磁悬浮飞轮储能电机及其驱动系统控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
飞轮储能系统是一种新型的机电能量转换与存储装置,具有使用寿命长、转换效率高、适应性强以及无污染等优点,在航空航天、分布式发电、电力调峰以及电动汽车等领域有着广泛的应用前景。飞轮储能技术是一种多学科交叉的高科技新技术,涉及磁悬浮、高速电机、真空处理、电力电子以及复合材料等技术,被认为是未来最有应用价值的能量存储方式之一,其研究内容非常丰富。本文的研究课题来源于深圳市重点科技研究项目——分布式自主能源系统前期研究,主要包括磁悬浮轴承、飞轮储能用电动机/发电机(本文定义为飞轮储能电机)以及飞轮储能电机驱动系统控制三个方面的研究内容。
     磁悬浮轴承能够解决传统轴承磨损、润滑等方面的问题,是飞轮储能系统的关键技术。本课题采用由轴向永磁磁悬浮轴承与径向无源电动磁悬浮轴承组成的全被动磁悬浮轴承结构,永磁磁悬浮轴承用于支撑飞轮质量,无源电动磁悬浮轴承用于保持飞轮径向稳定。无源电动磁悬浮轴承在直线运动应用场合的研究获得了很多可喜成果,但在旋转运动尚处于起步阶段,是飞轮储能领域的研究难点。本文提出新型的径向无源电动磁悬浮轴承结构:定子采用相斥磁场结构,转子采用单层或双层8字形线圈结构。然后利用解析法和有限元仿真分析法对相斥磁场特性、8字形线圈受力、转子受力、以及轴承损耗等进行研究。为验证径向轴承的理论分析和仿真研究的正确性,设计一个径向轴承样机及测试平台进行实验研究,使转子高速稳定旋转、可以方便观察轴承定子的运动状态、并测得定子的偏移量和受力关系。
     飞轮储能电机实现电能与机械能的相互转换,是飞轮储能系统的关键部件。为提高能量的转换效率和系统的集成度等性能,提出选用无铁心永磁方波无刷飞轮电机作为能量转换的电动机/发电机。该种电机无定子铁损和转子铜损,使电机空载运行时主要损耗为绕组的涡流损耗、负载运行时主要损耗为绕组涡流损耗与转子涡流损耗。为减小绕组涡流损耗,建立其理论估算模型,并对一台样机进行绕组涡流损耗估算,再利用自由停机的实验方法验证估算模型的有效性。分析确定转子涡流损耗的来源为电枢反应,并提出内、外等效电流层求解电枢反应场的方法;为减小转子损耗,保证电机负载时高效运行,详细分析了空间谐波和时间谐波产生损耗的原理,并提出改变风损的实验方法对转子损耗进行分离,实验结果与有限元仿真计算结果进行比较,验证实验方法的有效性,同时验证有限元计算结果的可靠性。
     无铁心永磁方波无刷飞轮电机具有小电感的特点,会造成升速过程中稳态电流波动大的问题,而且采用方波控制时,存在换相电流波动,增加了充电过程的控制难度;为减小充电时电机稳态电流波动大的问题,提出方波倍频PWM控制与母线电压调节控制相结合的方法,并利用Matlab系统仿真和实验研究验证控制方法的可行性。为减小电机的换相电流波动,提出利用新型三相逆变器和母线电流检测方法,获得全范围内完整的电流信息,实现高质量的电流反馈控制。系统放电时,随着转速的降低输出电势越低,造成驱动系统放电控制的难度增大。为保证系统放电的安全性,利用Boost电路先升压再逆变输出的方法,并用Matlab仿真验证该方法的有效性。
     最后,设计实现一个基于TMS320F2812 DSP的飞轮储能电机驱动系统的数字控制最小系统。重点介绍了系统的硬件设计和软件设计,以满足飞轮储能系统的控制要求;并且利用该最小系统对飞轮储能系统样机进行了实验研究,实验结果与仿真结果进行对照,验证控制方案的实用性。
Flywheel energy storage system is a kind of novel electromechanical energy conversion device with several advantages, including long-life, high efficiency, strong adaptablility and no pollution etc. There is extensive application foreground in mang fields, such as aerospace, distributed electricity generation, electric power peak adjustion, and electromotion vehicle so on. Flywheel energy storage technology is a kind of cross technology with several high and new technology, including magnetic suspension technology, high speed electric machine technology, vacuum technology, power electronics technology and composite material technology etc., and it is deemed to be one of the most valuable energy storage technology, so, the relative study content is very abundant. The research task of this paper comes from the Key Science and Technology Research Project of Shenzhen City Government——Early Research of Distributed Self-determination Energy System, and the main study contents of this paper include three parts: magnetic suspension bearing, motor/generator for flywheel energy storage(flywheel electric machine for energy storage) and control of flywheel electric machine drive system for energy storage.
