小分子凝胶因子的设计合成及其性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,对于分子凝胶及其自组装纤维网络的研究日益引起人们的重视,随着已报道的凝胶因子的数目越来越多,人们对分子凝胶的研究已经不再满足于发现新的凝胶因子,如何赋予凝胶因子更多的功能性并开发其凝胶的潜在应用价值已经成为现阶段的主要研究热点。我们选用结构特点较为明显的三烷氧基苯甲酰和胆固醇衍生物凝胶体系,结合本组在刺激响应方面的研究经验,尝试把一些具有多重刺激响应性的功能基团引入到凝胶体系,以构筑具有多重刺激响应性的凝胶软材料。本论文围绕上述思想开展了如下工作:
     首先,设计合成了四个结构对称的三烷氧基苯甲酰胺衍生物,考察了它们对于不同溶剂选择性形成凝胶的能力,并用相图对形成的凝胶进行了表征。综合运用SEM、FTIR、XRD等技术手段对凝胶因子的自组装结构进行了详细研究,分析讨论了凝胶因子的分子结构与凝胶性能的关系。
     其次,设计合成了五个基于双水杨醛西佛碱的A(LS)2型胆固醇衍生物,凝胶测试发现其中的一个化合物可以在等体积的甲苯和醇混合溶剂中形成稳定的凝胶,凝胶既可以通过传统的热诱导的方法获得,也可以通过超声辅助的溶剂诱导的方法得到,这是一种新的分子凝胶的形成方法。我们运用各种研究手段比较了两种条件下形成的凝胶在宏观性能和微观自组装结构上的差异。另外,凝胶自组装结构还表现出很好的离子响应特性。
     然后,设计合成了一种基于苯乙烯基吡啶的ALS型胆固醇衍生物,其具有对光和质子的双重可逆刺激响应性质,可以设计成多种双输入的分子逻辑门。虽然这个化合物在各种测试溶剂中都不能形成凝胶,但其基于非共价相互作用形成的氢键复合物和掺杂复合物却表现出很好的凝胶性能。氢键复合物除可以自组装形成凝胶外,还表现出明显的热致液晶行为。掺杂复合物形成的凝胶具有显著的层状结构,并且其形貌表现出对掺杂比例的依赖性。利用超分子的掺杂复合等手段构筑凝胶因子在文献中鲜有报道,这为凝胶因子的设计合成开辟了一个新的思路。
In recent years, there has been immense interest in studying molecular gels and their self-assembled fibrillar networks (SAFINs). As the number of the reported low-molecular-mass gelators is growing, the study of molecular gels is no longer only focused on the discovery of new gelators. The design and synthesis of gelators with more functional groups and the development of their potential applications have become the major research focuses at the present stage. We choose the widely used trialkoxybenzoyl- and cholesterol-based molecular gel systems. According to the research experience for the stimuli-responsive molecules in our group, we try to introduce some stimuli-responsive molecules into the gelator systems, and build new soft materials with multiple stimuli-responsive properties. Based on the above ideas, we have carried out some work as follows:
     Firstly, we designed and synthesized four trialkoxybenzoyl-based molecules with similar symmetrical structures, and studied the structure-property relationship of these molecules. It was found that the para-substituted derivatives of p-phenylenediamine and benzidine could form stable gel in many organic solvents, while the meta-substituted derivative of m-phenylenediamine could only form gel in ethyl acetate and n-propanol, and the ortho-substituted derivative of o-phenylenediamine even could not form gel in any test solvents. The formed gels were studied by phase diagrams, SEM, FTIR, XRD, and the main effects of intermolecular hydrogen bonds and van der Waals forces on the self-assembly of gelators into SAFINs were analyzed and discussed.
     Secondly, we designed and synthesized five A(LS)2-type cholesterol derivatives centered with salen-type bis-salicylaldehyde Schiff-base functional units. After studying the gelability of these molecules in different solvents, we found that only compound G1 was a good gelator. G1 can form a stable gel with volume ratio of 1:1 toluene/alcohol mixed solvent at a very low concentration. The microstructure of the gel was studied by SEM, FTIR and XRD, and it was found that the intermolecular hydrogen bonds, van der Waals forces and the possibleπ-πinteractions played a key role in the self-assembly of the gelator. In addition, we found that G1-gel could be formed either through the traditional thermal-induced method, or under the influence of ultrasound. By exactly examining the gels formed with these two methods, we found that the second method was not the ultrasound-induced gelation as reported in the literature, and in nature, it was the ultrasound-assisted solvent-induced gelation and which was a new gel-forming method. Finally, we also tested the ionic sensitivity of G1 and its gel. G1 was sensitive with many transition metal ions, such as Zn2+, Cu2+, Cd2+, Pb2+ and Hg2+, and some anions, such as OH- and CN-, accompanying with clear spectra and color change. Such a response at the molecular level could be well transcribed to the gel, and G1 gel sould respond to these ions with a gel-to-sol transition, and these responses were quantitative in some degree. These properties might endow G1 and its gel with potential applications as indicator or adsorbent for toxic ions, and the results also confirmed that the intermolecular hydrogen bond plays a key role in the gel formation.
     And then, we designed and synthesized a stilbazole-based ALS-type cholesterol derivative G6, which showed good stimuli-responsive properties. It could perform photoisomerization and protonation with UV light and HCl, respectively. By choosing the suitable photostationary state as the starting state, and the UV light and HCl as two inputs, we had constructed five two-input logic gates and a 1:2 demultiplexer. But it was found that G6 could not form gel in any test solvents, and showed a certain degree of crystallization. We tried some methods to inhibit the crystallization, and achieved some success. First, we found the 1:1 hydrogen-bonding complex of G6 could form stable gel in some solvents, and the formed gel was characterized in detail. In addition, the hydrogen-bonding complex showed thermotropic mesomorphic behavior. Then, we found that G6 could also form gel with the doping of a A (LS)2-type molecule, and the quantity of the dopant could affect the gel formation and the morphology of formed gel. The effect of the structure of the dopant on the gel formation was discussed, and this might make a new way for the design and synthesis of gelators.
