CTV强毒分离物对柑橘基因表达的影响及其与寄主互作蛋白的鉴定
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
柑橘是一类重要的经济果树,全球年均贸易额已经达到90亿美元。由柑橘衰退病毒(Citrus tristeza virus, CTV)引起的柑橘衰退病被公认为柑橘栽培中最具威胁的病毒病害。病毒的成功侵染是病毒与寄主相互作用的结果,其在复制增殖过程中产生的病毒蛋白、核酸等分子引起寄主正常生理代谢的改变,并最终导致症状的产生。CTV侵染后能够诱导寄主植物表现茎陷点、苗黄、衰退等明显症状。然而,对于症状表现过程中CTV与寄主互作的分子机制仍然了解较少。为了分析CTV在转录和蛋白质水平上对寄主代谢造成的影响,本研究以CTV强毒株系N21为研究对象,对CTV侵染过程中寄主基因的转录应答反应和部分基因的时空表达动态进行了分析,并对CTV与寄主间的互作蛋白进行了筛选。取得的主要研究结果如下:
     1、以感染CTV-N21并表现茎陷点的墨西哥株檬以及健康株檬植株为材料,采用抑制差减杂交技术(SSH)构建了一个库容量为14000个克隆的差减文库。通过反向Southern杂交筛选,共得到807个差异表达EST片段。测序及同源比对分析结果表明:这些EST片段代表430个寄主基因。其中上调表达基因282个,下调表达基因148个。使用荧光定量PCR技术对随机挑选25个基因在感染CTV-N21墨西哥株檬植株中的相对表达量进行的定量分析结果表明:正向文库中14个基因上调表达倍数为1.2-10倍,而反向文库中11个基因的下调表达倍数为1.1-7倍。以差异表达1.5倍为选择标准,则正向和反向文库的阳性率均在80%以上。对这430个基因进行功能注释并依据分子功能将其分为9类。其中,主要代谢和蛋白质代谢所占比例最大,分别占基因总数的26%和15.1%。在拟南芥数据库Tair中对这430个基因进行比对后共找到351个拟南芥同源基因。蛋白质互作预测结果显示这些基因编码产物在拟南芥代谢中形成复杂的互作网络。所占比例最大的互作来源于能量代谢。
     2、对6个防御以及能量代谢相关基因在墨西哥株檬不同部位叶片组织中随CTV侵染时间(17-177dpi)的相对表达量变化进行了分析。3个防御相关基因分别编码几丁质酶(acidic class Ⅱ chitinase)、奇果类蛋白(miraculin-like protein)和Rsdv抗性类似蛋白(rsdvl resistance like protein);3个能量代谢相关基因编码蛋白为:碳酸酐酶(carbonic anhydrase)、1,5-二磷酸核酮糖脱氢酶(ribulose-1,5-bisphosphate carboxylase/oxygenase, RuBisCO)以及光捕捉复合体蛋白Lhca4(light-harvesting complex Ⅰ protein Lhca4)。荧光定量PCR分析结果显示:这些基因的表达量随CTV-N21侵染时间的延长表现出较大的波动性,在上部和下部叶片组织中的表达也存在差异。几丁质酶和奇果类蛋白基因均在接种后97d达到上调表达最大值。但两者在不同部位叶片中的表达量均存在差异;Rsdv抗性类似蛋白编码基因在上部叶片中表现为下调表达且呈总表达量呈持续下降趋势,而在下部叶片中则在接种后137d后表现为持续上调表达。光捕捉复合体蛋白编码基因在上部和下部叶片中的诱导表达量总体均呈下降趋势,并在接种后137d表现为下调表达。碳酸酐酶和RuBisCO编码基因总体呈下调表达,两者在不同部位叶片中的表达量存在较大差异。
     3、通过RT-rPCR和体外融合方法分别构建了墨西哥株檬和枳壳的cDNA质粒文库,并利用酵母双杂交技术对CTV与寄主互作蛋白进行了筛选。初步筛选得到与病毒蛋白p20和p23互作的3个寄主蛋白。其在拟南芥中的同源蛋白分别为:碳硫裂合酶(Carbon-sulfur lyases)、蛋白质磷酸化酶(Protein phosphatase)和同源结构域亮氨酸拉链家族蛋白(Homeodomain leucine zipper family IV protein, HD-ZIP)。 BiFC荧光观察结果显示:p20与HD-ZIP沿细胞壁能够产生明显的互作信号,并在部分区域大量积累呈亮斑状。显示其互作可能发生在胞间连丝或细胞质特殊区域。
Citrus is one of the most economically important fruit tree speciese in the world. Its annual global trade value has reached nine billion dolars. Citrus tristeza virus is the causal agent of citrus tristeza, which was considered as the most devastating virus disease in citrus industry. The successful infection of a plant virus depends on the interaction between the virus and its host. The accumulation of virus in the process of infection disturbs the normal metabolism of host and result in the symptom exhibition. The infection of CTV could cause distinct symptoms like stem pitting, seedling yellow and tristeza on its host. However, the mechanism underlying the symptom development induced by CTV is still poorly understood, In this research, the transcriptional changes caused by a CTV severe isolate named N21were evaluated by using SSH, and the expression profiles of some candidate genes associated with defense and energy metabolism were analysed during a time course of CTV infection in leaves at different development stage. The proteins involved in the interactions between CTV and its suscept and resistance hosts were also identified. The main results obtained in this research were list as follows:
     1. The transcriptional changes of Mexican lime response to CTV-N21infection were identified by SSH and two differentially expressed gene libraries consisted of14000clones were constructed. Screened by reverse southern blot, a total of774clones,501from the forward library and273from the reverse library, showing significant differential hybridization signals were selected and sequenced. A search for homologous genes of the selected EST sequences was performed by using tool of BlastX in NCBI database and the result showed that the657ESTs represent430genes, of which282were from forward library and148were from reverse library. The relative expression levels of25genes,14from forward-and11from reverse-library, in CTV-N21infected lime plants to that in mock inoculated lime were analyzed by qRT-PCR. Results showed that the relative expression levels of14genes from the forward library were up-regulated for1.2-10fold,11genes from the reverse library were down-regulated for1.1-7fold. According to a criterion of fold change≥1.5for positives, the credibility of all differentially expressed ESTs identified by SSH was above80%. According to GO annotation of molecular function, these430genes could be classified into nine main functional categories. The largest gene set involved in primary metabolism (26.0%), and then in protein metabolism (15.1%).351genes of Arabidopsis were found homologous to the screened430genes by BlastX search and their encoding proteins showed a complicated interaction network. The largest set of interactions was involved in energy metabolism.
     2. Expression profile of six genes in upper and lower leaves were analysed by real-time PCR during a time course of17to177dpi with CTV-N21inoculation. Three of these genes including carbonic anhydrase, ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) and light-harvesting complex Ⅰ protein Lhca4were functionally involved in energy metabolism and other three genes including acidic class Ⅱ chitinase, miraculin-like protein and rsdvl resistance like protein were involved in defense and response to stress. The expression of these genes fluctuated during the infection of CTV-N21and the expression profiles differed in upper and lower leaves. The two genes encoding miraculin-like protein and acidic class Ⅱ chitinase had a similar induced expression tendency. Both of their expression peaked at97dpi, but showed different induction levels in upper and lower leaves. The expression level of the gene encoding a homolog of rsdvl resistance like protein showed to be persistantly repressed after CTV-N21infection in upper leaves. However, its expression in lower leaves was showed to be induced at137dpi. The induction of light-harvesting complex Ⅰ protein Lhca4gene showed consistently reduced in both upper and lower leaves, and turned to be repressed at137dpi. The expression of genes encoding carbonic anhydrase and RuBisCO was totally reduced during the infection of CTV-N21and showed a different expression profile in upper and lower leaves.
     3. Moxican lime and C. trifoliata plasmid cDNA libraries were constructed by RT-rPCR and in vitro in fusion technology. The protein-protein interactions between virus and host were identified by cotransformation of the virus bait and library plasmid. The results indicated that CTV viral protein p20and p23may interact with three host proteins, which were homology to carbon-sulfur lyases, protein phosphatase, homeodomain leucine zipper family IV protein (HD-ZIP) in Arabidopsis. p20and HD-ZIP were shown interacted in BiFC analysis in Agrobacterium-infiltrated tobacco (Nicotiana benthamiana) leaves. The fluorescence signals resulted from their interaction accumulated and showed some bright spots along the cell wall, which implied that they may interact at cell wall and the bright spots may located at plasmodesmata.