     Magnetic suspension bearing technology is one of the key technologies of flywheel energy storage. This project proposes full passive magnetic suspension bearing structure which consisits of axial permanent-magnet suspension bearing and radial passive electromotive magnetic suspension bearing to remove abrasion and lubrication of traditional bearing. Axial permanent-magnet bearing is used to support the mass of flywheel rotor, radial passive electromotive magnetic bearing is used to keep radial stable suspension of flywheel. There are many delightful research achievements of passive electromotive magnetic bearing in linear-motion occasion, but the research of passive electromotive magnetic bearing is in initial starting stage in rotating occasion, and it is a difficult point of magnetic bearing field. This paper proposes a new stucture of passive electromotive magnetic bearing which inclues two parts: stator supplys repulsive magnetic field, and rotor selects single-layer 8-shape coil structure or double-layer 8-shape coil structure. And then several contents which include characteristics of repulsive magnetic field, force of 8-shape coil, force of rotor, and stabilization of bearing etc., are studied with theoretical analysis scheme and finite element analysis(FEA) scheme. Finally, a prototype and a test device for radial passive electromotive magnetic bearing is designed to validate theory analysis and simulation study; this device can assemble rotor to implement high speed rotation, conveniently observe movement process of stator, and measure the relative data between departure length and force of stator.
     Flywheel electric machine for energy storage which is the carrier of energy between electrical energy and mechanical energy is another key part of flywheel energy storage. Ironless permanent magnet square-wave flywheel electric machine is selected in this paper to improve some characteristics of energy storage system, such as efficiency, integration level etc. This type of electric machine has no copper loss of rotor and no iron loss of stator, so, the main loss is winding eddy loss without load, and the main loss includes winding loss and rotor eddy loss with full load. Theory estimation calculation model is modeled to reduce winding eddy loss, and the winding eddy loss of a prototype is estimated with the proposed model, finally validated by experiment of free halt. The rotor eddy loss maily comes from armature reaction, and the field resolution scheme is proposed using equivalent current layer which includes inner layer and outer layer to get the distribution of armature reaction field; to reduce rotor eddy loss and obtain high efficiency, the principle of loss caused by space harmonics and time harmonics is analyzed in detail, then, a experimental scheme to measure rotor eddy loss by changing windage loss is propsed, and the experiment results compare with FEA calculation results to validate the proposed experiment scheme, furthermore, the reliability of FEA calculation is also demonstrated.
     During the charge period, ironless permanent magnet square-wave brushless electric machine is difficult to drive because the little phase-inductance causes large steady-state current ripple with PWM control scheme; furthermore, large phase-conversion current ripple will be produced while the motor/generator is driven by square-wave control scheme. So, the large steady-state current ripple and large phase-conversion current ripple will increase the control difficulty. This paper proposes a novel control scheme including double-frequency PWM(pulse width modulation) square-wave control and DC voltage adjustion to reduce steady-state current ripple, and the proposed scheme is validated by Matlab simulation and experiment. Then, novel three-phase inverter and bus current detecting shceme which are to obtain all current information are proposed to reduce phase-conversion current ripple of square-wave motor, and the proposed scheme is also validated by Matlab simulation and experiment. During the discharge period, the output voltage decreases with the speed of electric machine, which increases the control difficulty for discharge. So, a converter for discharge which includes a Boost circuit and a single-phase inverter circuit is presented to obtain stable and safety output, and the proposed scheme is also validated by Matlab simulation.
     Finally, a digital minimum drive system for electric machine drive of flywheel energy storage based on TMS320F2812 DSP is designed. To satisfy control requirement of flywheel energy storage system, this paper mainly introduces hardware design and software design, and experimental research of flywheel energy storage system prototype is implemented with the minimum system, then experimental results compare with simulation results to validate practicability of system control scheme.
