功能性螺旋聚合物的合成与性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文中我们以联萘基团作为手性源,聚合得到了一种新型主链含手性联萘基团和吡啶基团的螺旋共聚物R-poly-6。通过NMR、元素分析、GPC、CD等测试方法对目标产物进行了表征,其中CD测试表明聚合物为螺旋聚合物。之后进一步研究了R-poly-6热处理前后对D(L)酒石酸、(CH3CN)2PdCl2以及R-poly-6对PdSO4、CuCl2的识别。通过分析CD谱图中不同峰的峰位移动和峰强度变化,发现R-poly-6热处理前后对D(L)酒石酸均没有识别作用;R-poly-6热处理前对(CH3CN)2PdCl2具有识别作用,热处理后基本没有识别作用;R-poly-6对CuCl2具有识别作用。
     通过Yamamoto型Ullman偶联反应得到两亲性咔唑聚合物4-poly-5,经循环制备柱分离得到不同分子量的聚合物,通过IR、NMR、GPC、MS等测试方法对聚合物的结构和聚合物的分子量进行了表征。利用UV-Vis和1H-NMR测试方法研究了分子量Mn=1.37×104的聚合物组分4-poly-5-a在不同比例的CHCl3和DMSO混合溶液中的构象变化。结果表明4-poly-5-a在CHCl3中以无规线团形式存在,当混合溶液中的DMSO比例增加到40-50%时,溶液中的4-poly-5-a转变为螺旋构象的聚合物。
     分别以左旋、右旋樟脑磺酸和盐酸为掺杂剂,以不同侧基的苯胺衍生物为反应单体,通过原位化学氧化聚合法合成了一系列带有侧基的掺杂态聚苯胺衍生物,并且通过氨水脱掺杂得到了带有对应侧基的EB态聚苯胺衍生物。通过GPC和IR测试,研究了处于不同取代位置的推电子侧基、吸电子侧基对上述聚苯胺衍生物分子量及分子结构的影响,并分析了产生相应影响的原因。
     通过UV-Vis和CD测试,研究了手性樟脑磺酸诱导合成的不同侧基的聚苯胺衍生物的手性构象,实验结果表明推电子侧基邻位取代的聚苯胺衍生物和吸电子侧基间位取代的聚苯胺衍生物可以被手性分子诱导,形成单一方向螺旋过量的复合物。
     本文中合成的三类聚合物,其主体都带有功能性基团,为进一步研究螺旋结构对于此类材料的各种功能的影响打下了一定的材料基础。
Helical is the essential attribute of the material, which is formed by the main chain continuous rotation rules. As the unique properties of helical materials, they draw more and more attention from a growing number of scientists. In addition to gain the structural material, chemists are now more prone to introduce the functional groups to the helical materials. In recent years, people focus on such work including (1) electrical activity helical materials: chiral switching spiral materials driven by electricity, chiral conductive spiral material; (2) optical activity helical material: spiral photochromic materials, optical information storage spiral material, spiral fluorescent probe material, the new LCD and LED spiral materials; (3) irritating the corresponding helical materials and (4) molecules, ion recognition helical materials and so on.
     In this paper, we adopted three methods to design and synthesize three types of functional spiral material, including (1) direct synthesis of helix polymers containing the chiral component, (2) non-chiral polymer induced spiralization by different solvents and (3) synthesis of chiral dopant-induced spiral compounds and made some meaningful results.
     (1) Synthesis and properties study of a polypyridine with binaphthyl moietie
     In this paper we synthesized a new chiral R-poly-6 polymer having pyridine and binaphthyl moietiefor by the Suzuki cross-coupling reaction, which was characterized with EA, IR, 1H-NMR and 13C-NMR spectroscopies. The CD and UV-Vis absorption spectra of the R-poly-6 result show it have the visible positive and negative Cotton effect in the 260-500 nm, which proof the R-poly-6 is a helical polymer.
     We attributed to each peak, and further studied the R-poly-6’s indentification before and after annealing treatment on D(L) tartaric acid and (CH3CN)2PdCl2 by studying different peak peak movement and size changes of peak intensity in the CD spectra as well as R-poly-6’s recognition on PdSO4 and CuCl2. In the third experiment, we found R-poly-6 have different effect capabilities with two kinds of ions, which indicates this polymer can be used as a potential chiral ion probe.
     (2) Synthesis of amphiphilic poly-carbazole and the study of the conformation spiralization induced by external environmental changes
     In this paper we have synthesized the amphiphilic poly-carbazole 4-Poly-5 used the excellent optical properties hydrophobic carbazole as main part and the hydrophilic TEG as the side chain by Yamamoto-type Ullman polycondensation reaction and isolated different molecular weight of polymer used cycle of preparative column, whose structure and molecular weight were characterized by IR, NMR, GPC and MS tests. And then, we studied the conformational change of 4-Poly-5-a which the Number average molecular weight is 1.37×104 in the different ratios of mixed solvents of CHCl3 and DMSO.
     Studies have shown that polymer in the non-polar solvent CHCl3 showed random coil structure and the polymer conformation gradually turned into helical structure from random coil structure when DMSO/CHCl3 V/V is 40-50%. Such structural change is due to the hydrophobic force changes between the polymer and solvent.
     (3) Acid-induced synthesis of the different side aniline derivatives by chiral camphor sulfonic
     A series of aniline-based compounds with a different side were synthesizd using in-situ synthesis method with L-and D camphor sulfonic acid and hydrochloric acid as dopants We researched the electron-pushing side, electron-withdrawing hydrophilic side and electron-withdrawing hydrophobic side’s effect on the molecular weight and structure of the compounds, ammonia dedoped compounds and second doped compounds by GPC and IR experments.
     The GPC results show the electron-pushing side aniline derivatives have the larger molecular weight and the electron-withdrawing hydrophilic side and electron-withdrawing hydrophobic side aniline derivatives have the smaller molecular weight. In addition, IR results show that the action between the dopant and polymer is also stronger in the electron-pushing side aniline derivatives polymers.
     (4) Chiral helical conformation study of the different side aniline derivatives synthesizd by chiral camphor sulfonic acid-induced
     Helical conductive polyaniline and its derivatives have many unique excellent properties, in addition to electrical properties of polyaniline such as catalytic properties, electromagnetic shielding, electrochromic color and absorbing performance, they also have optical activity, which make them have the potential applications on the chiral recognition, membrane separation technology, bio-sensors, electrochemical polymerization and other fields. In this paper, we studied the chiral helical conformation of the different side aniline derivatives which were synthesized through chiral camphor sulfonic acid-induced by UV-Vis and CD experiments. The experiment results show that the electron-pushing ortho-substituent aniline derivatives and electron-withdrawing meta-substituent aniline derivatives can be induced the spiral of the main compound.
     Through the work of this paper, we have prepared three types helical materials with the main functional groups, which lay a certain functional materials foundation for the further study on the functional properties effect of the helical structure for such materials.
引文
[1]胡亚微.由柔性双功能配体构筑的配位聚合物[D].长春:吉林大学化学学院2008.