引文
[1] J. M. Lehn, Cryptates: Inclusion complexes of macropolycyclic receptor molecules. Pure Appl. Chem., 1978, 50, 871-892.
    [2] R. F. Service, How far can we push chemical self-assembly. Science, 2005, 309, 95-95.
    [3] S. Banerjee, R. K. Das, U. Maitra, Supramolecular gels‘in action’. J. Mater. Chem., 2009, 19, 6649-6687.
    [4] M. Zinic, F. Vogtle, F. Fages, Cholesterol-based gelators. Top. Curr. Chem., 2005, 256, 39-76.
    [5] D. Jordan Lloyd, In colloid chemistry; J. Alexander Ed., New Work: The Chemical Catalog Co., 1926, 1, 767-782.
    [6] P. J. Flory, Introductory lecture. Faraday Discuss. Chem. Soc., 1974, 57, 7-18.
    [7] N. M. Sangeetha, U. Maitra, Supramolecular gels: functions and uses. Chem. Soc. Rev., 2005, 34, 821-836.
    [8] R. G. Weiss, P. Terech (eds.), Molecular gels, materials with self-assembled fibrillar networks. Netherlands: Springer, 2006, 1-13.
    [9] L. A. Estroff, A. D. Hamilton, Water gelation by small organic molecules. Chem. Rev., 2004, 104, 1201-1217.
    [10] S. R. Raghavan, B. H. Cipriano, Gel formation: phase diagrams using tabletop rheology and calorimetry. Chapter 8 of‘Molecular gels, materials with self-assembled fibrillar networks’. R. G. Weiss and P. Terech (eds.), Netherlands: Springer, 2006, 241-252.
    [11] K. Murata, M. Aoki, T. Suzuki, T. Harada, H. Kawabata, T. Komori, F. Ohseto, K. Ueda, S. Shinkai, Thermal and light control of the sol-gel phase transition in cholesterol-based organic gels. Novel helical aggregation modes as detected by circular dichroism and electron microscopic observation. J. Am. Chem. Soc., 1994, 116, 6664-6676.
    [12] P. Sollich, Soft glassy rheology. Chapter 5 of‘Molecular gels, materials with self-assembled fibrillar networks’. R. G. Weiss and P. Terech (eds.), Netherlands: Springer, 2006, 161-192.
    [13] H. Bouas-Laurent, J.-P. Desvergne, Optical spectroscopic methods as tools to invertigate gel structures. Chapter 12 of‘Molecular gels, materials with self-assembled fibrillar networks’. R. G. Weiss and P. Terech (eds.), Netherlands: Springer, 2006, 363-429.
    [14] D. Danino, Y. Talmon, Cryo-transmission electron microscopy of molecular gels. Chapter 9 of‘Molecular gels, materials with self-assembled fibrillar networks’. R. G. Weiss and P. Terech (eds.), Netherlands: Springer, 2006, 253-274.
    [15] M. Anne, X-ray diffraction of poorly organized systems and molecular gels. Chapter 11 of‘Molecular gels, materials with self-assembled fibrillar networks’. R. G. Weiss and P. Terech (eds.), Netherlands: Springer, 2006, 325-361.
    [16] A. Aggeli, N. Boden, L. M. Carrick, T. C. B. Mcleish, I. A. Nyrkova, A. N. Semenov, Self-assembling peptide gels. Chapter 3 of‘Molecular gels, materials with self-assembled fibrillar networks’. R. G. Weiss and P. Terech (eds.), Netherlands: Springer, 2006, 99-130.
    [17] N. Fujita, S. Shinkai, Design and function of low molecular-mass organic gelators (LMOGs) bearing steroid and sugar groups. Chapter 15 of‘Molecular gels, materials with self-assembled fibrillar networks’. R. G. Weiss and P. Terech (eds.), Netherlands: Springer, 2006, 553-575.
    [18] P. Terech, R. G. Weiss, Low molecular mass gelators of organic liquids and the properties of their gels. Chem. Rev., 1997, 97, 3133-3159.
    [19] Y.-C. Lin, R. G. Weiss, Evidence for random parallel and anti-parallel packing between neighbouring cholesteryl-4-(2-anthryloxy)butyrate (CAB) molecules in the cholesteric liquid-crystalline phase. Identification of the four photodimers from CAB. Liq. Cryst., 1989, 4, 367-384.
    [20] Y.-C. Lin, R. G. Weiss, A novel gelator of organic liquids and the properties of its gels. Macromolecules, 1987, 20, 414-417.
    [21] M. George, R. G. Weiss, Molecular organogel. Soft matter comprised of low-molecular-mass organic gelators and organic liquids. Acc. Chem. Res., 2006, 39, 489-497.
    [22] L. Lu, T. M. Cocker, R. E. Bachman, R. G. Weiss, Gelation of organic liquids by some 5α-cholestan-3β-yl-N-(2-aryl)carbamates and 3β-cholesteryl-4-(2-anthr ylamino)butanoates. How important are H-bonding interactions in the gel and neat assemblies of aza aromatic-linker-steroid gelators? Langmuir, 2000, 16, 20-34.
    [23] Y.-C. Lin, B. Kachar, R. G. Weiss, Novel family of gelators of organic fluids and the structure of their gels. J. Am. Chem. Soc., 1989, 111, 5542-5551.
    [24] R. Mukkamala, R. G. Weiss, Physical gelation of organic fluids by anthraquinone-steroid-based molecules. Structural features influencing the properties of gels. Langmuir, 1996, 12, 1474-1482.
    [25] S. Shinkai, K. Murata, Cholesterol-based functional tectons as versatile building-blocks for liquid crystals, organic gels and monolayers. J. Mater. Chem., 1998, 8, 485-495.
    [26] K. Murata, M. Aoki, T. Nishi, A. Ikeda, S. Shinkai, New cholesterol-based gelators with light- and metal-responsive functions. J. Chem. Soc., Chem. Commun., 1991,1715-1718.