引文
1 J.M. Carrasco, L.G. Franquelo, J.T. Bialasiewicz, et al. Power-Electronic Systems for the Grid Integration of Renewable Energy Sources: A Survey. IEEE Transactions on Industrial Electronics. 2006, 53(4): 1002-1016
    2 S. Valero, M. Ortiz, C. Senabre, et al. Methods for customer and demand response policies selection in new electricity markets. IET on Generation, Transmission & Distribution. 2007, 1(1): 104-110
    3叶卫忠.节能与分布式能源的发展.沈阳工程学院学报(自然科学版). 2008, 4(2): 102-106
    4 A. Mohd, E. Ortjohann, A. Schmelter, et al. Challenges in integrating distributed Energy storage systems into future smart grid. IEEE International Symposium on Industrial Electronics, 2008. ISIE 2008. 2008: 1627-1632
    5 V. John, E. Benedict, S.M. Danial. An Universal Interconnection System to Connect Distributed Generation to the Grid. International Conference on Power Electronics, Drives and Energy Systems, 2006. PEDES '06. 2006 :1-7
    6 B. Wojszczyk, R. Uluski, F. Katiraei. The role of distributed generation and energy storage in utilities of the future. IEEE Power and Energy Society General Meeting - Conversion and Delivery of Electrical Energy in the 21st Century, 2008. 2008: 1-2
    7 P. Poonpun, W.T. Jewell. Analysis of the Cost per Kilowatt Hour to Store Electricity. IEEE Transaction on Energy Conversion. 2008, 23(2): 529-534
    8刘拥军,王亮,王强,武彬.华东电网抽水蓄能电站电能计划安排方式优化算法.电力系统自动化. 2009, 33(3): 104-107
    9 D.J. Swider. Compressed Air Energy Storage in an Electricity System With Significant Wind Power Generation. IEEE Transaction on Energy Conversion. 2007, 22(1): 95-102
    10 X. Y. Wang, D. Mahinda Vilathgamuwa, S. S. Choi. Determination of Battery Storage Capacity in Energy Buffer for Wind Farm. IEEE Transaction on Energy Conversion. 2008, 23(3): 868-878
    11崔林,文劲宇,程时杰.超导磁储能系统抑制风力发电功率波动的研究.电力科学与技术学报. 2008, 23(1): 24-30
    12 Liye Xiao, Liangzhen Lin. Recent Progress of Power Application of Superconductor in China. IEEE Transactions on Applied Superconductivity. 2007, 17(2): 2355-2360
    13 A.-R. Kim, Gyeong-Hun Kim, Jae-Ho Kim. Operational Characteristic of the High Quality Power Conditioner With SMES. IEEE Transactions on Applied Superconductivity. 2008, 18(2): 705-708
    14 J.G. Bitterly. Flywheel technology: past, present, and 21st century projections. IEEE Aerospace and Electronic Systems Magazine. 1998, 13(8): 13-16
    15 R.S. Weissbach, G.G. Karady, R.G. Farmer. Dynamic voltage compensation on distribution feeders using flywheel energy storage. IEEE Transactions on Power Delivery. 1999, 14(2): 465-471
    16 B. Szabodos, U. Schaible. Peak power bi-directional transfer from high speed flywheel to electrical regulated bus voltage system: a practical proposal for vehicular technology. IEEE Transaction on Energy Conversion. 1998, 13(1): 34-41
    17 M. Ahrens, L. Kucera, R. Larsonneur. Performance of a magnetically suspended flywheel energy storage device. IEEE Transactions on Control Systems Technology. 1996, 4(5): 494-502
    18白越,黎海文,吴一辉,宣明.复合材料飞轮转子设计.光学精密工程. 2007, 15(6): 852-857
    19 J.B.Roes. An Electro-Mechanical Energy Storage System for Space Application. Energy Conversion for Space Power. Progress in Astronautics and Rocketry. 1961,3:613-622
    20 Anderson, et al. An Integrated Energy Storage and Attitude Control Proceedings. American Control Conference. 1997,3:1894-1898
    21 Vit Babuska, Scott M.Beatty, Brett J.deBlonk, Jerry L.Fausz. A Review of Technology Developments in Flywheel Attitude Control and Energy Transmission Systems. IEEE Aerospace Conference Proceedings. 2004:2784-2800
    22 Eunjeong Lee. A High-Temperature Superconductor Magnetic Energy Storage and Attitude Control System for Space MEMS. IEEEAC. 2001:2365-2371