引文
1.邓秀新.世界柑橘品种改良的进展.园艺学报,2005,32:1140-1146
    2.邓子牛.柑橘种质创新与品种改良策略.湖南农业大学学报,2007,33:1-4
    3.范旭东,王彩霞,叶刚,王国平,洪霓.柑橘衰退病毒侵染对寄主植物同工酶及酸性病程相关蛋白表达的影响.果树学报,2010,27:77-81
    4.姜波.柑橘衰退病毒血清学及分子生物学特性研究.[硕士学位论文].武汉:华中农业大学图书馆,2007
    5.潘嵩.我国部分地区柑橘衰退病毒基因型分析.[硕士学位论文].武汉:华中农业大学图书馆,2010
    6.赵学源,周常勇,唐科志.118个柚品种对柚矮化病抗(耐)病性初步测定.中国南方果树,1999,28:3-5
    7.周常勇.我国柑橘衰退病的发生概况与展望.第一次全国植物病毒与病毒防治研究学术讨论会论文集,北京:中国农业科技出版社,1997,182-187
    8. Acharyya S, Mir JI, Ghosh SK. Differential expression in Hibiscus cannabinus (Mesta) plants after infection with Mesta yellow vein mosaic virus as revealed by suppression subtractive hybridization. JPhytopathol,2011,159:735-742
    9. Agranovsky AA, Folimonov ASS, Yu FS, Yu M, Schiemann J, Lesemann D, Atabekov JG. Beet yellows closterovirus HSP70-like protein mediates the cell-to-cell movement of a potexvirus transport-deficient mutant and a hordeivirus-based chimeric virus. J Gen Virol,1998,79:889-895
    10. Agudelo-Romero P, Carbonell P, de la Iglesia F, Carrera J, Rodrigo G, Jaramillo A, Elena SF. Changes in the gene expression profile of Arabidopsis thaliana after infection with Tobacco etch virus. Virol J,2008,5:92
    11. Albiach-Marti MR, Grosser JW, Gowda S, Mawassi M, Satyanarayana T, Garnsey SM, Dawson WO. Citrus tristeza virus replicates and forms infectious virions in protoplasts of resistant citrus relatives. Mol Breeding,2004,14:117-128
    12. Albiach-Marti MR, Mawassi M, Gowda S, Satyanarayana T, Hilf ME, Shanker S, Dawson WO. Sequences of Citrus tristeza virus separated in time and space are essentially identical. J Virol, 2000,74:6856-6865.
    13. Albiach-Marti MR, Robertson C, Gowda S, Tatineni S, Belliure B, Garnsey SM, Dawson WO. The pathogenicity determinant of Citrus tristeza virus causing the seedling yellows syndrome maps at the 3'-terminal region of the viral genome. Mol Plant Pathol,2010,11:55-67
    14. Albrecht U, Bowman KD. Gene expression in Citrus sinensis (L) Osbeck following infection with the bacterial pathogen Candidatus Liberibacter asiaticus causing Huanglongbing in Florida, Plant Sci,2008,175:291-306
    15. Alzhanova DV, Hagiwara Y, Peremyslov VV, Dolja VV. Genetic analysis of the cell-to-cell movement of Beet yellows closterovirus. Virology,2000,268:192-200
    16. Alzhanova DV, Napuli AJ, Creamer R, Dolja VV. Cell-to-cell movement and assembly of a plant closterovirus:roles for the capsid proteins and Hsp70 homolog. EMBO J,2001,20: 6997-7007
    17. Ambros S, El-Mohtar C, Ruiz-Ruiz S, Pena L, Guerri J, Dawson WO, Moreno P. Agroinoculation of Citrus tristeza virus causes systemic infection and symptoms in the presumed nonhost Nicotiana benthamiana. Mol Plant Microbe In,2011,24:1119-1131
    18. Anderson G, Wang R, Bandyopadhyay A, Goodin M. The nucleocapsid protein of Potato yellow dwarf virus:protein interactions and nuclear import mediated by a non-canonical nuclear localization signal. Front Plant Sci,2012,3:14
    19. Aoki K, Kragler F, Xoconostle-Cazares B, Lucas WJ. A subclass of plant heat shock cognate 70 chaperones carries a motif that facilitates trafficking through plasmodesmata. Proc Natl Acad Sci USA,2002,99:16342-16347
    20. Aranda MA, Escaler M, Wang D, Maule AJ. Induction of HSP70 and polyubiquitin expression associated with plant virus replication. Proc Natl Acad Sci USA,1996,93:15289-15293
    21. Arenkov P, Kukhtin A, Gemmell A, Voloshchuk S, Chupeeva V, Mirzabekov A. Protein microchips:use for immunoassay and enzymatic reactions. Anal Biochem,2000,278:123-131
    22. Babu M, Gafarinova AG, Brandle JE, Wang A. Association of the transcriptional response of soybean plants with Soybean mosaic virus systemic infection. JGen Virol,2008,89:1069-1080
    23. Baebler S, Krecic-Stres H, Rotter A, Kogovsek P, Cankar K, Kok EJ, Ravnikar M. PVYNTN elicits a diverse gene expression response in different potato genotypes in the first 12 h after inoculation, Mol Plant Pathol,2009,10:263-275
    24. Ballester-Olmos JF, Pina JA, Carbonell EA, Moreno P, Mendoza AH, Cambra M, Navarro L, Biological diversity of Citrus tristeza virus (CTV) isolates in Spain. Plant Pathol,1993,42: 219-229
    25. Barajas D, Nagy PD. Ubiquitination of tombusvirus p33 replication protein plays a role in virus replication and binding to the host Vps23p ESCRT protein. Virology,2010,397:358-368
    26. Barbarossa L, Savino V. Sensitive and specific digoxigenin-labelled RNA probes for routine detection of Citrus tristeza virus by dot-blot hybridization. JPhytopathol,2006,154:329-335
    27. Bar-Joseph M, Loebenstein G, Cohen J. Further purification and characterization of threadlike particles associated with the citrus tristeza disease. Virology,1972,50:821-828
    28. Bar-Joseph M, Loebenstein G. Effects of strain source plant and temperature on the transmissibility of Citrus tristeza virus by the melon aphid. Phytopathol,1973,63:716-720
    29. Bar-Joseph M, Marcus R, Lee RF. The continuous challenge of Citrus tristeza virus control. Annu Rev Phytopathol,1989,27:291-316
    30. Beauchemin C, Boutet N, Laliberte JF. Visualization of the interaction between the precursors of VPg the viral protein linked to the genome of Turnip mosaic virus and the translation eukaryotic initiation factor iso 4E in planta. J Virol,2007,81:775-782
    31. Ben-Ze'ev IS, Bar-Joseph M, Nitzan Y, Marcus R. A severe Citrus tristeza virus isolate causing the collapse of trees of sour orange before virus is detectable throughout the canopy. Ann Appl Biol,1989,114:293-300
    32. Bertolini E, Moreno A, Capote N, Olmos A, de Luis A, Vidal E, Cambra M. Quantitative detection of Citrus tristeza virus in plant tissues and single aphids by real-time RT-PCR. Eur J Plant Pathol,2008,120:177-188
    33. Bhat S, Folimonova SY, Cole AB, Ballard KD, Lei Z, Watson BS, Nelson RS. Influence of host chloroplast proteins on Tobacco mosaic virus accumulation and intercellular movement. Plant Physiol,2013,161:134-147
    34. Biswas KK, Tarafdar A, Sharma SK. Complete genome sequence of mandarin decline Citrus tristeza virus of the Northeastern Himalayan hill region of India:comparative analyses determine recombinant. Arch Virol,2012,157:579-583
    35. Boorstein WR, Ziegelhoffer T, Craig EA. Molecular evolution of the HSP70 multigene family. J Mol Evol,1994,38:1-17
    36. Brandner K, Sambade A, Boutant E, Didier P, Mely Y, Ritzenthaler C, Heinlein M. Tobacco mosaic virus movement protein interacts with green fluorescent protein-tagged microtubule end-binding protein 1. Plant Physiol,2008,147:611-623
    37. Brlansky RH, Damsteegt VD, Howd DS, Roy A. Molecular analyses of Citrus tristeza virus subisolates separated by aphid transmission. Plant Dis,2003,87:397-401
    38. Brlansky RH, Roy A, Damsteegt VD. Stem-pitting Citrus tristeza virus predominantly transmitted by the brown citrus aphid from mixed infections containing non-stem-pitting and stem-pitting isolates. Plant Dis,2011,95:913-920
    39. Bulyk ML, Huang X, Choo Y, Church GM. Exploring the DNA-binding specificities of zinc fingers with DNA microarrays. Proc Natl Acad Sci USA,2001,98:7158-7163
    40. Callard D,. Lescure B, Mazzolini L. A method for the elimination of false positives generated by the mRNA differential display technique. Biotechniques,1994,16:1096
    41. Cambra M, Camarasa E, Gorris MT, Garnsey SM, Carbonell E. Comparison of different immunosorbent assays for Citrus tristeza virus (CTV) using CTV-specific monoclonal and polyclonal antibodies. Proceedings of the 11th Conference of the International Organization of Citrus Virologists,1991,38-45
    42. Cambra M, Gorris MT, Marroquin C, Roman MP, Olmos A, Martinez MC, Navarro L. Incidence and epidemiology of Citrus tristeza virus in the valencian community of Spain. Virus Res,2000,71:85-95
    43. Carginale V, Maria G, Capasso C, Ionata E, La-Cara F, Pastore M, Capasso A. Identification of genes expressed in response to phytoplasma infection in leaves of Prunus armeniaca by messenger RNA differential display. Gene,2004,332:29-34