    [27] K. Murata, M. Aoki, T. Suzuki, T. Harada, H. Kawabata, T. Komori, F. Ohseto, K. Ueda, S. Shinkai, Thermal and light control of the sol-gel phase transition in cholestrol-based organic gels. Novel helical aggregation modes as detected by circular dichroism and electron microscopic observation. J. Am. Chem. Soc., 1994, 116, 6664-6676.
    [28] T. D. James, K. Murata, T. Harada, K. Ueda, S. Shinkai, Chiral discrimination of monosaccharides through gel formation. Chem. Lett., 1994, 23, 273-276.
    [29] J. H. Jung, S. Shinkai, T. Shimizu, Nanometer-level sol-gel transcription of cholesterol assemblies into monodisperse inner helical hollows of the silica. Chem. Mater., 2003, 15, 2141-2145.
    [30] K. Sugiyasu, N. Fujita, S. Shinkai, Visible-light-harvesting organogel composed of cholesterol-based perylene derivatives. Angew. Chem. Int. Ed., 2004, 43, 1229-1233.
    [31] S. Kawano, N. Fujita, S. Shinkai, Novel host-gust organogels as stabilized by the formation of crown-ammonium pseudo-rotaxane complexes. Chem. Commun., 2003, 1352-1353.
    [32] P. Xue, R. Lu, D. Li, M. Jin, C. Bao, Y. Zhao, Z. Wang, Rearrangement of the aggregation of the gelator during sol-gel transcription of a dimeric cholesterol-based viologen derivative into fibrous silica. Chem. Mater., 2004, 16, 3702-3707.
    [33] S. Kawano, N. Fujita, S. Shinkai, A coordination gelator that shows a reversible chromatic change and sol-gel phase-transition behavior upon oxidative/reductive stimuli. J. Am. Chem. Soc., 2004, 126, 8592-8593.
    [34] N. Tamaoki, S. Shimada, Y. Okada, A. Belaissaoui, G. Kruk, K. Yase, H. Matsuda, Polymerization of a diacetylene dicholesteryl ester having two urethanes in organic gel states. Langmuir, 2000, 16, 7545-7547.
    [35] J. Nagasawa, M. Kudo, S. Hayashi, N. Tamaoki, Organogelation of diacetylene cholesteryl esters having two urethane linkages and their photopolymerization in the gel state. Langmuir, 2004, 20, 7907-7916.
    [36] U. Beginn, S. Sheiko, M. Moller, Self-organoization of 3, 4, 5-tris(octyloxy) benzamide in solution and embedding of the aggregates into methacrylate resins. Macromol. Chem. Phys., 2000, 201, 1008-1015.
    [37] M. Hashimoto, S. Ujiie, A. Mori, Low molecular weight gelators with hexagonal order in their liquid-crystal phases and gel states: 5-cyano-2- (3,4,5-trialkoxybenzoylamino)tropones. Adv. Mater., 2003, 15, 797-800.
    [38] T. Kitahara, M. Shirakawa, S. Kawano, U. Beginn, N. Fujita, S. Shinkai, Creation of a mixed-valence state from one-dimensionally aligned TTF utilizing the self-assembling nature of a low molecular-weight gel. J. Am. Chem. Soc., 2005, 127, 14980-14981.
    [39] F. Camerel, L. Bonardi, M. Schmutz, R. Ziessel, Highly luminescent gels and mesogens based on elaborated borondipyrromethenes. J. Am. Chem. Soc., 2006, 128, 4548-4549.
    [40] U. Beginn, B. Tartsch, Bis[(alkoxy)benzoylsemicarbazides]—A new class of powerful organogelators. Chem. Commun., 2001, 1924-1925.
    [41] A. R. Hirst, D. K. Smith, Two-component gel-phase materials—Highly tunable self-assembling systems. Chem. Eur. J., 2005, 11, 5496-5508.
    [42] K. Hanabusa, T. Miki, Y. Taguchi, T. Koyama, H. Shirai, Two-component, small molecule gelling agents. J. Chem. Soc., Chem. Commun., 1993, 1382-1384.
    [43] K. M. Anderson, G. M. Day, M. J. Paterson, P. Byrne, N. Clarke, J. W. Steed, Structure calculation of an elastic hydrogel from sonication of rigid small molecule components. Angew. Chem. Int. Ed., 2008, 47, 1058-1062.
    [44] A. Ballabh, D. R. Trivedi, P. Dastidar, E. Suresh, Hydrogen bonded supramolecular network in organic salts: crystal structures of acid-base salts of dicarboxylic acids and amines. CrystEngComm, 2002, 4, 135-142.
    [45] A. Ballabh, D. R. Trivedi, P. Dastidar, Structural studies of a new low molecular mass organic gelator for organic liquids based on simple salt. Chem. Mater., 2003, 15, 2136-2140.
    [46] D. R. Trivedi, A. Ballabh, P. Dastidar, An easy to prepare organic salt as a low molecular mass organic gelator capable of selective gelation of oil from oil/water mixtures. Chem. Mater., 2003, 15, 3971-3973.
    [47] D. R. Trivedi, A. Ballabh, P. Dastidar, B. Ganguly, Structure-property correlation of a new family of organogelators based on organic salts and their selective gelation of oil from oil/water mixtures. Chem. Eur. J., 2004, 10, 5311-5322.
    [48] D. R. Trivedi, A. Ballabh, P. Dastidar, Facile preparation and structure-property correlation of low molecular mass organic gelators derived from simple organicsalts. J. Mater. Chem., 2005, 15, 2606-2614.
    [49] D. R. Trivedi, A. Ballabh, P. Dastidar, Noncovalent syntheses of supramolecular organo gelators. Cryst. Growth Des., 2006, 6, 763-768.
    [50] D. R. Trivedi, P. Dastidar, Cation-induced supramolecular isomerism in the hydrogen-bonded network of secondary ammonium monocarboxylate salts: a new class of organo gelator and their structures. Cryst. Growth Des., 2006, 6, 2114-2121.
    [51] D. R. Trivedi, P. Dastidar, Instant gelation of various organic fluids including petrol at room temperature by a new class of supramolecular gelators. Chem. Mater., 2006, 18, 1470-1478.