    [2] GREEN M M, PETERSON N C, SATO T, et al. A helical polymer with a cooperative response to chiral information [J]. Science, 1995, 268: 1860-1866.
    [3] OKAMOTO Y, YASHIMA E. Polysaccharide derivatives for chromatographic separation of enantiomers [J]. Angew. Chem. Int. Ed., 1998, 37: 1020-1043
    [4]匿名.螺旋[EB/OL].互动百科.http://www.hudong.com/wiki/%E8%9E%BA%E6%97%8B.
    [5] LOVEZHIHEN, GL020, TIGER-C.螺旋转动[EB/OL]. 2008-11-29.互动百科. http://www.hudong.com/wiki/%E8%9E%BA%E6%97%8B%E4%BC%A0%E5%8A%A8.
    [6]赵萌.螺旋桨[EB/OL]. 2008-12-31.互动百科. http://www.hudong.com/versionlist/%E8%9E%BA%E6%97%8B%E6%A1%A8.
    [7]风轻杨.挠性螺旋[EB/OL]. 2008-12-08.互动百科. http://www.hudong.com/wiki/%E6%8C%A0%E6%80%A7%E8%9E%BA%E6%97%8B.
    [8]反转地球,岸上的鱼.伦敦政经学院-图书馆螺旋梯[EB/OL]. 2008-10-24互动百科. http://www.hudong.com/wiki/%E4%BC%A6%E6%95%A6%E6%94%BF%E7%BB%8F%E5%AD%A6%E9%99%A2#7.
    [9]卢妍,亚芯.芝加哥螺旋摩天楼[EB/OL]. 2009-08-13.互动百科. http://www.hudong.com/wiki/%E8%9E%BA%E6%97%8B%E5%A1%94.
    [10] GELLMAN S H. FOLDAMERS: A manifesto [J]. Acc. Chem. Res., 1998, 31: 173-180.
    [11] ROWAN A E, NOLTE R J M. Helical molecular programming [J]. Angew. Chem., Int. Ed., 1998, 37: 63-68.
    [12] GREEN M M, PARK J W, SATO T, et al. The macromolecular route to chiral amplification [J]. Angew. Chem., Int. Ed., 1999, 38: 3139-3154.
    [13] ALBRECHT M. "Let's twist again" s double-stranded, triple-stranded, and circular helicates [J]. Chem. Rev., 2001, 101: 3457-3497.
    [14] BRUNSVELD L, FOLMER B J B, MEIJER E W, et al. Supramolecular polymers [J]. Chem. Rev., 2001, 101: 4071-4097.
    [15] CORNELISSEN J J L M, ROWAN A E, NOLTE R J M, et al. Chiral architectures from macromolecular building blocks [J]. Chem. Rev., 2001, 101: 4039-4070.
    [16] HILL D J, MIO M J, MOORE J S, et al. A field guide to foldamers [J]. Chem. Rev., 2001, 101: 3893-4012.
    [17] NAKANO T, OKAMOTO Y. Synthetic helical polymers: conformation and function [J]. Chem. Rev., 2001, 101: 4013-4038.
    [18] N H NOMURA R, MASUDA T. Design and synthesis of semiflexible substituted polyacetylenes with helical conformation [J]. J. Mol. Catal.A: Chem., 2002, 190: 197-205.
    [19] FUJIKI M. Switching handedness in optically active polysilanes [J]. J. Organomet. Chem., 2003, 685: 15-34.
    [20] HUC I. AROMATIC. Oligoamide foldamers [J]. Eur. J. Org. Chem., 2004, 17-29.
    [21] LAM J W Y, TANG B Z. Functional polyacetylenes [J]. Acc. Chem.Res., 2005, 38: 745-754.
    [22] MAEDA K, YASHIMA E. Dynamic helical structures: detection and amplification of chirality [J]. Top. Curr. Chem., 2006, 265: 47-88.
    [23] CUCCIA L, HUC I. ED. HECHT S, HUC I, Foldamers: structure, properties and applications [M]. Wiley-VCH Weinheim, 2007, 1: 3-33.
    [24] FURUSHO Y, YASHIMA E. Molecular design and synthesis of artificial double helices [J]. Chem. Rec., 2007, 7: 1-11.
    [25] AMEMIYA R, YAMAGUCHI M. Chiral recognition in noncovalent bonding interactions between helicenes: right-handed helix favors right-handed helix over left-handed helix [J]. Org. Biomol. Chem., 2008, 6: 26-35.
    [26] KIM H J, LIM Y B, LEE M. Self-assembly of supramolecular polymers into tunable helical structures [J]. J. Polym. Sci., Part A: Polym. Chem., 2008, 46: 1925-1935.
    [27] PIJPER D, FERINGA B L. Control of dynamic helicity at the macro- and supramolecular level [J]. Soft Matter, 2008, 4: 1349-1372.
    [28] YASHIMA E, MAEDA K. Chirality-responsive helical polymers [J]. Macromolecules, 2008, 41: 3-12.
    [29] YASHIMA E, MAEDA K, FURUSHO Y. Single- and double-stranded helical polymers:synthesis, structures, and functions [J]. Acc. Chem. Res., 2008, 41: 1166-1180.
    [30] FURUSHO Y, YASHIMA E. Development of synthetic double helical polymers and oligomers[J]. Journal of Polymer Science: Part A, 2009, 47: 5195-5207.
    [31] LEE C C, MEIJER E W, SCHENNING A P H J. Preparation and characterization of helical self-assembled nanofibers [J]. Chem. Soc. Rev., 2009, 38: 671-683.
    [32] YASHIMA E, MAEDA K, IIDA H, et al. Helical polymers: synthesis, structures, and functions [J]. Chem. Rev., 2009, 109: 6102-6211.
    [33] SMALDONE R A, MOORE J S. Foldamers as reactive sieves: reactivity as a probe of conformational flexibility [J]. J Am Chem Soc., 2007, 129: 5444-5450.
    [34] PIGUET C, BERNARDINELLI G, HOPFGARTNER G. Helicates as versatile supramolecular complexes[J]. Chem. Rev., 1997, 97: 2005-2062.
    [35]张志刚.炔丙磺酰胺螺旋聚合物的制备和应用研究[D].北京:北京化工大学化学学院, 2008.
    [36]肖冬荣.新型螺旋配合物的合成、结构和性质研究[D].长春:东北师范大学化学学院, 2007.
    [37] HAMURO Y, GEIB S J, HAMILTON A D. Oligoanthranilamides. non-peptide subunits that show formation of specific secondary structure [J]. J. Am. Chem. Soc., 1996, 118: 7529–7541.
    [38] BERL V, HUC I, LEHN J M, et al. Interconversion of single and double helices formed from synthetic molecular strands [J]. Nature, 2000, 407: 720-723.
    [39] OKAMOTO Y, SUZUKI K, YUKI H, et al. Optically-active poly( triphenylmethyl methacrylate) with one-handed helical conformation [J] J. Am.Chem. Soc., 1979, 101: 4763-4765.