    44. Catoni M, Miozzi L, Fiorilli V, Lanfranco L, Accotto GP. Comparative analysis of expression profiles in shoots and roots of tomato systemically infected by Tomato spotted wilt virus reveals organ-specific transcriptional responses. Mol Plant Microbe In,2009,22:1504-1513
    45. Cernadas RA, Camillo LR, Benedetti CE. Transcriptional analysis of the sweet orange interaction with the citrus canker pathogens Xanthomonas axonopodis pv citri and Xanthomonas axonopodis pv aurantifolia. Mol Plant Pathol,2008,9:609-631
    46. Chapman EJ, Prokhnevsky AI, Gopinath K, Dolja VV, Carrington JC. Viral RNA silencing suppressors inhibit the microRNA pathway at an intermediate step. Genes Dev,2004,18: 1179-1186
    47. Chen H, Zhou HX, Prediction of interface residues in protein-protein complexes by a consensus neural network method:test against NMR data. Protein Struct Funct Bioinformat,2005,61: 21-35
    48. Chen MH, Sheng J, Hind G, Handa AK, Citovsky V. Interaction between the Tobacco mosaic virus movement protein and host cell pectin methylesterases is required for viral cell-to-cell movement. EMBO J,2000,19:913-920
    49. Cheng YQ, Liu ZM, Xu J, Zhou T, Wang M, Chen YT, Fan ZF. HC-Pro protein of sugar cane mosaic virus interacts specifically with maize ferredoxin-5 in vitro and in planta. J Gen Virol, 2008,89:2046-2054
    50. Citovsky V, McLean BG, Zupan JR, Zambryski P. Phosphorylation of tobacco mosaic virus cell-to-cell movement protein by a developmentally regulated plant cell wall-associated protein kinase. Genes Dev,1993,7:904-910
    51. Cloonan N, Forrest AR, Kolle G, Gardiner BB, Faulkner GJ, Brown MK, Grimmond SM. Stem cell transcriptome profiling via massive-scale mRNA sequencing. Nat Methods,2008,5: 613-619
    52. Coll NS, Epple P, Dangl JL. Programmed cell death in the plant immune system. Cell Death Differ,2011,18:1247-1256
    53. Cortez MA, Calin GA. MicroRNA identification in plasma and serum:a new tool to diagnose and monitor diseases. Expert Opin Biol Ther,2009,9:703-711
    54. Coutts RH, Coffin RS, Beet pseudo-yellows virus is an authentic closterovirus. Virus Genes,1996, 13:179-181
    55. Cristofani-Yaly M, Berger IJ, Targon PNML, Takita MA, Dorta SO, Freitas-Asua J, Souza AA, Boscariol-Camargo RL, Reis MS, Machado MA, Differential expression of genes identified from Poncirus trifoliata tissue inoculated with CTV through EST analysis and in silica hybridization. Genet Mol Biol,2007,30:972-979
    56. Culver JN, Padmanabhan MS. Virus-induced disease:altering host physiology one interaction at a time, Annu Rev Phytopathol,2007,45:221-243
    57. da Silva V, Shida C, Rodrigues F, Ribeiro D, de Souza A, Coletta-Filho H, de Oliveira R. Comparative genomic characterization of citrus-associated Xylella fastidiosa strains. BMC Genomics,2007,8:474
    58. Dardick C. Comparative expression profiling of Nicotiana benthamiana leaves systemically infected with three fruit tree viruses. Mol Plant Microbe In,2007,20:1004-1017
    59. Davino S, Davino M, Sambade A, Guardo M, Caruso A. The first Citrus tristeza virus outbreak found in a relevant citrus producing area of Sicily. Italy Plant Dis,2003,87:314-314
    60. Deng M, Mehta S, Sun F, Chen T. Inferring domain-domain interactions from protein-protein interactions. Genome Res,2002,12:1540-1548
    61. Derrick KS, Beretta MJ, Barthe GA, Kayim M, Harakava R. Identification of strains of Citrus tristeza virus by subtraction hybridization. Plant Dis,2003,87:1355-1359
    62. Diatchenko L, Lau YF, Campbell AP, Chenchik A, Moqadam F, Huang B, Siebert PD. Suppression subtractive hybridization:a method for generating differentially regulated or tissue-specific cDNA probes and libraries. Proc Natl Acad Sci USA,1996,93:6025-6030
    63. Diatchenko L, Lukyanov S, Lau YFC, Siebert PD. Suppression subtractive hybridization:a versatile method for identifying differentially expressed genes. Method Enzymol,1999,303: 349-380
    64. Diaz-Vivancos P, Clemente-Moreno MJ, Rubio M, Olmos E, Garcia JA, Martinez-Gomez P, Hernandez JA. Alteration in the chloroplastic metabolism leads to ROS accumulation in pea plants in response to plum pox virus. JExp Bot,2008,59:2147-2160
    65. Dickson RC, Johnson MM, Flock RA, Laird JEF. Flying aphid populations in southern California citrus groves and their relation to the transmission of the tristeza virus. Phytopathology,1956,46: 204-209
    66. Die JV, Dita MA, Krajinski F, Gonzalez-Verdejo CI, Rubiales D, Moreno MT, Roman B. Identification by suppression subtractive hybridization and expression analysis of Medicago truncatula putative defence genes in response toOrobanche crenata parasitization. Physiol Mol Plant Pathol,2007,70:49-59
    67. Dolja VV, Karasev AV, Koonin EV. Molecular biology and evolution of closteroviruses: sophisticated build-up of large RNA genomes. Annu Rev Phytopathol,1994,32:261-285
    68. Dolja VV, Kreuze JF, Valkonen J. Comparative and functional genomics of closteroviruses. Virus Res,2006,117:38-51
    69. Dorokhov YL, Makinen K, Frolova OY, Merits A, Saarinen J, Kalkkinen N, Saarma M. A novel function for a ubiquitous plant enzyme pectin methylesterase:the host-cell receptor for the tobacco mosaic virus movement protein. FEBS Lett,1999,461:223-228
    70. Erokhina TN, Zinovkin RA, Vitushkina MV, Jelkmann W, Agranovsky AA. Detection of beet yellows closterovirus methyltransferase-like and helicase-like proteins in vivo using monoclonal antibodies. JGen Virol,2001,81:597-603
    71. Espinoza C, Vega A, Medina C, Schlauch K, Cramer G, Arce-Johnson P. Gene expression associated with compatible viral diseases in grapevine cultivars. Funct Integr Genomic,2007,7: 95-110
    72. Fagoaga C, Lopez C, de Mendoza AH, Moreno P, Navarro L, Flores R, Pena L. Post-transcriptional gene silencing of the p23 silencing suppressor of Citrus tristeza virus confers resistance to the virus in transgenic Mexican lime. Plant Mol Biol,2006,60:153-165
    73. Fagoaga C, Lopez C, Moreno P, Navarro L, Flores R, Pena L. Viral-like symptoms induced by the ectopic expression of the p23 gene of Citrus tristeza virus are citrus specific and do not correlate with the pathogenicity of the virus strain. Mol Plant Microbe In,2005,18:435-445
    74. Fanta NO, Ortega XI, Perez LM. The development of Alternaria alternata is prevented by chitinases and β-1 3-glucanases from Citrus limon seedlings. Biol Res,2003,36:411-420
    75. Febres VJ, Ashoulin L, Mawassi M, Frank A, Bar-Joseph M, Manjunath KL, Niblett CL. The p27 protein is present at one end of Citrus tristeza virus particles. Phytopathology,1996,86: 1331-1335
    76. Fields S, Song OK. A novel genetic system to detect protein protein interactions. Nature,1989, 340:245-246
    77. Flaherty KM, de Luca-Flaherty C, McKay DB. Three-dimensional structure of the ATPase fragment of a 70 K heat-shock cognate protein. Nature,1990,346:623-628
    78. Fridborg I, Grainger J, Page A, Coleman M, Findlay K, Angell S. TIP a novel host factor linking callose degradation with the cell-to-cell movement of Potato virus X. Mol Plant Microbe In,2003, 16:132-140
    79. Friedrich T, Pils B, Dandekar T, Schultz J, Muller T. Modelling interaction sites in protein domains with interaction profile hidden Markov models. Bioinformatics,2006,22:2851-2857
    80. Froussard P. rPCR:a powerful tool for random amplification of whole RNA sequences. Genome Res,1993,2:185-190
    81. Gandia M, Conesa A, Ancillo G, Gadea J, Forment J, Pallas V, Flores R, Duran-Vila N, Moreno P, Guerri J. Transcriptional response of Citrus aurantifolia to infection by Citrus tristeza virus. Virology,2007,367:298-306
    82. Gao X, Li ZG, Fan J, Yang YW. Screening and expression of differentially expressed genes for peel pitting of citrus fruit. IV International Conference on Managing Quality in Chains-The Integrated View on Fruits and Vegetables Quality,2006,473-480
