D-STATCOM变流器及控制策略的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着工业自动化水平的不断提高,电力用户对供电质量和可靠性越来越敏感。目前,电力系统存在无功补偿容量不足,而系统中又存在不断增加的无功负荷,特别是冲击性无功负荷,不仅增加了损耗,而且严重影响了用户端的电能质量。配电网静止同步补偿器(D-STATCOM)是动态无功补偿装置的重要一员,由于良好的补偿性能,能跟踪补偿配电网的无功,还可减少冲击负荷对配电网的冲击。而变流器及其控制策略的研究是D-STATCOM技术研究的核心部分,对主回路及控制策略的研究必能更好的改善STATCOM的效果,具有现实意义。
     论文就三相三线D-STATCOM变流器的主回路结构及其工作方式进行了研究,对影响其补偿容量、输出纹波和直流侧纹波的各个相关因素和参数进行了数学分析和实验。提出了交错驱动控制的主回路结构和控制方法,并通过数学分析和实验,证明其在输出纹波、直流侧纹波、补偿容量方面较传统的三相三线变流器结构及对应的PWM工作方式具有明显优势。
     对STATCOM变流器装置级控制策略进行了研究,对直接电流控制和间接电流控制的常用方法进行了研究,讨论了STATCOM工作在方波模式和PWM模式下所采用的控制方法。介绍了逆系统法和微分几何法两种应用于非线性系统的控制方法。对直接电流控制的方法进行了总结,提出本设计所采用的控制方法。
     建立电压型逆变器的标幺化模型,详细分析额定无功补偿容量Q_N和允许输出的最大纹波I_(纹波)这两个装置的性能参数,与主回路参数之间的关系;主回路参数包括直流侧工作电压U_(dc)、串联抗值L和载波比n之间的制约关系。在对交错驱动并联结构变流器进行主回路参数进行对比设计发现,交错驱动并联桥式结构在参数设计中,L、U_(dc)、n三者之间的制约关系相对较小。这为主回路参数的选择提供了更大的余地,而且比起传统的PWM控制方式,其更容易实现优良的系统性能。
     建立装置的各个环节模型,应用线性系统的典型Ⅰ型系统、典型Ⅱ型系统的控制理论,对直接电流控制的电流调节器和电压调节器参数进行设计,并用仿真加以验证,提出了数字化实现方案。
     最后对研制样机进行了试验。通过试验波形可以看出采用交错驱动技术的D-STATCOM相比于传统的D-STATCOM,在减小输出纹波和直流侧纹波方面有明显的优势。
With the improvement of industry, the power customer are more and more particular about the power supply quality and dependability. At present, the reactive load, especially the impulsive reactive load, it not only increases power loss but also seriously deteriorates the power quality of customers. Distribution network for Static Synchronous Compensator (D-STATCOM) is an important one of dynamic reactive power compensation devices, because of it good compensation performance can be tracked compensation of reactive power distribution network, and also can reduce the impact of loading on the impact of distribution network. The core research of D-STATCOM technology is the converter and its control strategy.
     This paper presents some control strategy, introduces inverse system method and differential geometry method, especially introduces direct current control method. This paper presents different direct-current control method.
     STATCOM converter device-level control strategy have been studied for direct current control and indirect current control of the commonly used methods of study, discussion of the STATCOM in the square wave mode and PWM mode control method used. Introduced two type of the inverse system method and differential geometry which using in the nonlinear systems. Summing up the method of the direct current control, presenting the control method that using in the paper.
     The establishment of voltage source inverter per-unit of the standard model, analysis the performance of the two device parameters of the rated capacity of reactive power compensation Q_N and the maximum output ripple I_(纹波), the relationship with the main circuit parameters; the main circuit parameters including the work of DC side voltage U_(dc), series resistance value L and the carrier ratio n and the constraints of these numbers. In parallel to the staggered structure of multi-drive converter main circuit parameters for the design found in contrast, multi-drive staggered parallel design bridge structure, the constraints relationship of these are relatively small. This is provide more choice for the select of the mainly circuit parameters, comparing to traditional PWM control method, its easier to obtain good system performance.
     By the research of main circuit structure and control method about multi-drive staggered control, the main circuit parameters are designed for four-drive staggered to control device, and main circuit devices are selected. Control system is realized with the digital device, the steady-state characteristics and dynamic characteristics are verified by simulation of the control system.
     Establishment all aspects of the device models, application the typical linear I systems and the typical type II system control theory, direct current control of the current regulator and voltage regulator design parameters, and to verify the simulation and control system part of the realization of specific programs.
     Finally, the development of the prototype was tested. Test waveform can be seen through a multi-staggered drive D-STATCOM technology compared to conventional D-STATCOM, which have a distinct advantage in reducing the output ripple and ripple DC.