    [40] NAKANO T, SHIKISAI Y, OKAMOTOY. Helix-sense-selective free radical polymerization of 1-phenyldibenzosuberyl methacrylate [J]. Polym. J., 1996, 28: 51-60.
    [41] NAKANOT, TSUNEMATSU K, OKAMOTOY. Synthesis of single-handed helical poly(1-dibenzosuberyl methacrylate) via radical polymerization in the presence of an optically active cobalt(II) complex [J]. . Chem. Lett. , 2002, 42-43.
    [42] NAKANO T, MATSUDA A, OKAMOTO Y. Pronounced effects of temperature and monomer concentration on isotactic specificity of triphenylmethyl methacrylate polymerization through free radical mechanism. Thermodynamic versus kinetic control of propagation stereochemistry [J]. Polym. J., 1996, 28: 556-558.
    [43] HOSHIKAWA N, HOTTAY, OKAMOTO Y. Stereospecific radical polymerization of N-triphenylmethylmethacrylamides leading to highly isotactic helical polymers [J]. J. Am. Chem.Soc., 2003, 125: 12380-12381.
    [44] AMANO Y, OKAMOTO Y. Asymmetric radical polymerization of n-phenylmethacrylamides [J] . Polym. J., 2005, 37: 629-632.
    [45] MIYAKE G M, MARIOTT W R, CHEN E Y X. Asymmetric coordination polymerization of acrylamides by enantiomeric metallocenium ester enolate catalysts [J]. . J. Am. Chem. Soc., 2007, 129: 6724-6725.
    [46] MIYAKE G M, CHEN E Y X. Metallocene-mediated asymmetric coordination polymerization of polar vinyl monomers to optically active, stereoregular polymers [J]. Macromolecules 2008, 41: 3405-3416.
    [47] CORNELISSEN J J L M, DONNERS J J J M, NOLTE R J M, et al. Beta-helical polymers from isocyanopeptides [J]. . Science, 2001, 293: 676-680.
    [48] METSELAAR G A, ADAMS P J H M, NOLTE R J M, et al. Polyisocyanides derived from tripeptides of alanine [J]. Chem.sEur. J., 2007, 13: 950-960.
    [49] MILLICH F. AdV. Polym. Sci. , 1975, 19: 117-141.
    [50] KAMER P C J, NOLTE R J M, DRENTH W. Screw sense selective polymerization of achiral isocyanides catalyzed by optically-active nickel(II) complexes [J]. J. Am. Chem. Soc., 1988, 110: 6818-6820.
    [51] DEMING T J, NOVAK B M, . Enantioselective polymerizations of achiral isocyanides-preparation of optically-actibe helical pilymers using chiral nickel-catalysts [J]. J. Am. Chem. Soc., 1992, 114: 7926-7927.
    [52] KAJITANI T, OKOSHI K, E YASHIMA, et al. Helix-sense controlled polymerization of a single phenyl isocyanide enantiomer leading to diastereomeric helical polyisocyanides with opposite helix-sense and cholesteric liquid crystals with opposite twist-sense [J]. J. Am.Chem. Soc., 2006, 128: 708-709.
    [53] METSELAAR G A, CORNELISSEN J J L M, NOLTE R J M, et al. Acid-initiated stereospecific polymerization of isocyanopeptides [J]. Angew. Chem., Int. Ed., 2005, 44: 1990-1993.
    [54] GOMAR-NADAL E, VECIANA J, AMABILINO D B, et al. Chiral teleinduction in the formation of a macromolecular multistate chiroptical redox switch [J]. AdV.Mater., 2005, 17: 2095-2098.
    [55] AMABILINO D B, SERRANO J L, VECIANA J J, et al. Long-range effects of chirality inaromatic poly(isocyanide)s [J]. J Polym. Sci., Part A: Polym. Chem., 2006, 44: 3161-3174.
    [56] KAJITANI T, OKOSHI K, YASHIMA E, et al. Helix-sense controlled polymerization of a single phenyl isocyanide enantiomer leading to diastereomeric helical polyisocyanides with opposite helix-sense and cholesteric liquid crystals with opposite twist-sense [J]. J. Am.Chem. Soc., 2006, 128: 708-709.
    [57] OTTEN M B J, METSELAAR G A, NOLTE R J M, et al. Foldamers: structure, properties, and applications [B], Wiley-VCH: Weinheim, 2007, p. 367-402.
    [58] SUGINOME M, COLLET S, ITO Y. Highly effective, easily accessible screw-sense-determining end group in the asymmetric polymerization of 1,2-diisocyanobenzenes [J]. Org. Lett. , 2002, 4: 351-354.
    [59] SUGINOME M, ITO Y. Transition metal-mediated polymerization of isocyanides [J]. . AdV. Polym. Sci. , 2004, 17: 77-136.
    [60] SCHLITZER D S, NOVAK B M. Trapped kinetic states, chiral amplification and molecular chaperoning in synthetic polymers: Chiral induction in polyguanidines through ion pair interactions [J]. . J. Am. Chem. Soc. , 1998, 120: 2196-2203.
    [61] TANG H Z, LU Y J, NOVAK B M, et al. Stable helical polyguanidines: poly{N-(1-anthryl)-n '-[(R)- and/or (S)-3,7-dimethyloctyl]guanidines} [J]. J. Am. Chem. Soc. , 2004, 126: 3722-3723.
    [62] TANG H Z, GARLAND E R, SHEIKO S S, et al. Helical polyguanidines prepared by helix-sense-selective polymerizations of achiral carbodiimides using enantiopure binaphthol-based titanium catalysts [J]. Macromolecules, 2007, 40: 3575-3580.
    [63] TANG H Z, BOYLE P D, NOVAK B M. Chiroptical switching polyguanidine synthesized by helix-sense-selective polymerization using [(R)-3,3 '-dibromo-2,2 '-binaphthoxy](di-tert-butoxy)titanium(IV) catalyst [J]. J. Am. Chem. Soc. , 2005, 127: 2136-2142.
    [64] TANG H Z, NOVAK B M, POLAVARAPU P L, et al. A modular strategy to artificial double helices [J]. Angew. Chem., Int. Ed., 2005, 44: 7298-7301.
    [65] JHA S K, CHEON K S, GREEN M M, et al. Chiral optical properties of a helical polymer synthesized from nearly racemic chiral monomers highly diluted with achiral monomers [J]. J. Am. Chem.Soc., 1999, 121: 1665-1673.
    [66] MAEDA K, OKAMOTO Y. Helical structure of oligo- and poly(m-substituted phenyl isocyanate)s bearing an optically active end-group [J]. Polym. J. , 1998, 30: 100-105.
    [67] PATTEN T E, NOVAK B M. Living organotitanium(IV)-catalyzed polymerizations of isocyanates [J]. J. Am. Chem. Soc. , 1996, 118: 1906-1908.
    [68] GREEN M M, ANDREOLA C, ZERO K, et al. Macromolecular stereochemistry-a cooperative deuterium-isotope effect leading to a large optical-rotation [J]. J. Am.Chem. Soc., 1988, 110: 4063-4065.