    83. Garnsey SM, Gonsalves D, Purcifull DE. Mechanical transmission of Citrus tristeza virus (Etrog citron). Phytopathology,1977,67:965-968
    84. Garnsey SM, Gottwald TR, Hilf ME, Matos L, Borb6n J. Emergence and spread of severe strains of Citrus tristeza virus in the Dominican Republic. International Proceedings:14th Conference of International Organization of Citrus Virologist,2000,57-68
    85. Garnsey SM, Permar TA, Cambra M, Henderson CT. Direct tissue blot immunoassay (DTBIA) for detection of Citrus tristeza virus (CTV).12th Conference of International Organization of Citrus Virologist,1993, Moreno,39-50
    86. Ghorbel R, LOpez C, Fagoaga C, Moreno P, Navarro L, Flores R, Pena L. Transgenic citrus plants expressing the citrus tristeza virus p23 protein exhibit viral-like symptoms. Mol Plant Pathol,2001,2:27-36
    87. Gillespie T, Boevink P, Haupt S, Roberts AG, Toth R, Valentine T, Oparka KJ. Functional analysis of a DNA-shuffled movement protein reveals that microtubules are dispensable for the cell-to-cell movement of Tobacco mosaic virus. Plant Cell,2002,14:1207-1222
    88. Giner A, Lakatos L, Garcia-Chapa M, Lopez-Moya JJ, Burgyan J. Viral protein inhibits RISC activity by argonaute binding through conserved WG/GW motifs. PLoS Pathog,2010,6: el000996
    89. Golem S, Culver JN. Tobacco mosaic virus induced alterations in the gene expression profile of Arabidopsis thaliana. Mol Plant Microbe In,2003,16:681-688
    90. Gottlieb Y, Zchori-Fein E, Mozes-Daube N, Kontsedalov S, Skaljac M, Brumin M, Ghanim M. The transmission efficiency of Tomato yellow leaf curl virus by the whitefly Bemisia tabaci is correlated with the presence of a specific symbiotic bacterium species. J Virol,2010,84: 9310-9317
    91. Gottwald TR, Cambra M, Moreno P, Camarasa E, Piquer J. Spatial and temporal analyses of Citrus tristeza virus in eastern Spain. Phytopathology,1996,86:45-55
    92. Gottwald TR, Garnsey SM, Borbon J. Increase and patterns of spread of Citrus tristeza virus infections in Costa Rica and the Dominican Republic in the presence of the brown citrus aphid Toxoptera citricida. Phytopathology,1998,88:621-636
    93. Gottwald TR, Garnsey SM, Cambra M, Moreno P, Irey M, Borb6n J. Differential effects of Toxoptera citricida vs Aphis gossypii on temporal increase and spatial patterns of spread of citrus tristeza. International Proceedings:13th Conference of International Organization of Citrus Virologist,1996,120-129
    94. Gottwald TR, Gibson GJ, Garnsey SM, Irey M. Examination of the effect of aphid vector population composition on the spatial dynamics of Citrus tristeza virus spread by stochastic modeling. Phytopathology,1999,89:603-608
    95. Gottwald TR, Polek M, Riley K. History present incidence and spatial distribution of Citrus tristeza virus in the California Central Valley. In Proceedings 12th Conference of the International Organization of Citrus Virologists, California USA,2002,83-94
    96. Gowda S, Satyanarayana T, Ayllon MA, Moreno P, Flores R, Dawson WO. The conserved structures of the 5'nontranslated region of Citrus tristeza virus are involved in replication and virion assembly. Virology,2003,317:50-64
    97. Gowda S, Satyanarayana T, Davis CL, Navas-Castillo J, Albiach-Marti MR, Mawassi M, Dawson WO. The p20 gene product of Citrus tristeza virus accumulates in the amorphous inclusion bodies. Virology,2000,274:246-254
    98. Gowda S, Satyanarayana T, Robertson CJ, Garnsey SM, Dawson WO. Infection of citrus plants with virions generated in Nicotiana benthamiana plants agroinfiltrated with a binary vector based Citrus tristeza virus. Proceedings of the 16th Conference of the International Organization of Citrus Virologists,2005,23-33
    99. Guimaraes KS, Jothi R, Zotenko E, Przytycka TM. Predicting domain-domain interactions using a parsimony approach. Genome Biol,2006,7:R104
    100. Haikonen T, Rajamaki ML, Valkonen JP. Interaction of the microtubule associated host protein HIP2 with the viral helper component proteinase is important in infection with Potato virus A. Mol Plant Microbe In,2013 (ja)
    101. Handford MG, Carr JP. A defect in carbohydrate metabolism ameliorates symptom severity in virus-infected Arabidopsis thaliana. JGen Virol,2007,88:337-341
    102. Harakava R, Gabriel DW. Genetic differences between two strains of Xylella fastidiosa revealed by suppression subtractive hybridization. Appl Environ Microb,2003,69:1315-1319
    103. Harper SJ, Dawson TE, Pearson MN. Complete genome sequences of two distinct and diverse Citrus tristeza virus isolates from New Zealand. Arch Virol,2009,154:1505-1510
    104. Harper SJ, Dawson TE, Pearson MN. Isolates of Citrus tristeza virus that overcome Poncirus trifoliata resistance comprise a novel strain. Arch Virol,2010,155:471-480
    105. Haupt S, Cowan GH, Ziegler A, Roberts AG, Oparka KJ, Torrance L. Two plant-viral movement proteins traffic in the endocytic recycling pathway. Plant Cell,2005,17:164-181
    106. Havelda Z, Varallyay E, Valoczi A, Burgyan J. Plant virus infection-induced persistent host gene.., downregulation in systemically infected leaves. Plant J,2008,55:278-288
    107. Hebrard E, Poulicard N, Gerard C, Traore O, Wu HC, Albar L, Vignols F. Direct interaction between the Rice yellow mottle virus (RYMV) VPg and the central domain of the rice eIF (iso) 4G1 factor correlates with rice susceptibility and RYMV virulence. Mol Plant Microbe In,2010, 23:1506-1513
    108. Heinlein M, Padgett HS, Gens JS, Pickard BG, Casper SJ, Epel BL, Beachy RN. Changing,. patterns of localization of the Tobacco mosaic virus movement protein and replicase to the endoplasmic reticulum and microtubules during infection. Plant Cell,1998,10:1107-1120
    109. Helmer-Citterich M, Tramontano A. PUZZLE:a new method for automated protein docking based on surface shape complementarity. JMol Biol,1994,235:1021
    110. Henriksson E, Olsson AS, Johannesson H, Johansson H, Hanson J, Engstrom P, Soderman E. Homeodomain leucine zipper class I genes in Arabidopsis expression patterns and phylogenetic relationships. Plant Physiol,2005,139:509-518
    111. Hermoso de, Mendoza A, Ballester-Olmos JF, Pina JA. Transmission of Citrus tristeza virus by aphids (Homoptera aphididae) in Spain. In Proceedings of 9th Conference of the International Organization of Citrus Virologists,1984,377
    112. Herron CM, Mirkov TE, Da Graca JV, Lee RF. Citrus tristeza virus transmission by the Toxoptera citricida vector:In vitro acquisition and transmission and infectivity immunoneutralization experiments. J Virol Mthods,2006,134:205-211
    113. Hietala AM, Kvaalen H, Schmidt A, Johnk N, Solheim H, Fossdal CG. Temporal and spatial profiles of chitinase expression by Norway spruce in response to bark colonization by Heterobasidion annosum. Appl Environ Microb,2004,70:3948-3953
    114. Hirashima K, Watanabe Y. RNA helicase domain of tobamovirus replicase executes cell-to-cell movement possibly through collaboration with its nonconserved region. J Virol,2003,77: 12357-12362
    115. Hirashima K, Watanabe Y. Tobamovirus replicase coding region is involved in cell-to-cell movement. J Virol,2001,75:8831-8836
    116. Hu CD, Chinenov Y, Kerppola TK. Visualization of interactions among bZIP and Rel family proteins in living cells using bimolecular fluorescence complementation. Mol Cell,2002,9:789
    117. Huang M, Zhang L. Association of the movement protein of Alfalfa mosaic virus with the endoplasmic reticulum and its trafficking in epidermal cells of onion bulb scales. Mol Plant Microbe In,1999,12:680-690
    118. Huang Z, Andrianov VM, Han Y, Howell SH. Identification of Arabidopsis proteins that interact with the Cauliflower mosaic virus (CaMV) movement protein. Plant Mol Biol,2001,47:663-675
    119. Hughes G, Gottwald TR. Survey methods for assessment of citrus tristeza virus incidence. Phytopathol,1998,88:715-723