    [52] A. Ballabh, D. R. Trivedi, P. Dastidar, New series of organogelators derived from a combinatorial library of primary ammonium monocarboxylate salts. Chem. Mater., 2006, 18, 3795-3800.
    [53] P. Dastidar, Supramolecular gelling agents: can they be designed? Chem. Soc. Rev., 2008, 37, 2699-2715.
    [54] U. Maitra, P. V. Kumar, N. Chandra, L. J. DSouza, M. D. Prasanna, A. R. Raju, First donor-acceptor interaction promoted gelation of organic fluids. Chem. Commun., 1999, 595-596.
    [55] P. Babu, N. M. Sangeetha, P. Vijaykumar, U. Maitra, K. Rissanen, A. R. Raju. Pyrene-derived novel one- and two-component organogelators. Chem. Eur. J., 2003, 9, 1922-1932.
    [56] J. R. Moffat, D. K. Smith, Metastable two-component gel—Exploring the gel-crystal interface. Chem. Commun., 2008, 2248-2250.
    [57] T. Ishii, R. Iguchi, E. Snip, M. Ikeda, S. Shinkai, [60]Fullerene can reinforce the organogel structure of porphyrin-appended cholesterol derivatives: novel odd-even effect of the (CH2)n spacer on the organogel stability. Langmuir, 2001, 17, 5825-5833.
    [58] M. Shirakawa, N. Fujita, S. Shinkai, [60]Fullerene-motivated organogel formation in a porphyrin derivative bearing programmed hydrogen-bonding sites. J. Am. Chem. Soc., 2003, 125, 9902-9903.
    [59] J. M. Lehn, Supramolecular chemistry: concepts and perspectives. Weinheim: VCH, 1995.
    [60] H. J. Schneider, A. Yatsimirsky. Principles and methods in supramolecularchemistry. Chichester: Wiley, 1999.
    [61] A. J. Doig, D. H. Wiliams, Binding energy of an amide-amide hydrogen bond in aqueous and nonpolar solvents. J. Am. Chem. Soc., 1992, 114, 338-343.
    [62] F. M. DiCapua, S. Swaminathan, D. L. Beveridge, Theoretical evidence for water insertion inα-helix bending: molecular dynamics of Gly30 and Ala30 in vacuo and in solution. J. Am. Chem. Soc., 1991, 113, 6145-6155.
    [63] F. Fages, F. Vogtle, M. Zinic, Systematic design of amide- and urea-type gelators with tailored properties. Top. Curr. Chem., 2005, 256, 77-131.
    [64] L. Frkanec, M. Zinic, Chiral bis(amino acid)- and bis(amino alcohol)-oxalamide gelators. Gelation properties, self-assembly motifs and chirality effects. Chem. Commun., 2010, 46, 522-537.
    [65] K. Araki, I. Yoshikawa, Nucleobase-containing gelators. Top. Curr. Chem., 2005, 256, 133-165.
    [66] K. Sugiyasu, M. Numata, N. Fujita, S. M. Park, Y. J. Yun, B. H. Kim, S. Shinkai, Complementary hydrogen-bonding between thymidine-based low molecular- weight gelator and polynucleotide in organic media. Chem. Commun., 2004, 1996-1997.
    [67] J. Cui, A. Liu, Y. Guan, J. Zheng, Z. Shen, X. Wan, Tuning the helicity of self-assembled structure of a sugar-based organogelator by the proper choice of cooling rate. Langmuir, 2010, 26, 3615-3622.
    [68] G. John, J. H. Jung, M. Masuda, T. Shimizu, Unsaturation effect on gelation behavior of aryl glycolipids. Langmuir, 2004, 20, 2060-2065.
    [69] O. Gronwald, S. Shinkai, Sugar-integrated gelators of organic solvents. Chem. Eur. J., 2001, 7, 4328-4334.
    [70] S. M. Park, Y. S. Lee, B. H. Kim, Novel low-molecular-weight hydrogelators based on 2’-deoxyuride. Chem. Commun., 2003, 2912-2913.
    [71] H. Kobayashi, K. Koumoto, J. H. Jung, S. Shinkai, Sol-gel phase transition induced by fiber-vesicle structural changes in sugar-based bolaamphiphiles. J. Chem. Soc., Perkin Trans. 2, 2002, 1930-1936.
    [72] F. Fages, Metal coordination to assist molecular gelation. Angew. Chem. Int. Ed., 2006, 45, 1680-1682.
    [73] K. Murata, M. Aoki, T. Nishi, A. Ikeda, S. Shinkai, New cholesterol-based gelators with light- and metal-responsive functions. J. Chem. Soc., Chem. Commun., 1991,1715-1718.
    [74] K. Hanabusa, Y. Maesaka, M. Suzuki, M. Kimura, H. Shirai, Low molecular weight gelator containing–diketonato ligands: stabilization of gels by metal coordination. Chem. Lett., 2000, 1168-1169.
    [75] R. Ziessel, G. Pickaert, F. Camerel, B. Donnio, D. Guillon, M. Cesario, T. Prange, Tuning organogel and mesophases with phenanthroline ligands and their copper complexes by inter- to intramolecular hydrogen bonds. J. Am. Chem. Soc., 2004, 126, 12403-12413.
    [76] J.-E. Sohna Sohna, F. Fages, A trisbipyridine tripodal ligand as toluene gelator. Phase transition-triggered binding of iron(ii). Chem. Commun., 1997, 327-328.
    [77] S.-i. Kawano, N. Fujita, S. Shinkai, A coordination gelator that shows a reversible chromatic change and sol-gel phase-transition behavior upon oxidative/reductive stimuli. J. Am. Chem. Soc., 2004, 126, 8592-8593.
    [78] J. B. Beck, S. J. Rowan, Multistimuli multiresponsive metallo-supramolecular polymers. J. Am. Chem. Soc., 2003, 125, 13922-13923.