    [69] LIFSON S, ANDREOLA C, GREEN M M, et al. Macromolecular stereochemistry-helical sense preference in optically-active polyisocyanates-amplification of a conformational equilibrium deuterium-isotope effect [J]. J. Am. Chem.Soc. , 1989, 111: 8850-8858.
    [70] FREY H, MOELLER M, MATYJASZEWSKI K. Chiral poly (dipentylsilylene) copolymers [J]. Macromolecules, 1994, 27: 1814-1818.
    [71] FUJIKI M. Ideal exciton spectra in single-screw and double-screw sense helical polysilanes [J]. J. Am. Chem. Soc. , 1994, 116: 6017-6018.
    [72] KAWABE T, NAITO M, FUJIKI M. Polysilane organogel with hierarchical structures formed by weak intra-/inter-chain Si/FC and van der Waals interactions [J]. Polym. J. , 2008, 40: 317-326.
    [73] MOTONAGA M, NAKASHIMA H, FUJIKI M, et al. The first optically active polygermanes: preferential screw sense helicity of enantiopure chiral-substituted aryl polygermanes and comparison with analogous polysilanes [J]. J. Organomet.Chem., 2003, 685: 44-50.
    [74] CIARDELLI F, BENEDETTI E, PIERONI O. Polymerization of racemic and optically active 4-methyl-1-hexyne [J]. Makromol. Chem., 1967, 103: 1-3.
    [75]戴箭,哈成勇,常东亮.螺旋手性聚乙炔衍生物.化学进展, 2007, 19: 1-6.
    [76] MOORE J S, GORMAN C B, GRUBBS R H. Soluble, chiral polyacetylenes-syntheses and investigation of their solution conformation [J]. J. Am. Chem. Soc. , 1991, 113: 1704-1712.
    [77] KOBAYASHI S, MORINO K, YASHIMA E. Macromolecular helicity inversion of an optically active helical poly(phenylacetylene) by chemical modification of the side groups [J]. Chem. Commun. , 2007, 2351-2367.
    [78] NISHIMURA T, ICHIKAWA , MASUDA T, et al. Asymmetric polymerization of achiral arylacetylenes giving helical polyacetylenes in the presence of a rhodium catalyst with a C-2-Symmetric tetrafluorobenzobarrelene ligand [J]. Organometallics, 2009, 28: 4890-4893.
    [79] SINKELDAM R W, HOEBEN F J M, MEIJER E W, et al. Chiral alignment of OPV chromophores: Exploitation of the ureidophthalimide-based foldamer [J]. J. Am. Chem. Soc. , 2006,128: 16113-16121.
    [80] MIKAMI K, TANATANI A, YOKOYAMA A, et al. Helical folding of poly(naphthalenecarboxamide) prompted by solvophobic effect [J]. Macromolecules, 2009, 42: 3849-3851.
    [81] YAMAZAKI K, Y T YOKOYAMA A. Solvent and temperature effect on chiral conformation of poly(m-benzamide)s [J]. Macromolecules 2006, 39: 2432-2434.
    [82] MEUDTNER R M, HECHT S. Responsive backbones based on alternating triazole-pyridine/benzene copolymers: From helically folding polymers to metallosupramolecularly crosslinked gels [J]. Macromol. Rapid Commun., 2008, 29: 347-351.
    [83] KOBAYASHI S, ITOMI K, YASHIMA E, et al. Polymerization of an optically active phenylacetylene derivative bearing an azide residue by click reaction and reaction with a rhodium catalyst [J]. Chem. Commun. , 2008, 3019-3021.
    [84] IWASAKI T, KOHINATA Y, NISHIDE H. Poly(thiaheterohelicene): A stiff conjugated helical polymer comprised of fused benzothiophene ring [J]. Org. Lett., 2005, 7: 755-758.
    [85] IWASAKI T, TSUKAHARA Y, NISHIDE H. Facile preparation of helical ladder-type polymers with fused phenoxathiine rings [J]. Chem. Lett., 2005, 34: 164.
    [86] ZHANG H-C, PU L. Synthesis of helical polybinaphthyls [J]. Macromolecules, 2004, 37: 2695-2702.
    [87] NILSSON K P R, OLSSON J D M, INGANA¨S O, et al. Enantiomeric substituents determine the chirality of luminescent conjugated polythiophenes [J]. Macromolecules, 2004, 37: 6316-6321.
    [88] KIM H-J, ZIN W-C, LEE M. Anion-directed self-assembly of coordination polymer into tunable secondary structure [J]. J. Am. Chem. Soc. , 2004, 126: 7009-7014.
    [89] KIM H-J, LEE E, LEE M, et al. Dynamic extension-contraction motion in supramolecular springs [J]. J. Am. Chem. Soc. , 2007, 129: 10994-10995.
    [90] WACKERLY J W, MOORE J S. Cooperative self-assembly of oligo(m-phenyleneethynylenes) into supramolecular coordination polymers [J]. Macromolecules, 2006, 39: 7269-7276.
    [91] MAEDA K, YASHIMA E. Dynamic helical structures: detection and amplification of chirality [J]. Top Curr Chem., 2006, 265: 47-88.
    [92] YASHIMA E, MAEDA K. Metallocene-mediated asymmetric coordination polymerization of polar vinyl monomers to optically active, stereoregular polymers [J]. Macromolecules, 2008, 41:3-12.
    [93] YASHIMA E, MATSUSHIMA T, OKAMOTO Y. Poly(4-carboxyphenyl)acetylene) as a probe for chirality assignment of amines by circular-dichroism [J]. J. Am. Chem. Soc., 1995, 117: 11596-11597.
    [94] TSUKUBE H, SHINODA S. Lanthanide complexes in molecular recognition and chirality sensing of biological substrates [J]. Chem. ReV., 2002, 102: 2389-2403.
    [95] HEMBURY G A, BOROVKOV V V, INOUE Y. Chiral tertiary diamines in asymmetric synthesis [J]. Chem. ReV. , 2008, 108: 1-73.
    [96] KAMIKAWA Y, KATO T, YASHIMA E, et al. Helicity induction on a poly(phenylacetylene) bearing a phosphonate residue by chiral dendrons [J]. J. Polym. Sci., Part A: Polym. Chem., 2004, 42: 4580-4586.
    [97] MANNING G S. Counterion binding in polyelectrolyte theory [J]. Acc. Chem. Res. , 1979, 12: 443-449.
    [98] MORINO K, OOBO M, YASHIMA E. Helicity induction in a poly(phenylacetylene) bearing aza-18-crown-6 ether pendants with optically active bis(amino acid)s and its chiral stimuli-responsive gelation [J]. Macromolecules, 2005, 38: 3461-3468.
    [99] MAEDA K, HATANAKA K, YASHIMA E. Helix induction in an optically inactive poly[(4-carboxyphenyl)acetylene] film with chiral amines [J]. Mendeleev commun., 2004, 231-233.
    [100] YASHIMA E, MAEDA K, YAMANAKA T. Helicity induction and conformational dynamics of poly(bis(4-carboxyphenoxy)phosphazene) with optically active amines [J]. J. Am. Chem. Soc., 2000, 122: 7813-7814.