    120. Huh SU, Kim MJ, Paek KH. Arabidopsis pumilio protein APUM5 suppresses Cucumber mosaic virus infection via direct binding of viral RNAs. Proc Natl Acad Sci USA,2013,110:779-784
    121. Hwang J, Oh CS, Kang BC. Translation elongation factor IB (eEFIB) is an essential host factor for Tobacco mosaic virus infection in plants. Virology,2013,439:105-114
    122. Hwang Y, McCartney A, Gidda S, Mullen R. Localization of the Carnation Italian ringspot virus replication protein p36 to the mitochondrial outer membrane is mediated by an internal targeting signal and the TOM complex. BMC Cell Biol,2008,9:54
    123. Ishihara T, Sakurai N, Sekine KT, Hase S, Ikegami M, Shibata D, Takahashi H. Comparative analysis of expressed sequence tags in resistant and susceptible ecotypes of Arabidopsis thaliana infected with Cucumber mosaic virus. Plant Cell Physiol,2004,45:470-480
    124. Jackson D. Opening up the communication channels:recent insights into plasmodesmal function. Curr Opin Plant Biol,2000,3:394-399
    125. Jiang B, Hong N, Wang GP, Hu J, Zhang JK, Wang CX, Fan XD. Characterization of Citrus tristeza virus strains from southern China based on analysis of restriction patterns and sequences of their coat protein genes. Virus Genes,2008,37:185-192
    126. Joos TO, Schrenk M, HSpfl P, Kroger K, Chowdhury U, Stoll D, Hammerle H. A microarray enzyme-linked immunosorbent assay for autoimmune diagnostics. Electrophoresis,2000,21: 2641-2650
    127. Kano T, Koizumi M. Separation of Citrus tristeza virus (CTV) serotypes through aphid transmission. Proceedings of the 11th Conference of the International Organization of Citrus Virologists,1991,82-85
    128. Karasev AV, Boyko VP, Gowda S, Nikolaeva OV, Hilf ME, Koonin EV, Dawson WO. Complete sequence of the Citrus tristeza virus RNA genome. Virology,1995,208:511-520
    129. Karasev AV, Hilf ME, Garnsey SM, Dawson WO. Transcriptional strategy of closteroviruses: mapping the 5'termini of the Citrus tristeza virus subgenomic RNAs. J Virol,1997,71: 6233-6236
    130. Kauffrnann A, Huber W. Microarray data quality control improves the detection of differentially expressed genes. BMC Genomics,2010,95:138
    131. Kawakami S, Watanabe Y, Beachy RN. Tobacco mosaic virus infection spreads cell to cell as intact replication complexes. Proc Natl Acad Sci USA,2004,101:6291-6296
    132. Kim J, Kim I, Yang JS, Shin YE, Hwang J, Park S, Kim S. Rewiring of PDZ domain-ligand interaction network contributed to eukaryotic evolution. PLoS Genet,2012,8:e1002510
    133.Kim JS, Sagaram US, Burns JK, Li JL, Wang N. Response of sweet orange (Citrus sinensis) to'Candidatus Liberibacter asiaticus'infection:microscopy and microarray analyses. Phytopathology,2009,99:50-57
    134. Kim SH, MacFarlane S, Kalinina NO, Rakitina DV, Ryabov EV, Gillespie T, Taliansky M. Interaction of a plant virus-encoded protein with the major nucleolar protein fibrillarin is required for systemic virus infection. Proc Natl Acad Sci USA,2007,104:11115-11120
    135. Kitajima EW, Silva DM, Oliveira AR, Muller GW, Costa AS. Thread-like particles associated with tristeza disease of citrus. Nature,1964,201:1011
    136. Kogovsek P, Pompe-Novak M, Baebler S, Rotter A, Gow L, Gruden K, Ravnikar M. Aggressive and mild Potato virus Y isolates trigger different specific responses in susceptible potato plants. Plant Pathol,2010,59:1121-1132
    137. Konig R, Zhou Y, Elleder D, Diamond TL, Bonamy GM, Irelan JT, Chanda SK. Global analysis of host-pathogen interactions that regulate early stage HIV-1 replication. Cell,2008,135:49
    138. Kragler F, Curin M, Trutnyeva K, Gansch A, Waigmann E. MPB2C:a microtubule-associated. plant protein binds to and interferes with cell-to-cell transport of tobacco mosaic virus movement protein. Plant Physiol,2003,132:1870-1883
    139. Kubo H, Peeters AJ, Aarts MG, Pereira A, Koornneef M. ANTHOCYANINLESS2, a homeobox gene affecting anthocyanin distribution and root development in Arabidopsis. Plant Cell,1999, 11:1217-1226
    140. Kyriakou A, Ioannou N, Gavriel J, Bar-Joseph M, Papayiannis C, Kapar-Isaia T, Sawa G. Management of Citrus tristeza virus in Cyprus. Proceedings of 13th Conference International Organization of Citrus Virologists,1996,172-178
    141. Le BH, Cheng C, Bui AQ, Wagmaister JA, Henry KF, Pelletier J, Goldberg RB. Global analysis of gene activity during Arabidopsis seed development and identification of seed-specific transcription factors. Proc Natl Acad Sci USA,2010,107:8063-8070
    142. Lee SW, Tomasetto C, Sager R. Positive selection of candidate tumor-suppressor genes by subtractive hybridization. Proc Natl Acad Sci USA,1991,88:2825-2829
    143. Legay G, Marouf E, Berger D, Neuhaus JM, Mauch-Mani B, Slaughter A. Identification of genes expressed during the compatible interaction of grapevine with Plasmopara viticola through suppression subtractive hybridization (SSH). Eur J Plant Pathol,2011,129:281-301
    144. Lellis AD, Kasschau KD, Whitham SA, Carrington JC. Loss-of-susceptibiliry mutants of Arabidopsis thaliana reveal an essential role for eIF (iso) 4E during Potyvirus infection. Curr Biol,2002,12:1046-1051
    145. Leonard S, Plante D, Wittmann S, Daigneault N, Fortin MG, Laliberte JF. Complex formation between Potyvirus VPg and translation eukaryotic initiation factor 4E correlates with virus infectivity. J Virol,2000,74:7730-7737
    146. Leonard S, Viel C, Beauchemin C, Daigneault N, Fortin MG, Laliberte JF. Interaction of VPg-Pro of Turnip mosaic virus with the translation initiation factor 4E and the poly (A)-binding protein in planta. JGen Virol,2004,85:1055-1063
    147. Lewis JD, Lazarowitz SG. Arabidopsis synaptotagmin SYTA regulates endocytosis and virus movement protein cell-to-cell transport. Proc Nail Acad Sci USA,2010,107:2491-2496
    148. Li MH, Lin L, Wang XL, Liu T. Protein-protein interaction site prediction based on conditional random fields. Bioinformatics,2007,23:597-604
    149. Li Z, Pogany J, Panavas T, Xu K, Esposito AM, Kinzy TG, Nagy PD. Translation elongation factor 1A is a component of the tombusvirus replicase complex and affects the stability of the p33 replication co-factor. Virology,2009,385:245-260
    150. Liang P, Pardee A. Distribution and cloning of eukaryotic mRNAs by means of differential display:refinements and optimization. Nucleic Acids Res,1993,21:3269-3275
    151. Liang P, Zhu W, Zhang X, Guo Z, O'Connell RP, Averboukh L, Pardee AB. Differential display using one-base anchored oligo-dT primers. Nucleic Acids Res,1994,22:5763
    152. Lin L, Luo Z, Yan F, Lu Y, Zheng H, Chen J. Interaction between potyvirus P3 and ribulose-1 5-bisphosphate carboxylase/oxygenase (RubisCO) of host plants. Virus Genes,2011,43:90-92
    153. Lister R, O'Malley RC, Tonti-Filippini J, Gregory BD, Berry CC, Millar AH, Ecker JR. Highly integrated single-base resolution maps of the epigenome in Arabidopsis. Cell,2008,133:523-536
    154. Liu S, Tian N, Li J, Huang J, Liu Z. Isolation and identification of novel genes involved in artemisinin production from flowers of Artemisia annua using suppression subtractive hybridization and metabolite analysis. Planta Med,2009,75:1542-1547
    155. Liu X, Wang T, Wakita T, Yang W. Systematic identification of microRNA and messenger RNA profiles in Hepatitis C virus-infected human hepatoma cells. Virology,2010,398:57-67
    156. Liu Y, Burch-Smith T, Schiff M, Feng S, Dinesh-Kumar SP. Molecular chaperone Hsp90 associates with resistance protein N and its signaling proteins SGT1 and Rarl to modulate an innate immune response in plants. JBiol Chem,2004,279:2101-2108
    157. Lopez C, Ayllon MA, Navas-Castillo J, Guerri J, Moreno P, Flores R. Molecular variability of the 5'-and 3'-terminal regions of Citrus tristeza virus RNA. Phytopathology,1998,88:685-691
    158. Lopez C, Navas-Castillo J, Gowda S, Moreno P, Flores R. The 23-kDa protein coded by the 3'-terminal gene of Citrus tristeza virus is an RNA-binding protein. Virology,2000,269:462-470