    [79] M. Shirakawa, N. Fujita, T. Tani, K. Kaneko, S. Shinkai, Organogel of an 8-quinolinol platinum(ii) chelate derivative and its efficient phosphorescence emission effected by inhibition of dioxygen quenching. Chem. Commun., 2005, 4149-4151.
    [80] A. Kishimura, T. Yamashita, T. Aida, Phosphorescent organogels via“metallophilic”interactions for reversible RGB-color switching. J. Am. Chem. Soc., 2005, 127, 179-183.
    [81] O. Roubeau, A. Colin, V. Schmitt, R. Clerac, Thermoreversible gels as magneto-optical switches. Angew. Chem. Int. Ed., 2004, 43, 3283-3286.
    [82] K. Kuroiwa, T. Shibata, A. Takada, N. Nemoto, N. Kimizuka, Heat-set gel-like networks of lipophilic Co(ii) triazole complexes in organic media and their thermochromic structural transitions. J. Am. Chem. Soc., 2004, 126, 2016-2021.
    [83] A. Ajayaghosh, V. K. Praveen,π-Organogels of self-assembled p-phenylenevinylenes: soft materials with distinct size, shape, and functions. Acc. Chem. Res., 2007, 40, 644-656.
    [84] A. Ajayaghosh, S. J. George, First phenylenevinylene based organogels: self-assembled nanostructures via cooperative hydrogen bonding andπ-stacking. J. Am. Chem. Soc., 2001, 123, 5148-5149.
    [85] D. K. Smith, Dendritic gels-many arms make light work. Adv. Mater., 2006, 18, 2773-2778.
    [86] A. R. Hirst, D. K. Smith, Dendritic gelators. Top. Curr. Chem., 2005, 256, 237-273.
    [87] G. Palui, F.-X. Simon, M. Schmutz, P. J. Mesini, A. Banerjee, Organogelators from self-assembling peptide based dendrimers: structural and morphological features. Tetrahedron, 2008, 64, 175-185.
    [88] A. R. Hirst, D. K. Smith, Solvent effects on supramolecular gel-phase materials: two-component dendritic gel. Langmuir, 2004, 20, 10851-10857.
    [89] M. d. Loos, J. v. Esch, I. Stokroos, R. M. Kellogg, B. L. Feringa, Remarkable stabilization of self-assembled organogels by polymerization. J. Am. Chem. Soc., 1997, 119, 12675-12676.
    [90] M. George, R. G. Weiss, Low molecular-mass gelators with diyne functional groups and their unpolymerized and polymerized gel assemblies. Chem. Mater., 2003, 15, 2879-2888.
    [91] S. H. Kang, B. M. Jung, W. J. Kim, J. Y. Chang, Embedding nanofibers in a polymer natrix by polymerization of organogels comprising heterobifunctional organogelators and monomeric solvents. Chem. Mater., 2008, 20, 5532-5540.
    [92] O. J. Dautel, M. Robitzer, J.-P. Lere-Porte, F. Serein-Spirau, J. J. E. Moreau, Self-organized ureido substituted diacetylenic organogel. Photopolymerization of one-dimensional supramolecular assemblies to give conjugated nanofibers. J. Am. Chem. Soc., 2006, 128, 16213-16223.
    [93] K. Aoki, M. Kudo, N. Tamaoki, Novel odd/even effect of alkylene chain length on the photopolymerizability of organogelators. Org. Lett., 2004, 6, 4009-4012.
    [94] D. J. Abdallah, S. A. Sirchio, R. G. Weiss, Hexatriacontane organogels. The first determination of the conformation and molecular packing of a low-molecular-mass organogelator in its gelled state. Langmuir, 2000, 16, 7558-7561.
    [95] D. J. Abdallah, L. Lu, R. G. Weiss, Thermoreversible organogels from alkane gelators with one heteroatom. Chem. Mater., 1999, 11, 2907-2911.
    [96] T. Brotin, R. Utermohlen, F. Fages, H. Bouas-Laurent, J.-P. Desvergne, A novel small molecular luminescent gelling agent for alcohols. J. Chem. Soc., Chem. Commun., 1991, 416-418.
    [97] B.-K. An, D.-S. Lee, J.-S. Lee, Y.-S. Park, H.-S. Song, S. Y. Park, Strongly fluorescent organogel system comprising fibrillar self-assembly of atrifluoromethyl-based cyanostilbene derivative. J. Am. Chem. Soc., 2004, 126, 10232-10233.
    [98] I. Hwang, W. S. Jeon, H.-J. Kim, D. Kim, H. Kim, N. Selvapalam, N. Fujita, S. Shinkai, K. Kim, Cucurbit[7]uril: a simple macrocyclic, pH-triggered hydrogelator exhibiting guest-induced stimuli-responsive behavior. Angew. Chem. Int. Ed., 2007, 46, 210-213.
    [99] S. J. Langford, M. J. Latter, V.-L. Lau, L. L. Martin, A. Mechler, Organogels derived from tetranitrated crown ethers. Org. Lett., 2006, 8, 1371-1373.
    [100] J. Eastoe, M. Sanchez-Dominguez, P. Wyatt, R. K. Heenan, A photo-responsive organogel. Chem. Commun., 2004, 2608-2609.
    [101] S. Matsumoto, S. Yamaguchi, A. Wada, T. Matsui, M. Ikeda, I. Hamachi, Photo-responsive gel droplet as a nano- or pico-litre container comprising a supramolecular hydrogel. Chem. Commun., 2008, 1545-1547.
    [102] S. Miljanic, L. Frkanec, Z. Meic, M. Zinic, Photoinduced gelation by stilbene oxalyl amide compounds. Langmuir, 2005, 21, 2754-2760.
    [103] M. Moriyama, N. Mizoshita, T. Kato, Reversible on-off photo-switching of hydrogen bonding for self-assembled fibers comprising physical gels. Bull. Chem. Soc. Jpn., 2006, 79, 962-964.
    [104] N. Koumura, M. Kudo, N. Tamaoki, Photocontrolled gel-to-sol-to-gel phase transitioning of meta-substituted azobenzene bisurethanes through the breaking and reforming of hydrogen bonds. Langmuir, 2004, 20, 9897-9900.