    [101] MAJIDI M R, KANEMAGUIRE L A P, WALLACE G G. Chemical generation of optically-active polyanine via the doping of emeraldine base with (+)-camphorsulfonic or (-)-camphorsulfonic acid [J]. Polymer, 1995, 36: 3597-3599.
    [102] MAEDA K, MORIOKA K, YASHIMA E. Synthesis and chirality sensing properties of poly[(phenyleneethynylene)-alt-(carboxybiphenyleneethynylene)]s [J]. Macromolecules, 2007, 40: 1349-1352.
    [103] SAXENA A, GUO G, FUJIKI M, et al. Helical polymer command surface: thermodriven chiroptical transfer and amplification in binary polysilane film system [J]. Macromolecules 2004, 37: 3081-3083.
    [104] STROUNINA E V, KANE-MAGUIRE L A P, WALLACE G G. Induction of chirality into a fully sulfonated poly(methoxyaniline) via acid-base interactions with chiral amines [J]. Polymer, 2006, 47: 8088-8094.
    [105] LI J, SCHUSTER G B, SELINGER J V, et al. Switching a helical polymer between mirror images using circularly polarized light [J]. J. Am. Chem. Soc., 2000, 122: 2603-2610.
    [106] PRINCE R B, BARNES S A, MOORE J S. Foldamer-based molecular recognition [J]. J. Am. Chem. Soc., 2000, 122: 2758-2762.
    [107] TANATANI A, MIO M J, MOORE J S. Chain length-dependent affinity of helical foldamers for a rodlike guest [J]. J. Am. Chem. Soc., 2001, 123: 1792-1793.
    [108] HECHT S, KHAN A. Intramolecular cross-linking of helical folds: An approach to organic nanotubes [J]. Angew. Chem., Int. Ed., 2003, 42: 6021-6024.
    [109] OH K, JEONG K S, MOORE J S. Folding-driven synthesis of oligomers [J]. Nature, 2001, 414: 889-893.
    [110] HARAGUCHI S, HASEGAWA T, SHINKAI S. Oligosilane-nanofibers can be prepared through fabrication of permethyldecasilane within a helical superstructure of schizophyllan [J]. Org. Lett., 2005, 7: 5605-5608.
    [111] LI C, NUMATA M, SHINKAI S, et al. Self-assembly of supramolecular chiral insulated molecular wire [J]. J. Am. Chem.Soc., 2005, 27: 4548-4550.
    [112] SANJI T, KATO N, TANAKA M. Chirality control in oligothiophene through chiral wrapping [J]. Org. Lett., 2006, 8: 235-238.
    [113] Sanji T, Kato N, Kato M, et al. Helical folding in a helical channel: chiroptical transcription of helical information through chiral wrapping [J]. Angew. Chem., Int. Ed., 2005, 44: 7301-7304.
    [114] TOMASZ K, IWONA J, JANUSZ L, et al. Metal Complexes of Cinchonine as Chiral Building Blocks: A strategy for the construction of nanotubular architectures and helical coordination polymers [J]. J. Am. Chem. Soc., 2009, 131: 5393-5395.
    [115] YASHIMA E, MAEDA K, NISHIMURA T. Detection and amplification of chirality by helical polymers [J]. Chem. Eur. J., 2004, 10: 42-51.
    [116] JIN W, FUKUSHIMA T, T ISHII N AIDA T. Self-assembled graphitic nanotubes with one-handed helical arrays of a chiral amphiphilic molecular graphene [J]. Proc. Natl. Acad. Sci. U.S.A., 2005, 102: 10801-10806.
    [117] HILL J P, JIN W, T I N A T, et al. Self-assembled hexa-peri-hexabenzocoronene graphitic nanotube [J]. cience, 2004, 304: 1481-1483.
    [118] GORP VAN J J, VEKEMANS J A J M, MEIJER E W. C3-symmetric supramolecular architectures: fibers and organic gels from discotic trisamides and trisureas [J]. J Am Chem Soc., 2002, 124: 14759-14769.
    [119] FOLMER-ANDERSEN J F, LEHN J-M. Constitutional adaptation of dynamic polymers: hydrophobically driven sequence selection in dynamic covalent polyacylhydrazones [J]. Angew. Chem. Int. Ed., 2009, 48: 7664-7667.
    [120] JEUKENS C R L P N, JONKHEIJM P, MEIJER E W, et al. Polarized emission of individual self-assembled oligo(p-phenylenevinylene)-based nanofibers on a solid support [J]. J Am Chem Soc., 2005, 127: 8280-8281.
    [121] GOTTARELLI G, SPADA G P. The stepwise supramolecular organisation of guanosine derivatives [J]. Chem Rec., 2004, 4: 39-49.
    [122] WURTHNER F, CHEN Z J, MEIJER E W, et al. Supramolecular p-n heterojunctions by co-self-organization of oligo(p-phenylene vinylene) and perylene bisimide dyes [J]. J Am Chem Soc., 2004, 126: 10611-10618.
    [123] SCHENNING A P H J, VON HERRIKHUYZEN J, MEIJER E W, et al. Photoinduced electron transfer in hydrogen-bonded oligo(p-phenylene vinylene)-perylene bisimide chiral assemblies [J]. J Am Chem Soc., 2002, 124: 10252-10253.
    [124] KUSANAGI H, TADOKORO H, CHATANI Y. Double strand helix of isotactic poly(methyl methacrylate) [J]. Macromolecules, 1976, 9: 531-532.
    [125] HALDAR D, SCHMUCK C. Metal-free double helices from abiotic backbones [J]. Chem. Soc. ReV., 2009, 38: 363-371.
    [126] SPEVACEK J, SCHNEIDER B. Spontaneous assembly of double-stranded helicates from oligobipyridine ligands and copper(I) cations-structure of an inorganic double helix [J]. Adv Colloid Interface Sci., 1987, 27: 81-150.
    [127] KAWAUCHI T, KUMAKI J, YASHIMA E, et al. Encapsulation of fullerenes in a helical PMMA cavity leading to a robust processable complex with a macromolecular helicity memory [J]. Angew Chem Int Ed 2008, 47: 515-519.
    [128] CHATANI Y, KOBATAKE T, TANAKA R. Structural studies of poly(ethylenimine). 2.double-stranded helical chains in the anhydrate [J]. Macromolecules, 1982, 15: 170-176.
    [129] LEHN J M, RIGAULT A, MORAS D, et al. Spontaneous assembly of double-stranded helicates from oligobipyridine ligands and copper(I) cations-structure of an inorganic double helix [J]. Proc Natl Acad Sci USA, 1987, 84: 2565-2569.
    [130] IKEDA M, TANAKA Y, YASHIMA E, et al. Construction of double-stranded metallosupramolecular polymers with a controlled helicity by combination of salt bridges and metal coordination [J]. J Am Chem Soc., 2006, 128: 6806-6807.
    [131] SUGIMOTO T, SUZUKI T, SADA K, et al. A double-stranded helix by complexation of two polymer chains with a helical supramolecular assembly [J]. J Am Chem Soc, 2007, 129: 270-271.