    23 B.H.Kenny, et al. Control of a High Speed Flywheel System for Energy Storage in Space Applications. NASA/TM-20040213356
    24 A.C. Ferreira, G.G. Sotelo, J.L.S. Neto. Voltage sags compensation using a superconducting flywheel energy storage system. IEEE Transactions on Applied Superconductivity. 2005, 15(2): 2265-2268
    25 H. Kenny Barbara, Ralph Jansen, Peter. Demonstration of Single Axis Combined Attitude Control and Energy Storage Using Two Flywheels. 2004 IEEE Aerospace Conference Proceedings:2801-2819
    26 A. Cormack, J.E. Notti, Design Report for the Rotating Assembly for an Integrated Power/Attitude Control System, NASA CR-172317, Sept. 1974
    27 H. Akagi, H. Sato. Control and performance of a doubly-fed induction machine intended for a flywheel energy storage system. IEEE Transactions on Power Electronics. 2002, 17(1): 109-116
    28 L.R. Turner. Fields and forces in flywheel energy storage with high-temperature superconducting bearings. IEEE Transactions on Magnetics, 1997, 33(2): 2000-2003
    29 T. Ichihara, K. Matsunaga, M. Kita. Application of superconducting magnetic bearings to a 10 kWh-class flywheel energy storage system. IEEE Transactions on Applied Superconductivity. 2005, 15(2): 2245-2248
    30 H.J. Bornemann, M. Sander. Conceptual system design of a 5 MWh/100 MW superconducting flywheel energy storage plant for power utility applications. IEEE Transactions on Applied Superconductivity. 1997, 7(2): 398-401
    31 I. Alan, T.A. Lipo. Induction machine based flywheel energy storage system. IEEE Transactions on Aerospace and Electronic Systems. 2003, 39(1): 151-163
    32戴兴建,卫海岗,沈祖培.储能飞轮转子轴承系统动力学设计与试验研究.机械工程学报. 2003, 39(4): 97-101
    33戴兴建,李奕良,于涵.高储能密度飞轮结构设计方法.清华大学学报(自然科学版).2008, 48(3): 379-382
    34于涵,戴兴建,沈祖培.储能飞轮轮毂的蠕变温度特性与蠕变影响.清华大学学报(自然科学版). 2006, 46(6): 805-808
    35董志勇,戴兴建,李奕良.采用螺旋槽锥轴承的飞轮储能系统空载损耗研究.机械科学与技术. 2006, 25(12): 1434-1437
    36陈俊岭,姜新建,朱东起,卫海岗.基于飞轮储能技术的新型UPS的研究.清华大学学报(自然科学版).2004, 44(10): 1321-1324
    37张建成,黄立培,陈志业.飞轮储能系统及其运行控制技术研究.中国电机工程学报. 2003, 23(3): 108-111
    38赵丽滨,张建宇,高晨光等.基于结构可靠性的姿控/储能飞轮转子设计方法研究.宇航学报. 2006, 27(5): 942-946
    39韩邦成,房建成,吴一辉.单轴飞轮储能/姿态控制系统的仿真研究.系统仿真学报. 2006, 18(9): 2511-2515
    40张军,徐世杰.采用VSCMGs的航天器IPACS设计的一种投影矩阵方法.宇航学报. 2006, 27(4): 609-615
    41于灵慧,房建成.基于主动磁轴承的高速飞轮转子系统的非线性控制研究.宇航学报. 2005, 26(3): 301-306
    42房建成,孙津济.一种磁悬浮飞轮用新型永磁偏置径向磁轴承.北京航空航天大学学报. 2006, 32(11): 1304-1307
    43刘治华,贾宏光,白越.集成化储能与姿态控制系统中飞轮高精度测速方法.吉林大学学报(工学版). 2006, 36(增刊): 99-104
    44谭凤顺,金能强,夏东,夏平畴.无源高温超导磁浮轴承磁悬浮力的计算.电工电能新技术. 2002, 21(1): 16-19
    45谭凤顺,金能强.无源高温超导磁浮轴承两种方案比较.低温与超导. 2001, 29(3): 43-50
    46阮军鹏,张建成,王娟华.飞轮储能系统改善并网风电场稳定性的研究.电力科学与工程. 2008, 24(3): 5-8
    47张建成.用于配电网的飞轮储能系统设计.华北电力大学学报. 2005, 32(增刊): 38-40
    48 Chi Zhang, King Jet Tseng. A Novel Flywheel Energy Storage System With Partially-Self-Bearing Flywheel-Rotor. IEEE Transaction on Energy Conversion. 2007, 22(2): 477-487
    49 R.S. Weissbach, G.G. Karady, R.G. Farmer. A combined uninterruptible power supply and dynamic voltage compensator using a flywheel energy storage system. IEEE Transactions on Power Delivery. 2001, 16(2): 265-270
    50 S. Samineni, B.K. Johnson, H.L. Hess, et al. Modeling and analysis of a flywheel energy storage system for Voltage sag correction. IEEE Transactions on Industry Applications. 2006, 42(1): 42-52
    51 Vasileios Lelos, Steve Manifold, John Granier. Structural Properties and Testing of a Composite Banding Used in High-Speed Rotors. IEEE Transactions on Magnetics. 2007, 43(1): 250-253
    52 G. Genta. Kinetic energy storage: theory and practice of advanced flywheel systems. London, England: Cambridge University Press, 1985