    [105] J. J. D. Jong, L. N. Lucas, R. M. Kellogg, J. H. Esch, B. L. Feringa, Reversible optical transcription of supramolecular chirality into molecular chirality. Science, 2004, 304, 278-281.
    [106] M. Akazawa, K. Uchida, J. J. D. Jong, J. Areephong, M. Stuart, G. Caroli, W. R. Browne, B. L. Feringa, Photoresponsive dithienylethene-urea-based organogels with“reversed”behavior. Org. Biomol. Chem., 2008, 6, 1544-1547.
    [107] A. D. Guerzo, J.-L. Pozzo, Photoresponsive gels. Chapter 24 of Molecular Gels, Materials with Self-Assembled Fibrillar Networks. R. G. Weiss and P. Terech (eds.), Netherlands: Springer, 2006, 817-855.
    [108] A. Shumburo, M. C. Biewer, Stabilization of an organic photochromic material by incorporation in an organogel. Chem. Mater., 2002, 14, 3745-3750.
    [109] H. Maeda, Anion-responsive supramolecular gels. Chem. Eur. J., 2008, 14,11274-11282.
    [110] N. Shi, H. Dong, G. Yin, Z. Xu, S. Li, A smart supramolecular hydrogel exhibiting pH-modulated viscoelastic properties. Adv. Funct. Mater., 2007, 17, 1738-1843.
    [111] K. Sugiyasu, N. Fujita, M. Takeuchi, S. Yamada, S. Shinkai, Proton-sensitive fluorescent organogels. Org. Biomol. Chem., 2003, 1, 895-899.
    [112] J.-L. Pozzo, G. M. Clavier, J.-P. Desvergne, Rational design of new acid-sensitive organogelators. J. Mater. Chem., 1998, 8, 2575-2577.
    [113] S.-i. Kawano, N. Fujita, S. Shinkai, Quater-, quinque-, and sexithiophene organogelators: unique thermochromism and heating-free sol-gel phase transition. Chem. Eur. J., 2005, 11, 4735-4742.
    [114] C. Wang, D. Zhang, D. Zhu, A low-molecular-mass gelator with an electroactive tetrathiafulvalene group: Tuning the gel formation by charge-transfer interaction and oxidation. J. Am. Chem. Soc., 2005, 127, 16372-16373.
    [115] I. Yoshimura, Y. Miyahara, N. Kasagi, H. Yamane, A. Ojida, I. Hamachi, Molecular recognition in a supramolecular hydrogel to afford a semi-wet sensor chip. J. Am. Chem. Soc., 2004, 126, 12204-12205.
    [116] Z. Yang, H. Gu, J. Du, J. Gao, B. Zhang, X. Zhang, B. Xu, Self-assembled hybrid nanofibers confer a magnetorheological supmolecular hydrogel. Tetrahedron, 2007, 63, 7349-7357.
    [117] S. A. Ahmed, X. Sallenave, F. Fages, G. Mieden-Gundert, W. M. Muller, U. Muller, F. Vogtle, J.-L. Pozzo, Multiaddressable self-assembling organogelators based on 2H-chromene and N-acyl-1,ω-amino acid units. Langmuir, 2002, 18, 7096-7101.
    [118] J. Liu, P. He, J. Yan, X. Fang, J. Peng, K. Liu, Y. Fang, An organometallic super-gelator with multiple-stimulus responsive properties. Adv. Mater., 2008, 20, 2508-2571.
    [119] K. J. C. Bommel, A. Friggeri, S. Shinkai, Organic templates for the generation of inorganic materials. Angew. Chem. Int. Ed., 2003, 42, 980-999.
    [120] Y. Ono, K. Nakashima, M. Sano, Y. Kanekiyo, K. Inoue, J. Hojo, S. Shinkai, Organic gels are useful as a template for the preparation of hollow fiber silica. Chem. Commun., 1998, 1477-1478.
    [121] M. Llusar, C. Sanchez, Inorganic and hybrid nanofibrous materials templated with organogelators. Chem. Mater., 2008, 20, 782-820.
    [122] J. H. Jung, S. Shinkai, Gels as templates for nanotubes. Top. Curr. Chem., 2004, 248, 223-260.
    [123] A. Friggeri, K. J.C. Bommel, S. Shinkai, Gels of low molecular-mass organic gelators as templates for transcription. Chapter 25 of Molecular Gels, Materials with Self-Assembled Fibrillar Networks. R. G. Weiss and P. Terech (eds.), Netherlands: Springer, 2006, 857-893.
    [124] T. Kato, Y. Hirai, S. Nakaso, M. Moriyama, Liquid-crystalline physical gels. Chem. Soc. Rev., 2007, 36, 1857-1867.
    [125] T. Kato, N. Mizoshita, M. Moriyama, T. Kitamura, Gelation of liquid crystals with self-assembled fibers. Top. Curr. Chem., 2005, 256, 219-236.
    [126] N. Mohmeyer, P. Wang, H.-W. Schmidt, S. M. Zakeeruddin, M. Gratzel, Quasi-solid-state dye sensitized solar cells with 1,3:2,4-di-O-benzylidene- D-sorbitol derivatives as low molecular weight organic gelators. J. Mater. Chem., 2004, 14, 1905-1909.
    [127] N. Mohmeyer, D. Kuang, P. Wang, H.-W. Schmidt, S. M. Zakeeruddin, M. Gratzel, An efficient organogelator for ionic liquids to prepare stable quasi-solid-state dye-sensitized solar cells. J. Mater. Chem., 2006, 16, 2978-2983.
    [128] A. Ajayaghosh, V. K. Praveen, C. Vijayakumar, S. J. George, Molecular wire encapsulated intoπorganogels: efficient supramolecular light-harvesting antennae with color-tunable emission. Angew. Chem. Int. Ed., 2007, 46, 6260-6265.
    [129] A. Ajayaghosh, V. K. Praveen, C. Vijayakumar, Organogels as scaffolds for excitation energy transfer and light harvesting. Chem. Soc. Rev., 2008, 37, 109-122.
