by Instrumented Sharp Indentation. Acta Mater. 1998, 46: 5755~5767
    111 S.Chowdhury , M.T. Laugier. The Use of Non-contact AFM with Nanoindentation Techniques for Measuring Mechanical Properties of Carbon Nitride Thin Films. Applied Surface Science. 2004, 233(1-4): 219~226
    112 M. J. Mayo, R. W. Siegec, A. Narayanasamy. Mechanical Properties of Nanophase TiO2 as Determind by Nanoindentation. Materials Research. 1990, 5(5): 1073~1082
    113 D. B. Marshall, W. C. Oliver. An Indentation Method for Measuring Residual Stress in Fiber-reinforced Ceramics. Mater. Sci. & Eng.. 1990, A12695~103
    114 T. J. Bell, J. S. Field. Determination of Surface Plastic and Elastic Properties by Vltramicroindentation. Metrologia. 1991, 28: 463~469
    115 D. B. Marshall, W. C. Oliver. Measurement of Interfacial Mechanical Properties in Fiber-reinforced Ceramic Composites. Journal American Ceramic Society. 1987, (8): 542~548
    116 G. M. Pharr. Measurement of Mechanical Properties by Ultra-low Load Indentation. Materials Science and Engineering A. 1998, 253(3): 151~159
    117 M. J. Bamber, K. E. cooke, A. B. Mann, et al. Accurate Determination of Young′s Modulus and Poisson′s Ratio of Thin Films by a Combination of Acoustic Microscopy and Nanoindentation. Thin Solid Films. 2001,398~399: 299~305
    118 F. Vaz, S. Carvalho, L. Rebouta, et al. Young′s Modulus of (Ti,Si)N Films by Surface Acoustic Waves and Indentation Techniques. Thin Solid Films. 2002,408: 160~168
    119 W. C. Oliver,G. M. Pharr. An Improved Technique for Determining Hardness and Elastic Modulus Using Load and Displacement Sensing Indentation Experiments. J.Mater.Res.. 1992, 7(6): 1564~1583
    120 M. F. Doerner, W. D. Nix. A Method for Interpreting the Data from Depthsensing Indentation Instruments. J . Mater. Res.. 1986, (1): 601~609
    121黎明,温诗涛.纳米压痕技术及其应用.中国机械工程. 2002, 13(16): 1437~1439
    122万建松,岳珠峰.采用压痕实验获得材料性能的研究现状.实验力学. 2002, 17(2): 131~139
    123 S. H. Lee, C. B. Yoon, S. B. Seo, et al. Effect of Lanthanum on the Piezoelectric Properties of Lead Zirconate Titanate-lead Zinc Niobate Ceramics. J Mater Res. 2003, 18(8): 1765~1701
    124 Y. D. Hou, P. X. Lu, M. K. Zhu, et al. Effect of Cr2O3 Addition on the Structure and Electrical Properties of Pb((Zn1/3Nb2/3)0.20(Zr0.50Ti0.50)0.80)O3 Ceramics. Materials Science and Engineering B. 2005, 116: 104~108
    125路朋献,侯育冬,朱满康等.铬掺杂对PZN - PZT陶瓷微观结构和电学性能的影响.功能材料与器件学. 2005, 11(3): 303~307
    126 X. W. Li, A. X. Sha, W. F. Zhang, et al. TA15 Titanium Alloy and its Applying Prospects on Airframe. Titanium Industry Progress. 2003, 20(4-5): 90-94
    127李兴无,沙爱学. TA15合金及其在飞机结构中的应用前景.钛工业进展, 2003. 20(4~5): 90~94
    128王焕琴.钛及钛合金焊接接头的组织、性能和断裂特性.焊接. 2001, (11): 27~29
    129张丽,张玉凤.电子束热处理对钛合金接头残余应力的影响.焊接技术. 2001, 30(3): 44~45
    130刘昌奎,刘华. TA15钛合金焊接接头性能与断裂行为研究.失效分析与预防. 2006, 1(2): 45~48
    131陈芙蓉,霍立兴,张玉凤.电子束焊接技术及其接头质量评定.焊接. 2001, (1): 21~24

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700