    159. Love AJ, Martin T, Graham LA, Milner JJ, Carbohydrate partitioning and sugar signalling in Cauliflower mosaic virus infected turnip and Arabidopsis. Physiol Mol Plant P,2005,67:83-91
    160. Lu J, Getz G, Miska EA, Alvarez-Saavedra E, Lamb J, Peck D, Golub TR. MicroRNA expression profiles classify human cancers. Nature,2005,435:834-838
    161. Lu R, Folimonov A, Shintaku M, Li WX, Falk BW, Dawson WO, Ding SW. Three distinct suppressors of RNA silencing encoded by a 20-kb viral RNA genome. Proc Natl Acad Sci USA, 2004,101:15742-15747
    162. Luo Q, Pagel P, Vilne B, Frishman D. DIMA 30:domain interaction map. Nucleic Acids Res, 2011,39:D724-D729
    163. MacBeath G, Schreiber SL. Printing proteins as microarrays for high-throughput function determination. Science,2000,289:1760-1763
    164. MacBeath G. Proteomics comes to the surface. Nat Biotechnol,2011,19:828-829
    165. Marathe R, Guan Z, Anandalakshmi R, Zhao H, Dinesh-Kumar S. Study of Arabidopsis thalianaresistome in response to Cucumber mosaic virus infection using whole genome microarray. Plant Mol Biol,2004,55:501-520
    166. Marroquin C, Olmos A, Teresa-Gorris M, Bertolini E, Carmen-Martinez M, Carbonell EA, Cambra M. Estimation of the number of aphids carrying Citrus tristeza virus that visit adult citrus trees. Virus Res,2004,100:101-108
    167. Mathioudakis MM, Veiga R, Ghita M, Tsikou D, Medina V, Canto T, Livieratos IC. Pepino mosaic virus capsid protein interacts with a tomato heat shock protein cognate 70. Virus Res, 2012,163:28-39
    168. Matz MV, Lukyanov SA. Different strategies of differential display:areas of application. Nucleic Acids Res,1998,26:5537-5543
    169. Mawassi M, Mietkiewska E, Gofinan R, Yang G, Bar-Joseph M. Unusual sequence relationships between two isolates of Citrus tristeza virus. JGen Virol,1996,77:2359-2364
    170. McCartney AW, Greenwood JS, Fabian MR, White KA, Mullen RT. Localization of the Tomato bushy stunt virus replication protein p33 reveals a peroxisome-to-endoplasmic reticulum sorting pathway. Plant Cell,2005,17:3513-3531
    171.Melzer MJ, Borth WB, Sether DM, Ferreira S, Gonsalves D, Hu JS. Genetic diversity and evidence for recent modular recombination in Hawaiian Citrus tristeza virus. Virus Genes,2010, 40:111-118
    172. Meschini EP, Blanco FA, Zanetti ME, Beker MP, Kiister H, Puhler A, Aguilar OM. Host genes involved in nodulation preference in common bean(Phaseolus vulgaris)-Rhizobium etli symbiosis revealed by suppressive subtractive hybridization. Mol Plant Microbe In,2008,21: 459-468
    173. Moreno P, AmbrOS S, Albiach-Marti MR, Guerri J, PeNA L. Citrus tristeza virus:a pathogen that changed the course of the citrus industry. Mol Plant Pathol,2008,9:251-268
    174. Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B. Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods,2008,5:621-628
    175. Miiller GW, Garnsey SM. Susceptibility of citrus varities species citrus relatives and non-rutecous plants to slash-cut mechanical inoculation with Citrus tristeza virus. Proceedings of the 8th Conference of the International Organization of Citrus Virologists, CA,1984,62-65
    176. Nagalakshmi U, Wang Z, Waern K, Shou C, Raha D, Gerstein M, Snyder M. The transcriptional landscape of the yeast genome defined by RNA sequencing. Science,2008,320:1344-1349
    177. Nagy PD. Yeast as a model host to explore plant virus-host interactions. Annu Rev Phytopathol, 2008,46:217-242
    178. Nakamura M, Katsumata H, Abe M, Yabe N, Komeda Y, Yamamoto KT, Takahashi T. Characterization of the class IV homeodomain-leucine zipper gene family in Arabidopsis. Plant Physiol,2006,141:1363-1375
    179.Naqvi AR, Sarwat M, Pradhan B, Choudhury NR, Haq QMR, Mukherjee SK. Differential expression analyses of host genes involved in systemic infection of Tomato leaf curl New Delhi virus (ToLCNDV). Virus Res,2011,160:395-399
    180. Narsai R, Law SR, Carrie C, Xu L, Whelan J. In-depth temporal transcriptome profiling reveals a crucial developmental switch with roles for RNA processing and organelle metabolism that are essential for germination in Arabidopsis. Plant Physiol,2011,157:1342-1362
    181.Narvaez G, Slimane-Skander B, Ayllon MA, Rubio L, Guerri J, Moreno P. A new procedure to differentiate Citrus tristeza virus isolates by hybridisation with digoxigenin-labelled cDNA probes. J Virol Methods,2000,85:83-92
    182. Navas-Castillo J, Albiach-Marti MR, Gowda S, Hilf ME, Garnsey SM, Dawson WO. Kinetics of accumulation of Citrus tristeza virus RNAs. Virology,1997,228:92-97
    183. Nguyen TQ, Tarnow L, Jorsal A, Oliver N, Roestenberg P, Ito Y, Goldschmeding R. Plasma connective tissue growth factor is an independent predictor of end-stage renal disease and mortality in type 1 diabetic nephropathy. Diabetes Care,2008,31:1177-1182
    184. Nicaise V, German-Retana S, Sanjuan R, Dubrana MP, Mazier M, Maisonneuve B, LeGall O. The eukaryotic translation initiation factor 4E controls lettuce susceptibility to the potyvirus Lettuce mosaic virus. Plant Physiol,2003,132:1272-1282
    185. Olmos A, Cambra M, Esteban O, Gorris MT, Terrada E. New device and method for capture reverse transcription and nested PCR in a single closed-tube. Nucleic Acids Res,1999,27: 1564-1565
    186. Oparka KJ. Getting the message across:how do plant cells exchange macromolecular complexes? Trends Plant Sci,2004,9:33-41
    187. Ouyang B, Yang T, Li H, Zhang L, Zhang Y, Zhang J, Ye Z. Identification of early salt stress response genes in tomato root by suppression subtractive hybridization and microarray analysis. J Exp Bot,2007,58:507-520
    188. Ozsolak F, Milos PM. RNA sequencing:advances challenges and opportunities. Nat Rev Genet, 2010,12:87-98
    189. Padmanabhan MS, Kramer SR, Wang X, Culver JN. Tobacco mosaic virus replicase-auxin/indole acetic acid protein interactions:reprogramming the auxin response pathway to enhance virus infection. J Virol,2008,82:2477-2485
    190. Pappu HR, Pappu SS, Manjunath KL, Lee RF, Niblett CL. Molecular characterization of a structural epitope that is largely conserved among severe isolates of a plant virus. Proc Natl Acad Sci USA,1993,90:3641-3644
    191. Park JA, Cho SK, Kim JE, Chung HS, Hong JP, Hwang B, Kim WT. Isolation of cDNAs differentially expressed in response to drought stress and characterization of theCa-LEALl gene encoding a new family of atypical LEA-like protein homologue in hot pepper(Capsicum annuun L. cv Pukang). Plant Science,2003,165:471-481
    192. Pathak KB, Sasvari Z, Nagy PD. The host Pex19p plays a role in peroxisomal localization of tombusvirus replication proteins. Virology,2008,379:294-305
    193-Peremyslov VV, Andreev IA, Prokhnevsky AI, Duncan GH, Taliansky ME, Dolja W. Complex molecular architecture of Beet yellows virus particles. Proc Natl Acad Sci USA,2004,101: 5030-5035
    194. Peremyslov W, Hagiwara Y, Dolja VV. HSP70 homolog functions in cell-to-cell movement of a plant virus. Proc Natl Acad Sci USA,1999,96:14771-14776
    195. Peremyslov VV, Pan YW, Dolja W. Movement protein of a closterovirus is a type III integral transmembrane protein localized to the endoplasmic reticulum. J Virol,2004,78:3704-3709
    196. Pilon M, Schekman R. Protein translocation:how Hsp70 pulls it off. Cell,1999,97:679
    197. Pogany J, Stork J, Li Z, Nagy PD. In vitro assembly of the Tomato bushy stunt virus replicase requires the host heat shock protein 70. Proc Natl Acad Sci USA,2008,105:19956-19961
    198. Pompe-Novak M, Gruden K, Baebler S, Krecic-Stres H, KovaS M, Jongsma M, Ravnikar M. Potato virus Y induced changes in the gene expression of potato(Solanum tuberosum L). Physiol Mol Plant Pathol,2006,67:237-247
    199. Ponting CP, Aravind L. START:a lipid-binding domain in StAR HD-ZIP and signalling proteins. Trends Biochem Sci,1999,24:130