    [130] A. R. Hirst, B. Escuder, J. F. Miravet, D. K. Smith, High-tech applications of self-assembling supramolecular nanostructured gel-phase materials: from regenerative medicine to electronic devices. Angew. Chem. Int. Ed., 2008, 47, 8002-8018.
    [131] R. G. Ellis-Behnke, Y.-X. Liang, S.-W. You, D. K. C. Tay, S. Zhang, K.-F. So, G. E. Schneider, Nano neuro knitting: peptide nanofiber scaffold for brain repair and axon regeneration with functional return of vision. PNAS, 2006, 103, 5054-5059.
    [132] J. Kisiday, M. Jin, B. Kurz, H. Hung, C. Semino, S. Zhang, A. J. Grodzinsky, Self-assembling peptide hydrogel fosters chondrocyte extracellular matrix production and cell division: implications for cartilage tissue repair. PNAS, 2002, 99, 9996-10001.
    [133] G. A. Silva, C. Czeisler, K. L. Niece, E. Beniash, D. A. Harrington, J. A. Kessler, S. I. Stupp, Selective differentiation of neural progenitor cells by high-epitope density nanofibers. Science, 2004, 303, 1352-1355.
    [134] S. H. Seo, J. Y. Chang, Organogels from 1H-imidazole amphiphiles: entrapment of a hydrophilic drug into strands of the self-assembled amphiphiles. Chem. Mater., 2005, 17, 3249-3254.
    [135] A. Shome, S. Debnath, P. K. Das, Head group modulated pH-responsive hydrogel of amino acid-based amphiphiles: entrapment and release of cytochrome c and vitamin B12. Langmuir, 2008, 24, 4280-4288.
    [136] B. Adhikari, G. Palui, A. Banerjee, Self-assembling tripeptide based hydrogels and their use in removal of dyes from waste-water. Soft Matter, 2009, 5, 3452-3460.
    [137] E. J. Cho, I. Y. Jeong, S. J. Lee, W. S. Han, J. K. Kang, J. H. Jung, Terpyridine-based smart organic-inorganic hybrid gel as potential dye-adsorbing agent for water purification. Tetrahedron Lett., 2008, 49, 1076-1079.
    [138] S. Bhattacharya, Y. Krishnan-Ghosh, First report of phase selective gelation of oil from oil/water mixtures. Possible implications toword containing oil spills. Chem. Commun., 2001, 185-186.
    [139] D. R. Trivedi, A. Ballabh, P. Dastidar, An easy to prepare organic salt as a low molecular mass organic gelator capable of selective gelation of oil from oil/water mixtures. Chem. Mater., 2003, 15, 3971-3973.
    [1] H. Yang, T. Yi, Z. Zhou, Y. Zhou, J. Wu, M. Xu, F. Li, C. Huang, Switchable fluorescent organogels and mesomorphic superstructure based on naphthalene derivatives, Langmuir, 2007, 23, 8224-8230.
    [2] Q. Liu, Y. Wang, W. Li, L. Wu, Structural characterization and chemical response of a Ag-coordinated supramolecular gel. Langmuir, 2007, 23, 8217-8223.
    [3] P. Mukhopadhyay, Y. Iwashita, M. Shirakawa, S.-i. Kawano, N. Fujita, S. Shinkai, Spontaneous colorimetric sensing of the positional isomers of dihydroxynaphthalene in a 1D organogel matrix. Angew. Chem. Int. Ed., 2006, 45, 1592-1595.
    [4] F. Wurthner, C. Bauer, V. Stepanenko, S. Yagai, A black perylene bisimide super gelator with an unexpected J-type absorption band. Adv. Mater., 2008, 20, 1695-1698.
    [5] U. Beginn, B. Tartsch, Bis[(alkoxy)benzoylsemicarbazides]—a new class of powerful organogelators. Chem. Commun., 2001, 1924-1925.
    [6] B. Bai, H. Wang, H. Xin, F. Zhang, B. Long, X. Zhang, S. Qu, M. Li, Hydrazide-based organogels and liquid crystals with columnar order. New J. Chem., 2007, 31, 401-408.
    [7] M. Shirakawa, N. Fujita, T. Tani, K. Kaneko, M. Ojima, A. Fujii, M. Ozaki, S. Shinkai, Organogels of 8-quinolinol/metal(II)-chelate derivatives that show electron- and light-emitting properties. Chem. Eur. J., 2007, 13, 4155-4162.
    [8] C. Bao, R. Lu, M. Jin, P. Xue, C. Tan, T. Xu, G. Liu, Y. Zhao, Helical stacking tuned by alkoxy side chains inπ-conjugated triphenylbenzene discotic derivatives. Chem. Eur. J., 2006, 12, 3287-3294.
    [9] X. Dou, W. Pisula, J. Wu, G. J. Bodwell, K. Mullen, Reinforced self-assembly of hexa-peri-hexabenzocoronenes by hydrogen bonds: from microscopic aggregates to macroscopic fluorescent organogels. Chem. Eur. J., 2008, 14, 240-249.
    [10] U. Beginn, S. Sheiko, M. Moller, Self-organization of 3,4,5-tris(octyloxy) benzamide in solution and embedding of the aggregates into methacrylate resins. Macromol. Chem. Phys., 2000, 201, 1008-1015.
    [11] F. Camerel, L. Bonardi, G. Ulrich, L. Charbonniere, B. Donnio, C. Bourgogne, D.Guillon, P. Retailleau, R. Ziessel, Self-assembly of fluorescent amphipathic borondipyrromethene scaffolding in mesophases and organogels. Chem. Mater., 2006, 18, 5009-5021.
    [12] M. Hashimoto, S. Ujiie, A. Mori, Low molecular weight gelators with hexagonal order in their liquid-crystal phases anf gel states: 5-cyano-2-(3,4,5-trialkoxybenzoyl amino)tropones. Adv. Mater., 2003, 15, 797-800.
    [13] F. Camerel, L. Bonardi, M. Schmutz, R. Ziessel, Highly luminescent gels and mesogens based on elaborated borondipyrromethenes. J. Am. Chem. Soc., 2006, 128, 4548-4549.