    53 R.F. Post, S.F. Post. Flywheels. Scientific American. 1973, 229(6):17-23
    54 S.M. Amold, A.F. Saleeb, R. AL-Zoubin. Deformation and life analysis of composite flywheel disk and multi-disk system[p]. NASA/TM, 2001-210578
    55阎耀辰,张恒,刘怀喜等.复合材料储能飞轮研究.焦作工学院学报(自然科学版). 2004, 23(1): 34-37
    56 D.H. Curtiss, P.P. Mongeau, R.L. Puterbaugh. Advanced composite flywheel structural design for a pulsed disk alternator. IEEE Transactions on Magnetics. 1995, 31(1): 26-31
    57 J.H. Beno, R.C. Thompson, M.D. Werst. End-of-life design for composite rotors [flywheel systems]. IEEE Transactions on Magnetics. 2001, 37(1): 284-289
    58 S.K. Ha, H.M. Jeong, Y.S. Cho. Optimum Design of Thick-Walled Composite Rings for an Energy Storage System. Journal of Composite Materials. 1998, 32(9): 851-873
    59张姝娜,房建成,韩邦成,李红.磁悬浮飞轮转子组件温度场分析与研究.中国惯性技术学报. 2007, 15(1): 67-71
    60褚立新,林辉.航天器储能飞轮的发展与应用.宇航学报. 2007, 28(6): 1447-1451
    61李松松,吴一辉,徐春红.碳纤维复合飞轮转子储能密度的优化研究.石油机械. 2003, 31(6): 20-23
    62黄国平,王跃,梁德旺.用于微型涡轮机的节流孔式静压气浮轴承实验.航空动力学报. 2008, 23(3): 541-546
    63 Yoshinori Mitamura, Kazuyuki Kido, Tetsuya Yano, et al. A Hydrodynamically Suspended, Magnetically Sealed Mechanically Noncontact Axial Flow Blood Pump: Design of a Hydrodynamic Bearing. Journal of International Center for Artificial Organs and Transplantation. 2007, 31(3): 221-224
    64朱熀秋,陈艳,谢志意等.磁悬浮轴承结构与磁路分析.机械设计与制造. 2007, 6(6): 57-59
    65张丹红,陈建华,苏义鑫等.主动磁力轴承系统的模糊逆建模.中国电机工程学报. 2006, 26(14): 126-130
    66 Tae-Hyun Sung, Young-Hee Han, Jun-Sung Lee, et al. Effect of a passive magnetic damper in a flywheel system with a hybrid superconductor bearing set.IEEE Transactions on Applied Superconductivity. 2003, 13(2): 2165-2168
    67 T. Ohji, S.C. Mukhopadhyay. Performance of repulsive type magnetic bearing system under nonuniform magnetization of permanent magnet. IEEE Transactions on Magnetics. 2000, 36(5): 3696-3698
    68 M. Komori, Y. Uchimura. Improving the dynamics of two types of flywheel energy storage systems with SMBs. IEEE Transactions on Applied Superconductivity. 2005, 15(2): 2261– 2264
    69 K. Davey, A. Filatov, R. Thompson. Design and analysis of passive homopolar flux bearings. IEEE Transactions on Magnetics. 2005, 41(3): 1169– 1175
    70 S. Sivrioglu. Adaptive backstepping for switching control active magnetic bearing system with vibrating base. IET Control Theory & Applications. 2007, 1(4): 1054-1059
    71 Min Sig Kang, Woo Hyun Yoon. Acceleration feedforward control in active magnetic bearing system subject to base motion by filtered-X LMS algorithm. IEEE Transactions on Control Systems Technology. 2006, 14(1): 134- 140
    72 P. Tsiotras, M. Arcak. Low-bias control of AMB subject to voltage saturation: state-feedback and observer designs. IEEE Transactions on Control Systems Technology. 2005, 13(2): 262- 273
    73 Ha-Yong Kim Chong-Won Lee. Analysis of eddy-current loss for design of small active magnetic bearings with solid core and rotor. IEEE Transactions on Magnetics. 2004, 40(5): 3293- 3301
    74 Lichuan Li, T. Shinshi, A. Shimokohbe. Asymptotically exact linearizations for active magnetic bearing actuators in voltage control configuration. IEEE Transactions on Control Systems Technology. 2003, 11(2): 185-195
    75徐飞鹏;李铁才.采用Halbach磁场的新型被动磁轴承仿真.电机与控制学报. 2007, 11(5): 538-541
    76 Tang Shuangqing; Yang Jiajun; Liao Daoxun. Analysis of a New-type Passive Magnetic Bearing. European Journal of Mechanical and Environmental Engineering. 2003, 48(3): 143-147
    77 Jean-Paul Yonnet. Permanent Magnet Bearings and Couplings. IEEE Transactions on Magnetics. 1981, 17(1): 1169-1173