    [132] ITO H, FURUSHO Y, YASHIMA E, et al. Sequence- and chain-length-specific complementary double-helix formation [J]. J Am Chem Soc, 2008, 130: 14008-14015.
    [133] GOTO H, FURUSHO Y, YASHIMA E, et al. Double helix formation of oligoresorcinols in water: thermodynamic and kinetic aspects [J]. J Am Chem Soc, 2009, 131: 4710-4719.
    [134] BERL V, HUC I, LEHN J-M. Helical molecular programming: Supramolecular double helices by dimerization of helical oligopyridine-dicarboxamide strands [J]. Chem Eur J, 2001, 7: 2810-2820.
    [135] YANG H-C, LIN S-Y, LUH T-Y, et al. Molecular architecture towards helical double-stranded polymers [J]. Angew Chem Int Ed, 2006, 45: 726-730.
    [136] KUMAKI J, KAWAUCHI T, YASHIMA E, et al. Supramolecular helical structure of the stereocomplex composed of complementary isotactic and syndiotactic poly(methyl methacrylate)s as revealed by atomic force microscopy [J]. Angew Chem Int Ed, 2007, 46: 5348-5351.
    [137] KUMAKI J, SAKURAI S-I, YASHIMA E. Visualization of synthetic helical polymers by high-resolution atomic force microscopy [J]. Chem Soc Rev., 2009, 38: 737-746.
    [138] KOERT U, HARDING M M, LEHN J M. DNH deoxyribonucleohelicates-self assembly of oligonucleosidic double-helical metal-complexes [J]. Nature, 1990, 346: 339-342.
    [139] KIM H-J, LEE E, SIM E, et al. Folding of coordination polymers into double-stranded helical organization [J]. Chem Eur J, 2008, 14: 3883-3888.
    [140] KIM H-J, LIM Y-B, LEE M. Self-assembly of supramolecular polymers into tunable helical structures [J]. J Polym Sci Part A: Polym Chem, 2008, 46: 1925-1935.
    [141] MAEDA T, FURUSHO Y, YASHIMA E, et al. Double-stranded helical polymers consisting of complementary homopolymers [J]. J. Am. Chem. Soc. , 2008, 130: 7938-7945.
    [142] SUGIURA H, NIGORIKAWA Y, YAMAGUCHI M, et al. Marked effect of aromatic solvent on unfolding rate of helical ethynylhelicene oligomer [J]. J Am Chem Soc, 2004, 126: 14858-14864.
    [143] GOTO H, KATAGIRI H, YASHIMA E, et al. Oligoresorcinols fold into double helices in water [J]. J Am Chem Soc, 2006, 128: 7176-7178.
    [144] BEN T, FURUSHO Y, YASHIMA E, et al. Double helix formation of poly(m-phenylene)s bearing achiral oligo(ethylene oxide) pendants and transformation into an excess of one-handed single helix through cholate binding in water [J]. Org Biomol Chem, 2009, 7: 2509-2512.
    [145] BERL V, HUC I, LEHN J-M, et al. Interconversion of single and double helices formed from synthetic molecular strands [J]. Nature, 2000, 407: 720-723.
    [146] YANG H-C, LEE S-L, LUH T-Y, et al. One-handed helical double stranded polybisnorbornenes [J]. Chem Commun, 2008, 6158-6160.
    [147] LIN N-T, LIN S-Y, LUH T-Y, et al. From polynorbornene to the complementary polynorbornene by replication [J]. Angew Chem Int Ed, 2007, 46: 4481-4485.
    [148] YAO S, BEGINN U, WüRTHNER F, et al. Supramolecular polymerization and gel formation of bis(merocyanine) dyes driven by dipolar aggregation [J]. J. Am. Chem. Soc., 2004, 126: 8336-8348.
    [149] BRIZARD A, BERTHIER D, BUFFETEAU T, et al. Molecular and supramolecular chirality in gemini-tartrate amphiphiles studied by electronic and vibrational circular dichroisms [J]. Chirality, 2009, 21: 153-162
    [150] GOTO H, KATAGIRI H, YASHIMA E, et al. Oligoresorcinols fold into double helices in water [J]. J. Am. Chem. Soc., 2006, 128: 7176-7178.
    [151] PERCEC V, RUDICK J G, MITCHELL C M, et al. Thermoreversible cis-cisoidal to cis-transoidal isomerization of helical dendronized polyphenylacetylenes [J]. J. Am. Chem. Soc., 2005, 127: 15257-15264.
    [152] YASHIMA E. Synthesis and structure determination of helical polymers [J]. Polymer J., 2010, 42: 3-16.
    [153] BEN T, GOTO H, YASHIMA E, et al. Synthesis and helix formation of poly(m-phenylene)s bearing optically active oligo(ethylene oxide) side chains in protic media [J]. Macromolecules 2008, 41: 4506-4509.
    [154] DENG J P, CHEN B, W T YANG, et al. Synthesis of nano-latex particles of optically activehelical substituted polyacetylenes via catalytic microemulsion polymerization in aqueous systems [J]. Macromolecules, 2009, 42: 933-938.
    [155] DENG J P, CHEN B, Y W T, et al. Helical and random coil conformations of N-propargylamide polymer and copolymers [J]. Polymer International, 2007, 56: 1247-1253.
    [156] LAM J W Y, DONG Y P, TANG B Z, et al. Helical conjugated polymers: Synthesis, stability, and chiroptical properties of poly(alkyl phenylpropiolate)s bearing stereogenic pendants [J]. Macromolecules, 2004 37: 6695-6704.
    [157] DING M X. Isomeric polyimides [J]. Progress in Polymer Science, 2007, 32: 623-668.
    [158] LIU Z T , HE Y M, FAN Q H, et al. Synthesis, optical properties, and spectral stability of chiral dendronized binaphthyl-containing polyfluorene derivatives [J]. Journal of Polymer Science Part a-Polymer Chemistry, 2008, 46: 886-896.
    [159] DU P, JIANG X K, LI Z T. Intramolecular N-H center dot center dot center dot O and N-H center dot center dot center dot N hydrogen bonding patterns in N-benzyl and N-(pyridin-2-ylmethyl) benzamides [J]. Tetrahedron Letters, 2009, 50: 316-319.
    [160] YU LIU, Y CHEN. Cooperative binding and multiple recognition by bridged bis(b-cyclodextrin)s with functional linkers [J]. Acc. Chem. Res., 2006, 39: 681-691.
    [161] JIANG H , LIN W B. Directed assembly of mesoscopic metallocycles with controllable size, chirality, and functionality based on the robust Pt-alkynyl linkage [J]. Journal of the American Chemical Society, 2006, 128: 11286-11297.
    [162] YANG L L, YANG Z H, CAO W X. Fabrication of stable chiral polyaniline nanocomposite-based patterns [J]. Macromolecular Rapid Communications, 2005, 26: 192-195.
    [163] ZHANG L J, WAN M X. Chiral polyaniline nanotubes synthesized via a self-assembly process [J]. Thin Solid Films, 2005, 477: 24-31.