    200. Powell CA, Pelosi RR, Rundell PA, Cohen M. Breakdown of cross-protection of grapefruit from decline-inducing isolates of Citrus tristeza virus following introduction of the brown citrus aphid. Plant Dis,2003,87:1116-1118
    201. Price WC. Flexuous rods in phloem cells of lime plants infected with Citrus tristeza virus. Virol, 1966,29:285-294
    202. Prigge MJ, Otsuga D, Alonso JM, Ecker JR, Drews GN, Clark SE. Class Ⅲ homeodomain-leucine zipper gene family members have overlapping antagonistic and distinct roles in Arabidopsis development. Plant Cell,2005,17:61-76
    203. Prod homme D, Jakubiec A, Tournier V, Drugeon G, Jupin I. Targeting of the Turnip yellow mosaic virus 66K replication protein to the chloroplast envelope is mediated by the 140K protein. J Virol,2003,77:9124-9135
    204. Prokhnevsky AI, Peremyslov VV, Napuli AJ, Dolja VV. Interaction between long-distance transport factor and Hsp70-related movement protein of Beet yellows virus. J Virol,2002,76: 11003-11011
    205. Pruyne DW, Schott DH, Bretscher A. Tropomyosin-containing actin cables direct the Myo2p-dependent polarized delivery of secretory vesicles in budding yeast. J Cell Biol,1998, 143:1931-1945
    206. Qi X, Bao FS, Xie Z. Small RNA deep sequencing reveals role for Arabidopsis thaliana RNA-dependent RNA polymerases in viral siRNA biogenesis. PLoS One,2009,4:e4971
    207. Raccah B, Loebenstein G, Bar-Joseph M. Transmission of Citrus tristeza virus by the melon aphid. Phytopathology,1976,66:1102-1104
    208. Raffaele S, Bayer E, Lafarge D, Cluzet S, Retana SG, Boubekeur T, Mongrand S. Remorin, a solanaceae protein resident in membrane rafts and plasmodesmata impairs Potato virus X movement, Plant Cell,2009,21:1541-1555
    209. Rebrikov DV, Britanova OV, Gurskaya NG, Lukyanov KA, Tarabykin VS, Lukyanov SA. Mirror orientation selection (MOS):a method for eliminating false positive clones from libraries generated by suppression subtractive hybridization. Nucleic Acids Res,2000,28:e90-e90
    210. Reisinger E, Meintrup D, Oliver D, Fakler B. Gene expression associated with the onset of hearing detected by differential display in rat organ of Corti. Eur J Hum Genet,2010,18: 1327-1332
    211. Rocha-Pena MA, Lee RF, Lastra R, Niblett CL, Ochoa-Corona FM, Garnsey SM, Yokomi RK. Citrus tristeza virus and its aphid vector Toxoptera citricida:threats to citrus production in the carribean and central and North America. Plant Dis,1995,79:437-445
    212. Roistacher CN, Bar-Joseph M. Transmission of tristeza and seedling yellows tristeza virus by Aphis gossypii from sweet orange grapefruit and lemon to Mexican lime grapefruit and lemon. Proceedings of the 11th Conference of the International Organization of Citrus Virologists, CA, 1984,9-18
    213. Roistacher CN, Dodds JA, Bash JA. Cross protection against Citrus tristeza seedling yellows and stem pitting viruses by protective isolates developed in greenhouse plants. Proceedings of the 11th Conference of the International Organization of Citrus Virologists, CA,1988,91-100
    214. Roistacher CN. The worldwide threat from destructive isolates of Citrus tristeza virus-a review. Proceedings of the 11th Conference of the International Organization of Citrus Virologists,1991, 7-19
    215. Roy A, Brlansky RH. Genome analysis of an orange stem pitting Citrus tristeza virus isolate reveals a novel recombinant genotype. Virus Res,2010,151:118-130
    216. Ruiz-Ruiz S, Moreno P, Guerri J, Ambr6s S. A real-time RT-PCR assay for detection and absolute quantitation of Citrus tristeza virus in different plant tissues. J Virol Methods,2007,145:96-105
    217. Ruiz-Ruiz S, Moreno P, Guerri J, Ambros S. The complete nucleotide sequence of a severe stem pitting isolate of Citrus tristeza virus from Spain:comparison with isolates from different origins. Archs Vrol,2006,151:387-398
    218. Ruiz-Ruiz S, Navarro B, Gisel A, Pena L, Navarro L, Moreno P, Flores R. Citrus tristeza virus infection induces the accumulation of viral small RNAs (21-24-nt) mapping preferentially at the 3'-terminal region of the genomic RNA and affects the host small RNA profile. Plant Mol Biol, 2011,75:607-619
    219. Ruiz-Ruiz S, Soler N, Sanchez-Navarro J, Fagoaga C, Lopez C, Navarro L, Flores R. Citrus tristeza virus p23:Determinants for nucleolar localization and their influence on suppression of RNA silencing and pathogenesis. Mol Plant Microbe In,2013,26:306-318
    220. Saponari M, Manjunath K, Yokomi RK. Quantitative detection of Citrus tristeza virus in citrus and aphids by real-time reverse transcription-PCR (TaqMan(?)). J Virol Methods,2008,147:43-53
    221. Sasaki N, Ogata T, Deguchi M, Nagai S, Tamai A, Meshi T, Nyunoya H. Over-expression of putative transcriptional coactivator KELP interferes with Tomato mosaic virus cell-to-cell movement. Mol Plant Pathol,2009,10:161-173
    222. Satyanarayana T, Bar-Joseph M, Mawassi M, Albiach-Marti MR, Ayllon MA, Gowda S, Dawson WO. Amplification of Citrus tristeza virus from a cDNA clone and infection of citrus trees. Virology,2001,280:87-96
    223. Satyanarayana T, Gowda S, Ayll6n MA, Albiach-Marti MR, Dawson WO. Mutational Analysis of the Replication Signals in the 3'-Nontranslated Region of Citrus tristeza virus. Virology,2002a, 300:140-152
    224. Satyanarayana T, Gowda S, Ayllon MA, Albiach-Marti MR, Rabindran S, Dawson WO. The p23 protein of Citrus tristeza virus controls asymmetrical RNA accumulation. J Virol,2002b,76: 473-483
    225. Satyanarayana T, Gowda S, Ayll6n MA, Dawson WO. Closterovirus bipolar virion:evidence for initiation of assembly by minor coat protein and its restriction to the genomic RNA 5'region. Proc Natl Acad Sci USA,2004,101:799-804
    226. Satyanarayana T, Gowda S, Boyko VP, Albiach-Marti MR, Mawassi M, Navas-Castillo J, Dawson WO. An engineered closterovirus RNA replicon and analysis of heterologous terminal sequences for replication. Proc Natl Acad Sci USA,1999,96:7433-7438
    227. Satyanarayana T, Gowda S, Mawassi M, Albiach-Marti MR, Ayllon MA, Robertson C, Dawson WO. Closterovirus encoded HSP70 homolog and p61 in addition to both coat proteins function in efficient virion assembly. Virology,2000,278:253-265
    228. Schneider H. The anatomy of tristeza-virus-infected citrus. In:Wallace JM eds., Citrus Virus Diseases. Berkeley, CA:University of California Division of Agricultural Sciences,1957.73-84
    229. Schott D, Ho J, Pruyne D, Bretscher A. The COOH-terminal domain of Myo2p a yeast myosin V has a direct role in secretory vesicle targeting. J Cell Biol,1999,147:791-808
    230. Schrick K, Nguyen D, Karlowski W, Mayer K. START lipid/sterol-binding domains are amplified in plants and are predominantly associated with homeodomain transcription factors. Genome Biol,2004,5:R41-R41
    231. Senthil G, Liu H, Puram VG, Clark A, Stromberg A, Goodin MM. Specific and common changes in Nicotiana benthamiana gene expression in response to infection by enveloped viruses. J Gen Virol,2005,86:2615-2625
    232. Sessa G, Steindler C, Morelli G, Ruberti I. The Arabidopsis Athb-8-9 and genes are members of a small gene family coding for highly related HD-ZIP proteins. Plant Mol Biol,1998,38:609-622
    233. Sharmasr SR. Factors affecting vector transmission of Citrus tristeza virus in South Africa. Zbl Mikrobiol,1989,144:283-294
    234. Shimizu T, Yoshii A, Sakurai K, Hamada K, Yamaji Y, Suzuki M, Hibi T. Identification of a novel tobacco DnaJ-like protein that interacts with the movement protein of Tobacco mosaic virus. Arch Virol,2009,154:959-967
    235. Silhavy D, Burgyan J. Effects and side-effects of viral RNA silencing suppressors on short RNAs. Trends Plant Sci,2004,9:76-83
    236. Soellick TR, Uhrig JF, Bucher GL, Kellmann JW, Schreier PH. The movement protein NSm of Tomato spotted wilt tospovirus (TSWV):RNA binding interaction with the TSWV N protein and identification of interacting plant proteins. Proc Natl Acad Sci USA,2000,97:2373-2378