    78 Wang Fengxiang, Wang Jiqiang, Kong Zhiguo, et al. Radial and Axial Force Calculation of BLDC Motor with Passive Magnetic Bearing. 4th InternationalPower Electronics and Motion Control Conference, IPEMC 2004. Xi'an, China. 2004, 1: 290-293
    79 Pranab Samanta; Harish Hirani. Magnetic Bearing Configurations: Theoretical and Experimental Studies. IEEE Transactions on Magnetics. 2008, 44(2): 292-300
    80 F.N. Werfel, U. Floegel-Delor, T. Riedel, et al. A Compact HTS 5 kWh/250 kW Flywheel Energy Storage System. IEEE Transactions on Applied Superconductivity. 2007, 17(2): 2138-2141
    81 Y.H. Han, J.R. Hull, S.C. Han, et al. Design and characteristics of a superconductor bearing. IEEE Transactions on Applied Superconductivity. 2005, 15(2): 2249-2252
    82 M. Okano, N. Tamada, S. Fuchino, et al. Numerical analysis of a superconducting bearing. IEEE Transactions on Applied Superconductivity. 2000, 10(1): 909-912
    83 T. Suzuki, E. Ito, T. Sakai, et al. Temperature Dependency of Levitation Force and Its Relaxation in HTS. IEEE Transactions on Applied Superconductivity. 2007, 17(2): 3020-3023
    84 G.G. Sotelo, A.C. Ferreira, R. Jr. de Andrade. Halbach array superconducting magnetic bearing for a flywheel energy storage system. IEEE Transactions on Applied Superconductivity. 2005, 15(2): 2253-2256
    85 M. Strasik, P.E. Johnson, A.C. Day, et al. Design, Fabrication, and Test of a 5-kWh/100-kW Flywheel Energy Storage Utilizing a High-Temperature Superconducting Bearing. IEEE Transactions on Applied Superconductivity. 2007, 17(2): 2133-2137
    86 R. Moser, J. Sandtner and H. Bleuler. Optimization of Repulsive Passive Magnetic Bearings. IEEE Transactions on Magnetics. 2006, 42(8): 2038~2042
    87 P. Samanta and H. Hirani. Magnetic Bearing Configurations: Theoretical and Experimental Studies. IEEE Transactions on Magnetics. 2008, 44(2): 292-300
    88 Jeroen de Boeij, Maarten Steinbuch, Hector M. Gutierrez. Mathematical Model of the 5-DOF Sled Dynamics of an Electrodynamic MaglevSystem With a Passive Sled. IEEE Transactions on Magnetics. 2005, 41(1): 460-465
    89 Jianliang He, H. Coffey. Magnetic damping forces in figure-eight-shaped null-flux coil suspensionsystems. IEEE Transactions on Magnetics. 1997, 33(5):4230-4232
    90 K. Davey. Designing with null flux coils. IEEE Transactions on Magnetics. 1997, 33(5): 4327-4334
    91 K. Davey, T. Morris. Calculation of motion induced eddy current forces in null flux coils. IEEE Transactions on Magnetics. 1995, 31(6): 4214-4216
    92 T.M. Mulcahy, J. He. Forces on a magnet moving past figure-eight coils. IEEE Transactions on Magnetics. 1993, 29(6): 2947-2949
    93 Alexei Filatov.“Null-E”Magnetic Bearings. University of Virginia, Doctoral Dissertation. 2002: 9-11
    94 D.C. Meeker, A.V. Filatov, E.H. Maslen. Effect of magnetic hysteresis on rotational losses in heteropolar magnetic bearings. Magnetics, IEEE Transactions on. 2004, 40(5): 3302-3307
    95 Alexei Vladimirovich Filatov, Adrian Keith Salter. Magneto-dynamic bearing. US Patent 6304015. Oct 16, 2001
    96 A.V. Filatov,; E.H. Maslen, Passive magnetic bearing for flywheel energy storage systems. IEEE Transactions on Magnetics. 2001, 37(6): 3913-3924
    97汤双清,蔡敢为.一种新型被动磁悬浮轴承的研究.中国机械工程. 2002, 13(24): 2134-2136
    98汤双清.飞轮电池磁悬浮支承系统理论及应用研究.华中科技大学博士学位论文. 2003: 16-17
    99 G.G. Sotelo, R. de Andrade, A.C. Ferreira. Magnetic Bearing Sets for a Flywheel System. IEEE Transactions on Applied Superconductivity. 2007, 17(2): 2150-2153
    100 K. Murakami, M. Komori, H. Mitsuda. Flywheel Energy Storage System Using SMB and PMB. IEEE Transactions on Applied Superconductivity. 2007, 17(2): 2146-2149
    101 T.M. Mulcahy, J.R. Hull, K.L. Uherka, et al. Test results of 2-kWh flywheel using passive PM and HTS bearings. IEEE Transactions on Applied Superconductivity. 2001, 11(1): 1729-1732