    [164] YAN Y, YU Z, WEI Z X, et al. Helical polyaniline nanofibers induced by chiral dopants by a polymerization process [J]. Advanced Materials, 2007, 19: 3353-3357.
    [165] YIN X L, DING J J, KONG J L. et al. Enantioselective sensing of chiral amino acids by potentiometric sensors based on optical active polyaniline films [J]. Biosensors & Bioelectronics, 2006, 21: 2184-2187.
    [166] CANARY J W. Redox-triggered chiroptical molecular switches [J]. Chem. Soc. Rev., 2009, 38: 747-756.
    [167] YASHIMA E, MAEDA K. ed. Hecht S, Huc I, foldamers: structure, properties and applications [M] Wiley-VCH Weinheim, 2007, 1: 331-363.
    [168] GOTO H, OKAMOTO Y, YASHIMA E. Metal-induced supramolecular chirality in an optically active polythiophene aggregate [J]. Chemistry-a European Journal, 2002, 8: 4027-4036.
    [169] GOMAR-NADAL E, VECIANA J, AMABILINO D B, et al. Chiral teleinduction in the formation of a macromolecular multistate chiroptical redox switch [J]. Adv. Mater., 2005, 17: 2095-2098.
    [170] HECHT S. Construction with macromolecules [J]. Materials today, 2005, 8: 48-55.
    [171] VERA F, LUIS J, SIERRA T. Twists in mesomorphic columnar supramolecular assemblies [J]. Chem. Soc. Rev., 2009, 38: 781-796.
    [172]刘应良.一些光电功能聚合物的合成及其性能表征[D].郑州:郑州大学化学学院, 2006.
    [173] WANG Y, LI F, JIANG H. Folding and aggregation of cationic oligo(aryl-triazole)s in aqueous solution [J]. Chem. Eur. J., 2009, 15: 9424-9433.
    [174] DENG J, ZHOU C, SU Z, et al. Synthesis and redox-driven chiroptically switching properties of viologen-containing optically active polymer with main-chain axial chirality [J]. Macromolecules, 2008, 41: 7805-7811.
    [175] WAKI M, ABE H, INOUYE M. Translation of mutarotation into induced circular dichroism signals through helix inversion of host polymers [J]. Angew. Chem. Int. Ed., 2007, 46: 3059-3061.
    [176] YAMAMOTO T, SUGINOME M. Helical poly(quinoxaline-2,3-diyl)s bearing metal-binding sites as polymer-based chiral ligands for asymmetric catalysis [J]. Angew. Chem. Int. Ed., 2009, 48: 539 -542.
    [177] HAMILTON G L, KANG E J, TOSTE F D, et al. A powerful chiral counterion strategy for asymmetric transition metal catalysis [J]. Science, 2007, 317: 496-499.
    [178] GOH M, KYOTANI M, AKAGI K. Highly twisted helical polyacetylene with morphology free from the bundle of fibrils synthesized in chiral nematic liquid crystal reaction field [J]. J. Am. Chem. Soc., 2007, 129: 8519-8527.
    [179] TELFER S G, KURODA R. 1,1'-binaphthyl-2,2'-diol and 2,2'-diamino-1,1'-binaphthyl: versatile frameworks for chiral ligands in coordination and metallosupramolecular chemistry [J]. Coord. Chem. Rev., 2003, 242: 33-46.
    [180] KOCOVSKY P, VYSKOCIL S, SMRCINA M. Non-Symmetrically Substituted 1,1'-Binaphthyls in Enantioselective Catalysis [J]. Chem. Rev., 2003, 103: 3213-3245.
    [181] PU L. 1,1'-Binaphthyl dimers, oligomers, and polymers: molecular recognition, asymmetric catalysis, and new materials [J]. Chem. Rev., 1998, 98: 2405-2494.
    [182] SETNICKA V, URBANOVA M, BOUR P, et al. Vibrational circular dichroism of 1,1'-binaphthyl derivatives: experimental and theoretical study [J]. J. Phys. Chem. A, 2001, 105: 8931-8938.
    [183] ZHANG H C, PU L. Synthesis of helical polybinaphthyls [J]. Macromolecules, 2004, 37: 2695-2702.
    [184] MA L, W P S, LIN W. Well-defined enantiopure 1,1’-binaphthyl-based oligomers: synthesis, structure, photophysical properties, and chiral sensing [J]. J. Org. Chem., 2002, 67: 7577-7586.
    [185] MOLETTI A, COLUCCINI C, PASINI D, et al. A chiral probe for the detection of Cu(II) by UV, CD and emission spectroscopies [J]. Dalton Trans. , 2007, 1588-1592.
    [186] LIU Y, MIAO Q, CHENG Y X, et al. A fluorescent chemosensor for transition-metal ions based on optically active polybinaphthyl and 2,2-bipyridine [J]. Macromol. Chem. Phys. , 2008, 209: 685-694.
    [187] LIU Y, ZHANG S W, CHENG Y X, et al. Fluorescent chemosensory conjugated polymers based on optically active polybinaphthyls and 2,2 '-bipyridyl units [J]. Macromolecules, 2007, 40: 4839-4847.
    [188] BAI X L, KANG C Q, GAO L X, et al. Chiral C-2-symmetric figands containing two binaphthyl units linked by 2,2 '-bipyridyl bridge in asymmetric catalysis [J]. Tetrahedron-Asymmetry, 2005, 16: 727-731.
    [189] LEE S, LIN W. A Novel Chiral molecular square with metallo-corners for enantioselective sensing [J]. J. Am. Chem. Soc. , 2002, 124: 4554-4555.
    [190] KOWTONIUKW E, RUEFFERM E, MACFARLAND D K. Synthesis and competency of a novel dicationic phase-transfer catalyst [J]. Tetrahedron: Asymmetry, 2004, 15: 151-154.
    [191] SIMONSEN K B, GOTHELF K F, J?RGENSEN K A. A simple synthetic approach to 3,3'-diaryl binols [J]. J. Org. Chem., 1998, 63: 7536-7538.
    [192] AN D L, ZHANG Y J, OTERA J, et al. Enantiopure double-helical phenylene ethynylene cyclophynes with the 2,2-binaphthyl template [J]. Chem. Asian J., 2007, 2: 1299-1304.
    [193] XIAO D B, YANG W S, YAO J N, et al. Size-dependent exciton chirality in (R)-(+)-1,1'-Bi-2-naphthol dimethyl ether nanoparticles [J]. J. Am. Chem. Soc., 2004, 126: 15439-15444.
    [194] HU Q S, VITHARANA D, PU L, et al. Poly (1,1'-bi-2-naphthol)s: synthesis, characterization, and application in lewis acid catalysis [J]. J. Org. Chem., 1996, 61: 8370-8377.
    [195] ABE H, MACHIGUCHI H, INOUYEM, et al. Saccharide recognition-induced transformation of pyridine-pyridone alternate oligomers from self-dimer to helical complex [J]. J. Org. Chem. , 2008, 73: 4650-4661.