    237. Suastika C, Natsuaki T, Terui H, Takeshi KANO, Hiroyuki IEKI, Okuda S. Nucleotide sequence of Citrus tristeza virus seedling yellows isolate. JGen Plant Pathol,2001,67:73-77
    238. Tastan O, Qi Y, Carbonell JG, Klein-Seetharaman J. Prediction of interactions between HIV-1 and human proteins by information integration. Pac Symp Biocomput,2009,516
    239. Tatineni S, Dawson WO. Enhancement or attenuation of disease by deletion of genes from Citrus tristeza virus. J Virol,2012,86:7850-7857
    240. Tatineni S, Robertson CJ, Garnsey SM, Bar-Joseph M, Gowda S, Dawson WO. Three genes of Citrus tristeza virus are dispensable for infection and movement throughout some varieties of citrus trees. Virology,2008,376:297-307
    241. Tatineni S, Robertson CJ, Garnsey SM, Dawson WO. A plant virus evolved by acquiring multiple nonconserved genes to extend its host range. Proc Natl Acad Sci USA,2011,108:17366-17371
    242. Tessitori M, Maria G, Capasso C, Catara G, Rizza S, De-Luca V, Carginale V. Differential display analysis of gene expression in Etrog citron leaves infected by Citrus viroid Ⅲ. BBA-Gene Struct Expr,2007,1769:228-235
    243. Tilsner J, Linnik O, Wright KM, Bell K, Roberts AG, Lacomme C, Oparka KJ. The TGB1 movement protein of Potato virus X reorganizes actin and endomembranes into the X-body a viral replication factory. Plant Physiol,2012,158:1359-1370
    244. Tsukuda S, Gomi K, Yamamoto H, Akimitsu K. Characterization of cDNAs encoding two distinct miraculin-like proteins and stress-related modulation of the corresponding mRNAs in Citrus jambhiri Lush. Plant Mol Biol,2006,60:125-136
    245. Tugores A, Belmonte JC. Differential display of eukaryotic mRNA. In:Molecular Embryology, Humana Press,1999.575-590
    246. Ueda H, Yamaguchi Y, Sano H. Direct interaction between the Tobacco mosaic virus helicase domain and the ATP-bound resistance protein N factor during the hypersensitive response in tobacco plants. Plant Mol Biol,2006,61:31-45
    247. Ueki S, Spektor R, Natale DM, Citovsky V. ANK a host cytoplasmic receptor for the Tobacco mosaic virus cell-to-cell movement protein facilitates intercellular transport through plasmodesmata. PLoS Pathog,2010,6:e1001201
    248. Velculescu VE, Zhang L, Vogelstein B, Kinzler KW. Serial analysis of gene expression. Science, 1995,270:484-486
    249. Vives MC, Rubio L, Navas-Castillo J, Albiach-Mart MR, Dawson WO, Guerri J, Moreno P. The complete genome sequence of the major component of a mild Citrus tristeza virus isolate. J Gen Virol,1999,80:811-816
    250. Voisine C, Craig EA, Zufall N, von Ahsen O, Pfanner N, Voos W. The protein import motor of mitochondria:unfolding and trapping of preproteins are distinct and separable functions of matrix Hsp70. Cell,1999,97:565-574
    251. von Bargen S, Salchert K, Paape M, Piechulla B, Kellmann JW. Interactions between the Tomato spotted wilt virus movement protein and plant proteins showing homologies to myosin kinesin and DnaJ-like chaperones. Plant Physiol Biochem,2001,39:1083-1093
    252. Waigmann E, Ueki S, Trutnyeva K, Citovsky V. The ins and outs of nondestructive cell-to-cell and systemic movement of plant viruses. Crit Rev Plant Sci.2004,23:195-250
    253. Wallace JM, Drake RJ. Studies on recovery of citrus plants from seedling yellows and the resulting protection against reinfection. Proceedings of the 5th Conference of the International Organization of Citrus Virologists,1972,127-136
    254. Walter M, Chaban C, Schutze K, Batistic O, Weckermann K, Nake C, Blazevic D, Grefen C, Schumacher K, Oecking C, Harter K, Kudla J. Visualization of protein interactions in living plant cells using bimolecular fluorescence complementation. Plant J.2004,40:428-438
    255. Wang D, Maule AJ. Inhibition of host gene expression associated with plant virus replication. Science,1995,267:229-231
    256. Wang K, Zhang S, Marzolf B, Troisch P, Brightman A, Hu Z, Galas DJ. Circulating microRNAs potential biomarkers for drug-induced liver injury. Proc Natl Acad Sci USA,2009,106: 4402-4407
    257. Wang X, Goregaoker SP, Culver JN. Interaction of the Tobacco mosaic virus replicase protein with a NAC domain transcription factor is associated with the suppression of systemic host defenses. J Virol,2009,83:9720-9730
    258. Wang Z, Gerstein M, Snyder M. RNA-Seq:a revolutionary tool for transcriptomics. Nat Rev Genet,2009,10:57-63
    259. Weathers LG, Harjung MK. Transmission of citrus viruses by dodder Cuscuta subinclusa. Plant Dis Reptr,1964,48:102-103
    260. Webber HJ. The "Tristeza" disease of sour-orange rootstock. Proc Amer Soc Hort Sci,1943,43: 160-168
    261. Weber H, Ohnesorge S, Silber MV, Pfitzner AJP. The Tomato mosaic virus 30 kDa movement protein interacts differentially with the resistance genes Tm-2 and Tm-22. Arch Virol,2004,149: 1499-1514
    262. Weng Z, Barthelson R, Gowda S, Hilf ME, Dawson WO, Galbraith DW, Xiong Z. Persistent infection and promiscuous recombination of multiple genotypes of an RNA virus within a single host generate extensive diversity. PLoS One,2007,2:e917
    263. Whitham SA, Yang C, Goodin MM. Global impact:elucidating plant responses to viral infection. Mol Plant Microbe In,2006,19:1207-1215
    264. Wilhelm BT, Marguerat S, Watt S, Schubert F, Wood V, Goodhead I, Bahler J. Dynamic repertoire of a eukaryotic transcriptome surveyed at single-nucleotide resolution. Nature,2008, 453:1239-1243
    265. Yang C, Guo R, Jie F, Nettleton D, Peng J, Carr T, Yeakley JM, Fan J, Whitham SA. Spatial analysis of Arabidopsis thaliana gene expression in response to Turnip mosaic virus infection. Mol Plant Microbe In,2007,20:358-370
    266. Yang JY, Chung MC, Tu CY, Leu WM. OSTF1:a HD-GL2 family homeobox gene is developmentally regulated during early embryogenesis in rice. Plant Cell Physiol,2002,43: 628-638
    267. Yang ZN, Mathews DM, Dodds JA, Mirkov TE. Molecular characterization of an isolate of Citrus tristeza virus that causes severe symptoms in sweet orange. Virus Genes,1999,19: 131-142.
    268. Yellaboina S, Tasneem A, Zaykin DV, Raghavachari B, Jothi R. DOMINE:a comprehensive collection of known and predicted domain-domain interactions. Nucleic Acids Res,2011,39: D730-D735
    269. Yokomi RK, Garnsey SM. Transmission of Citrus tristeza virus by Aphis gossypii and Aphis citricola in Florida. Phytophylactica,1987,19:168-172
    270. Yokomi RK, Lastra R, Stoetzel MB, Damsteegt VD, Lee RF, Garnsey SM, Niblett CL. Establishment of the brown citrus aphid (Homoptera:Aphididae) in central America and the Caribbean Basin and transmission of Citrus tristeza virus. JEcon Entomol,1994,87:1078-1085
    271. Yoshida T. Graft compatibility of citrus with plants in the Aurantoidea and their susceptibility to Citrus tristeza virus. Plant Dis,1996,80:414-417
    272. Yoshii M, Nishikiori M, Tomita K, Yoshioka N, Kozuka R, Naito S, Ishikawa M. The Arabidopsis cucumovirus multiplication 1 and 2 loci encode translation initiation factors 4E and 4G. J Virol,2004,78:6102-6111
    273. Yoshioka K, Matsushita Y, Kasahara M, Konagaya KI, Nyunoya H. Interaction of Tomato mosaic virus movement protein with tobacco RIO kinase. Mol Cells,2004,17:223
    274. Zhang JZ, Li ZM, Liu L, Mei L, Yao JL, Hu CG. Identification of early-flower-related ESTs in an early-flowering mutant of trifoliate orange (Poncirus trifoliata) by suppression subtractive hybridization and macroarray analysis. Tree Physiol,2008,28:1449-1457
    275. Zhao S, Ooi SL, Pardee AB. New primer strategy improves precision of differential display. Biotechniques,1995,18:842
    276. Zhou CLE, Ammar ED, Sheta H, Kelley S, Polek M, Ullman DE. Citrus tristeza virus ultrastructure and associated cytopathology in Citrus sinensis and Citrus aurantifolia. Can J Plant Sci,2002,80:512-525
    277. Zhu G, Spellman PT, Volpe T, Brown PO, Botstein D, Davis TN, Futcher B. Two yeast forkhead genes regulate the cell cycle and pseudohyphal growth. Nature,2000,406:90-94

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700