    102 A. Rastogi, D.R. Alonso, T.A. Coombs, et al. Axial and journal bearings for superconducting flywheel systems. IEEE Transactions on Applied Superconductivity. 2003, 13(2): 2267-2270
    103 Seung-Yong Hahn, Woo-Seok Kim, Ji-Hoon Kim. Low speed FES with inductionmotor and generator. IEEE Transactions on Applied Superconductivity. 2002, 12(1): 746-749
    104 M. Dahmane, F. Meibody-Tabar, F.-M. Sargos. An adaptive converter for switched reluctance motor/generator for high speed applications. Conference Record of the 2000 IEEE Industry Applications Conference. 2000, 3: 1547-1554
    105 Wensen Wang, H. Hofmann, C.E. Bakis. Ultrahigh Speed Permanent Magnet Motor/Generator for Aerospace Flywheel Energy Storage Applications. 2005 IEEE International Conference on Electric Machines and Drives. 2005: 1494-1500
    106 M. M. Cheng, S. Kato, H. Sumitani. A novel method for improving the overload capability of stand-alone power generating systems based on a flywheel induction motor. IEEE Power Electronics Specialists Conference, 2008. PESC 2008. 2008: 3677-3683
    107 Xiang-Dong Sun, M. Matsui, Y. Nakamura. V/f Fuzzy Control of an Induction Motor for a DC Grid Power Leveling System Using a Flywheel Energy Storage Equipment. 33rd Annual Conference of the IEEE Industrial Electronics Society, 2007. IECON 2007. 2007: 2092-2097
    108 Gang Li, Jing Zhang, Shijie Cheng, et al. State Space Formulation and Stability Analysis of a Doubly-fed Induction Machine with a Flywheel Energy Storage System. International Conference on Power System Technology, 2006. PowerCon 2006. 2006: 1-6
    109 S. Kato, Miao-miao Cheng, H. Sumitani, et al. Semiconductor Power Converterless Voltage Sag Compensator and UPS Using a Flywheel Induction Motor and an Engine Generator. Power Conversion Conference - Nagoya, 2007. PCC '07. 2007: 1680-1685
    110 Perry Tsao, M. Senesky, S.R. Sanders. An integrated flywheel energy storage system with homopolar inductor motor/generator and high-frequency drive. IEEE Transactions on Industry Applications. 2003, 39(6): 1710-1725
    111 M. El Mokadem, C. Nichita, P. Reghem, et al. Short Term Energy Storage Based on Reluctance Machine Control for Wind Diesel System. 12th International Power Electronics and Motion Control Conference, 2006. EPE-PEMC 2006. 2006: 1585-1590
    112 R. Cardenas, R. Pena, M. Perez, et al. Power Smoothing Using a FlywheelDriven by a Switched Reluctance Machine. IEEE Transactions on Industrial Electronics. 2006, 53(4): 1086-1093
    113 Jae-Do Park; C. Kalev, H.F. Hofmann. Analysis and Reduction of Time Harmonic Rotor Loss in Solid-Rotor Synchronous Reluctance Drive. IEEE Transactions on Power Electronics. 2008, 23(2): 985-992
    114 Jae-Do Park, C. Kalev, H. F. Hofmann. Modeling and Control of Solid-Rotor Synchronous Reluctance Machines Based on Rotor Flux Dynamics. IEEE Transactions on Magnetics. 2008, 44(12): 4639-4647
    115 Jae-Do Park, C. Kalev, H. F. Hofmann. Control of High-Speed Solid-Rotor Synchronous Reluctance Motor/Generator for Flywheel-Based Uninterruptible Power Supplies. IEEE Transactions on Industrial Electronics. 2008, 55(8): 3038-3046
    116 Vafakhah Behzad, Masiala Mavungu, Salmon John. Emulation of flywheel energy storage systems with a PMDC machine; Knight, Andy. 18th International Conference on Electrical Machines, 2008. ICEM 2008. 2008: 1-6
    117 A.S. Nagorny, N.V. Dravid, R.H. Jansen, et al. Design aspects of a high speed permanent magnet synchronous motor/generator for flywheel applications. 2005 IEEE International Conference on Electric Machines and Drives. 2005: 635-641