引文
[1]王兆安,杨君,刘进军.谐波抑制和无功补偿[M].机械工业出版社.2004
    [2]L.Gyugyi Reactive power generation and control by thyristor circuits.Proc of IEEE Power Electronics Specialists Conference,1976
    [3]金立军,安世超,廖黎明等.国内外无功补偿研发现状与发展趋势[J].高压电器2008.10
    [4]王仲鸿,沈斐,吴铁铮.FACTS技术研究现状及其在中国的应用与发展[J].电力自动化设备.2000(10):1-5
    [5]文珺,陈建业.SVC和STATCOM在电气化铁路中的应用[J].机车电传动.2003(3):7-11
    [6]王轩,赵国亮,邓占峰.STATCOM在输电系统中的应用[J].电力设备.2008(10)
    [7]A E Hammad,Fellow IEEE Comparing the Voltage Coltage Capabilities of Present and Future VAr Compensating Techniques in Transmission Systems[J].IEEE Trans on Power Delivery.1996,11(1)
    [8]徐政,韩祯祥,田杰.三电平静止同步补偿器的运行原理研究.电力系统自动化.1999,23(7)
    [9]沈斐,王娅凤,刘文华等,大容量STATCOM主电路结构的分析与比较[J],2003,27(8)
    [10]段大鹏,孙玉坤,潘春伟.基于三相VSI的STATCOM动态建模与仿真研究[J].高电压技术.2006,32(6):84-87
    [11]郭锐,刘国涛.静止同步补偿器(Statcom)无功电流非线性控制研究[J].电力传动.2006,36(7):71-74
    [12]鄂飞,程汉湘,朱约章.IPM模块在配电用静止无功补偿器中的应用[J].电力电气.2005,24(10):40-43
    [13]刘文华,胡雨辰,刘炳等.IGCT和IEGT—实用于STATCOM的新型大功率开关器件[J].电力系统自动化.2000,10(12):66-70
    [14]谭甜源,姜齐荣,李刚等.基于电流控制的三电平DSTATCOM装置的控制方法[J].电力系统自动化,2007.4(2):61-65
    [15]李春文,冯元锟.多变量非线性控制的逆系统方法[M].清华大学出版社,1991
    [16]曹建福,韩崇昭,方洋旺.非线性系统理论应用[M].西安大学出版社,2001
    [17]魏文辉,刘文华,宋强等.基于逆系统方法有功-无功解耦PWM控制的链式STATCOM动态控制策略研究[J].中国电机工程学报.2005,25(3):23-27
    [18]郭瑞,刘国海.静止同步补偿器数学模型及无功电流控制研究[J].电力自动化设备..2006(1):123-127
    [19]冯纯伯,费树岷.非线性控制系统分析与设计[M].电子工业出版社.1998
    [20]Yao Z Dawande M S,Rajagopalan V.Controller design for advanced reactive power compensators based on input-output linearization[J].Power Electronics Specialists conference,1997.2
    [21]朱义胜,董辉,李作洲等译.非线性系统[M].电子工业出版社,2005
    [22]茅靖峰,孙玉坤,吴爱华等.静止同步补偿装置建模、控制与仿真研究[J].系统仿真学报.2007,(5):22-27
    [23]王划一,杨西侠,林家恒等.自动控制原理[M].国防工业出版社,2001
    [24]Cheng ChernLin,Lee CheMing,Tu Rongjie,etal.A novel simplified space-vector modulated control schem for three-phase switch-mode rectifier[J].IEEE on Trans.Industrial Electronics.1999,86(3)
    [25]吴晓梅,严干贵.基于级联式电压源逆变器的静止同步补偿器直流电压控制策略.电网技术,2006,30(18)
    [26]王仲鸿,姜齐荣,沈东.关于新型静止无功发生器模型参数及暂态控制模型选择讨论[J].电力系统自动化.1999,(12)
    [27]汤华龙.100kvar并联混合有源电力滤波器的研制[D].山东大学硕士论文.2007
    [28]陈伯时.电力拖动自动控制系统[M].机械工业出版社.2000
    [29]王正林,王胜开,陈国顺.MATLAB/Simulink与控制系统仿真[M].电子工业出版社.2005
    [30]同向前,焦妍莹,申炜.静止同步补偿器滤波电感的选择[J].电力电子技术.2007(2):146-152
    [31]欧开健.STATCOM直流侧电容值对系统谐波含量和电容电压波动幅值的影响及其选择[J].电力自动化设备.2004,24(6):155-158
    [32]马晓军,刘文华,王仲鸿.新型同步补偿器直流侧储能电容值的选取方法[J].中 国机电工程学报.2000,20(10):31-35
    [33]张崇巍,张兴.PWM整流器及其控制[M].机械工业出版社,2003
    [34]王仲鸿,姜齐荣,沈东.关于新型静止无功发生器模型参数及暂态控制模型选择讨论[J].电力系统自动化.1999(12):231-237
    [35]刘文华,卢军峰,郑征,刘炳.基于SHE-PWM的D-STATCOM的控制器和脉冲发生器的设计[J].清华大学学报(自然科学版).2002(9)
    [36]Bimal K.Bose.Modem Power Electronics and AC Drives[M]..Prentice Hall PTR,2002
    [37]彭小俊.基于SPWM的D-STATCOM的设计[D].贵州工业大学硕士文.2003
    [38]章勇高,康勇,刘黎明,静止同步补偿器双环控制系统设计[J],2006,26(10):62-66
    [39]程汉湘,配电系统STATCOM的动态性能及控制策略研究[M],华中科技大学博士论文,200406
    [40]孙晓娟,高嵩,敬伟STATCOM系统仿真仿真技术[J]2005年21卷第10-1期170-172
    [41]杨德刚,赵良炳,刘润生.三相高功率因数整流器的建模与闭环控制[J].电力电子技术.1995(5)
    [42]沈东,姜齐荣,韩英铎.静止同步补偿器标幺模型及开环响应时间常数分析[J].2000,20(7)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700