    [196] HATANO M, ASAI T, I K. Enantioselective alkynylation to aldimines catalyzed by chiral 2,2 -di(2-aminoaryloxy)-1,1'-binaphthyl-copper(I) complexes [J]. Tetrahedron Lett, 2008, 49: 379-382.
    [197] CHEN T, GAO J, SHI M. A novel tridentate NHC-Pd(II) complex and its application in the Suzuki and Heck-type cross-coupling reactions [J]. Tetrahedron Lett, 2006, 62: 6289-6294.
    [198] STONE M T, MOORE J S. Supramolecular chelation based on folding [J]. J. Am. Chem. Soc., 2005, 127: 5928-5935.
    [199] TELFER S G, SATO T, KURODA R, et al. Mono- and dinuclear complexes of chiral tri- and tetradentate schiff-base ligands derived from 1,1'-binaphthyl-2,2'-diamine (BINAM) [J]. Inorg. Chem., 2004, 43: 6168-6176.
    [200] HALDAR D, JIANG H, HUC I, et al. Interstrand interactions between side chains in a double-helical foldamer [J]. Angewandte Chemie-International Edition, 2006, 45: 5483-5486.
    [201] BRUNSVELD L, MEIJER E W, MOORE J S, et al. Self-assembly of folded m-phenylene ethynylene oligomers into helical columns [J]. J Am Chem Soc., 2001, 123: 7978-7984.
    [202] BEN T, GOTO H, YASHIMA E, et al. Synthesis interstrand interactions between side chains in a double-helical foldamerand helix formation of poly(m-phenylene)s bearing optically active oligo(ethylene oxide) side chains in protic media [J]. Macromolecules, 2008, 41: 4506-4509.
    [203] MICHINOBU T, OSAKO H, SHIGEHARA K. Alkyne-linked poly(1,8-carbazole)s: A novel class of conjugated carbazole polymers [J]. Macromolecular Rapid Communications, 2008, 29: 111-116.
    [204] MORIN J F, LECLERC M, SIOVE A, et al. Polycarbazoles: 25 years of progress [J]. Macromolecular Rapid Communications, 2005, 26: 761-778.
    [205] YANG Y, PEI Q. Light-emitting electrochemical cells from a blend of p- and n-typeluminescent conjugated polymers [J]. Applied Physics Letters, 1997, 70: 1926-1928.
    [206] ZHENG M, DAVIDSON F, HUANG X Y. Ethylene glycol monolayer protected nanoparticles for eliminating nonspecific binding with biological molecules [J]. J. Am. Chem. Soc., 2003, 125: 7790-7791.
    [207] WAKIM J B S, BLOUIN N, LECLERC M, et al. Bearing stereogenic pendants synthesis of diindolocarbazoles by ullmann reaction: a rapid route to ladder oligo(p-aniline)s [J]. Org. Lett., 2004, 6: 3413-3416.
    [208] ZHANG Z B, FUJIKI M, TORIMITSU K, et al. The first high molecular weight poly(n-alkyl-3,6-carbazole)s [J]. Macromolecules, 2002, 35: 1988-1990.
    [209] YAMAMOTO T.π-Conjugated polymers bearing electronic and optical functionalities. Preparation by oranometallic polycondensations, properties and their applications [J]. Bull. Chem. Soc. Jpn., 1999, 72 621-638.
    [210] OSTRAUSKAITE J, STROHRIEGL P. Formation of macrocycles in the synthesis of poly(N-(2-ethylhexyl)carbazol-3,6-diyl) [J]. Macromol. Chem. Phys., 2003, 204: 1713-1718.
    [211] FULGHUM T, ABDUL KARIM S M, BABA A, et al. Conjugated poly(phenylacetylene) films cross-linked with electropolymerized polycarbazole precursors [J]. Macromolecules, 2006, 39: 1467-1473.
    [212] GUO H, KNOBLER C M, KANNER R B. A chiral recognition polymer based on polyaniline [J]. Synth. Met., 1999, 101: 44-47.
    [213] KANE-MAGUIRE L A P, MACDIARMID A G, ZHENG W G, et al. Facile preparation of optically active polyanilines via the in situ chemical oxidative polymerisation of aniline [J]. Synthetic Metals, 1999, 106: 171-176.
    [214] TETSUO H, TAKASHI K N K. Optically active fluoro-substituted polyaniline prepared in organic media: the synthesis, chiroptical properties, and comparison with optically active non-substituted polyaniline [J]. Polymer International, 2006, 47: 5295-5302.
    [215] MACDIARMID A G. "Synthetic Metals": A novel role for organic polymers [J]. Angew. Chem. Int. Ed., 2001, 40: 2581-2590.
    [216]黄艳.手性聚苯胺的制备及其电磁学性能研究[D].西南交通大学材料工程学院, 2008.
    [217] GOSPODINOVA N, TERLEMEZYAN L. Conducting polymers prepared by oxidative polymerization: polyaniline [J]. Prog. Polym. Sci., 1998, 23: 1443-1484.
    [218] HATEHETT D W, JOSOWICZ M, JANATA J. Comparison of chemically and electrochemieally synthesized polyaniline films [J]. J Electrochem Soc, 1999, 146: 4535-4538.
    [219] HATEHETT D W, et al. Aciddoping of polyanline:spectroscopic and electrochemical studies [J]. J.Phys.Chem.B., 1999, 103: 10992-10998.
    [220] DOMINIS A J, SPINKS G M, et al. A de-doping/re-doping study of organic soluble polyanline [J]. Synth Met., 2002, 129: 165-172.
    [221]南军义,林微微,田永辉.共聚物酸掺杂接枝聚苯胺的研究[J].功能高分子学报, 2000, 3: 297-300.
    [222] SASAKI I, JANATA J, JOSOWICZ M. Stablilization of electronic properties of (1R)-(-)-10-camphorsulfonic acid doped polyaniline by UV irradiation [J]. Polymer Degradation and Stability, 2007, 1-9.
    [223] THIYAGARAJAN M, SAMULSON L A, KUMAR J, et al. Helical conformational spcificity of enzymatically synthesized water-soluble conducting polyaniline nanocomposites [J]. J.Am.Chem.Soc., 2003, 125: 11502-11503.
    [224] SU Z, KURAMOTO N. Optically active polyaniline derivatives prepared by electron acceptor in organic system: chiroptical properties [J]. Macromolecules, 2001, 34: 7249-7256.
    [225] SU Z, TAKEISHI M, KURAMOTO N. Helix inversion of polyaniline by introducing o-toluidine units [J]. Macromolecules, 2002, 35: 5752-5757.
    [226] SU Z, KURAMOTO N. In Situ synthesis of optically active poly(o-ethoxyaniline) in organic media and its chiroptical properties [J]. Chem. Mater., 2001, 13: 4787-4793.
    [227] SU Z, KUMAKURA T, KURAMOTO N. Optically active fluoro-substituted polyaniline prepared in organic media: the synthesis, chiroptical properties, and comparison with optically active non-substituted polyaniline [J]. Polymer, 2006, 47: 5295-5302.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700