    118 J.R. Hull, L.R. Turner. Magnetomechanics of internal-dipole, Halbach-array motor/generators. IEEE Transactions on Magnetics. 2000, 36(4): 2004-2011
    119 Ji-eun Yi; Kang Won Lee; Bongsu Kim, et al. Micro flywheel energy storage system with axial flux machine. 2007 ieee/asme international conference on Advanced intelligent mechatronics. 2007: 1-6
    120 J. Santiago, J. G. Oliveira, J. Lundin. Losses in axial-flux permanent-magnet coreless flywheel energy storage systems. 18th International Conference on Electrical Machines, 2008. ICEM 2008. 2008: 1-5
    121 Seok-Myeong Jang, Dae-Joon You, Kyoung-Jin Ko. Design and Experimental Evaluation of Synchronous Machine Without Iron Loss Using Double-Sided Halbach Magnetized PM Rotor in High Power FESS. IEEE Transactions on Magnetics. 2008, 44(1): 4337-4340
    122徐衍亮,赵建辉,房建成.高速出能飞轮用无铁芯永磁无刷直流电动机的分析与设计.电工技术学报. 2004, 19(12): 24-28
    123刘平,刘刚,张庆荣.磁悬浮飞轮用BLDC系统的仿真方法与实验分析.航天控制. 2007, 25(1): 56-61
    124 Dae-Joon You, Seok-Myeong Jang, Jeong-Phil Lee. Dynamic Performance Estimation of High-Power FESS Using the Operating Torque of a PM Synchronous Motor/Generator. IEEE Transactions on Magnetics. 2008, 44(11): 4155-4158
    125龚铁裕,唐国金,王跃锋.卫星飞轮用稀土永磁电机的方波-正弦波复合驱动.上海航天. 2004, 3: 20-24
    126 Bingsen Wang, G. Venkataramanan. Dynamic Voltage Restorer Utilizing a Matrix Converter and Flywheel Energy Storage. IEEE Transactions on Industry Applications. 2009, 45(1): 222-231
    127 Paulo Gamboa, S. Ferreira Pinto, J. Fernando Silva. A flywheel energy storage system with Matrix Converter controlled Permanent Magnet Synchronous Motor.
    18th International Conference on Electrical Machines, 2008. ICEM 2008. 2008: 1-5
    128 J.G. Oliveira, A. Larsson, H. Bernhoff. Controlling a permanent-magnet motor using PWM converter in flywheel energy storage systems. 34th Annual Conference of IEEE Industrial Electronics, 2008. IECON 2008. 2008: 3364-3369
    129 Shengming Li; Longya Xu. Fault-tolerant operation of a 150kW 3-level neutral-point-clamped PWM inverterin a flywheel energy storage system. Thirty-Sixth IAS Annual Meeting. Chicago, Illinois, USA. 2001, 1: 585-588
    130石雄;朱光喜;甘志银等. MEMS真空封装的真空度测量.仪器仪表学报. 2007, 28(10): 1906-1910
    131卫海岗,戴兴建,沈祖培.储能飞轮风损的理论计算与实验研究.机械工程学报. 2005, 41(6): 188-193
    132 Arkadan, A.A. , Vyas, R., Vaidya, J.G., Shah, M.J.. Effect of toothless stator design and core and stator conductorseddy current losses in permanent magnet generators. IEEE Transactions on Energy Conversion. 1992, 7(2):231-237
    133 Zheng L, Wu T.X., Acharya D., et al. Design of a super-high speed permanent magnet synchronous motor for cryogenic applications. Electric Machines and Drives, 2005 IEEE International Conference. 2005, Page(s):874– 881
    134 Zhu Hongwei,Zou Jibin. Temperature rise calculation and test of the wheel motor for satellite in vacuum. Electrical Machines and Systems, 2005. ICEMS 2005. Proceedings of the Eighth International Conference, 2005, 1: 695– 698
    135 Bianchi, N., Bolognani, S., Fornasiero, E.. A General Approach to Determine the Rotor Losses in Three-Phase Fractional-Slot PM Machines. IEEE International Conference on Electric Machines & Drives, IEMDC '07. 2007, 1: 634-641
    136 Polinder, H., Hoeijmakers, M.J.. Eddy-current losses in the segmented surface-mounted magnets of aPM machine. IEE Proceedings on Electric Power Applications. 1999, 146(3):261-266
    137 Zhu, Z.Q., Ng, K., Schofield, N., Howe, D.. Improved analytical modelling of rotor eddy current loss in brushless machines equipped with surface-mounted permanent magnets. IEE Proceedings on Electric Power Applications. 2004, 151(6):641-650

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700