    [14] N. Fujita, Y. Sakamoto, M. Shirakawa, M. Ojima, A. Fujii, M. Ozaki, S. Shinkai, Polydiacetylene nanofibers creating in low-molecular-weight gels by post modification: control of blue and red phases by the odd-even effect in alky chains. J. Am. Chem. Soc., 2007, 129-4134-4135.
    [15] T. Kitahara, M. Shirakawa, S.-i. Kawano, U. Beginn, N. Fujita, S. Shinkai, Creation of a mixed-valence state from one-dimensionally aligned TTF utilizing the self-assembling nature of a low molecular-weight gel. J. Am. Chem. Soc., 2005, 127, 14980-14981.
    [16] J. J. Gorp, J. A. Vekemans, E. W. Meijer, C3-symmetrical supramolecular architectures: fibers and organic gels from discotic trisamides and trisureas. J. Am. Chem. Soc., 2002, 124, 14759-14769.
    [17] J. Kowalczuk, S. Jarosz, J. Tritt-Goc, Characterization of low molecular-weight gelator methyl-4,6-O-(p-nitrobenzylidene)-α-D-glucopyranoside hydrogels and water diffusion in their networks. Tetrahedron, 2009, 65, 9801-9806.
    [18] P. Terech, C. Rossat, F. Volino, On the measurement of phase transition temperatures in physical molecular organogels. J. Colloid Interface Sci., 2000, 227, 363-370.
    [19] G. Palui, F.-X. Simon, M. Schmutz, P. J. Mesini, A. Banerjee, Organogelators from self-assembling peptide based dendrimers: structural and morphological features. Tetrahedron, 2008, 64, 175-185.
    [20] K. Murata, M. Aoki, T. Suzuki, T. Harada, H. Kawabata, T. Komori, F. Ohseto, K. Ueda, S. Shinkai, Thermal and light control of the sol-gel phase transition in cholesterol-based organic gels. Novel helical aggregation modes as detected by circular dichroism and electron microscopic observation. J. Am. Chem. Soc., 1994, 116, 6664-6676.
    [1] M. George, R. G. Weiss, Molecular organogels. Soft matter comprised of low-molecular-mass organic gelators and organic liquids. Acc. Chem. Res., 2006, 39, 489-497.
    [2] M. Zinic, F. Vogtle, F. Fages, Cholesterol-based gelators. Top. Curr. Chem., 2005, 256, 39-76.
    [3] S. Shinkai, K. Murata, Cholesterol-based functional tectons as versatile building-blocks for liquid crystals, organic gels and monolayers. J. Mater. Chem., 1998, 8, 485-495.
    [4] C. Vijayakumar, V. K. Praveen, A. Ajayaghosh, RGB emission through controlled donor self-assembly and modulation of excitation energy transfer: a novel strategy to white-light-emitting organogels. Adv. Mater., 2009, 21, 2059-2063.
    [5] S. Kong, L. Xiao, Z. Chen, X. Yan, B. Qu, S. Wang, Q. Gong, Enhancedphotoluminescence and the self-assembled fibrillar nanostructure of 5-(cholesteryloxy)methyl-8-hydroxyquinoline lithium in a gel state. New J. Chem., 2010, 34, 325-330.
    [6] J. Wu, T. Yi, Y. Zou, Q. Xia, T. Shu, F. Liu, Y. Yang, F. Li, Z. Chen, Z. Zhou, C. Huang, Gelation induced reversible syneresis via structural evolution. J. Mater. Chem., 2009, 19, 3971-3978.
    [7] Q. Chen, D. Zhang, G. Zhang, D. Zhu, New cholesterol-based gelators with maleimide unit and the relevant michael adducts: chemoresponsive organogels. Langmuir, 2009, 25, 11436-11441.
    [8] C. Dou, D. Li, H. Gao, C. Wang, H. Zhang, Y. Wang, Sonication-induced molecular gels based on mono-cholesterol substituted quinacridone derivatives. Langmuir, 2010, 26, 2113-2118.
    [9] J. Wu, T. Yi, Q. Xia, Y. Zou, F. Liu, J. Dong, T. Shu, F. Li, C. Huang, Tunable gel formation by both sonication and thermal processing in a cholesterol-based self-assembly system. Chem. Eur. J., 2009, 15, 6234-6243.
    [10] J. Peng, K. Liu, J. Liu, Q. Zhang, X. Feng, Y. Fang, New dicholesteryl-based gelators: chirality and spacer length effect. Langmuir, 2008, 24, 2992-3000.
    [11] H. Fukuda, K. Amimoto, H. Koyama, T. Kawato, Crystalline photochromism of N-salicylidene-2,6-dialkylanilines: advantages of 2,6-dialkyl substituents of aniline for preparation of photochromic Schiff base crystals. Org. Biomol. Chem., 2003, 1, 1578-1583.
    [12] W. Tang, Y. Xiang, A. Tong, Salicyladehyde azines as fluorophores of aggregation-induced emission enhancement characteristics. J. Org. Chem., 2009, 74, 2163-2166.
    [13] E. Hadjoudis, I. M. Mavridis, Photochromism and thermochromism of Schiff bases in the solid state: structural aspects. Chem. Soc. Rev., 2004, 33, 579-588.
    [14] Y. Sun, Y. Liu, W. Gao, Fluorescent and chromogenic probes bearing salicylaldehyde hydrazone functionality for cyanide detection in aqueous solution. Sensors and Actuators B, 2009, 143, 171-176.
    [15] V. K. Bhardwaj, A. P. S. Pannu, N. Singh, M. S. Hundal, G. Hundal, Synthesis of new tripodal receptors-a‘PET’based‘off-on’recognition of Ag+. Tetrahedron, 2008, 64, 5384-5391.
    [16] N. Kaur, N. Singh, D. Cairns, J. F. Callan, A multifunctional tripodal fluorescentbehavior. Org. Lett., 2009, 11, 2229-2232.
    [17] L. Gao, Y. Wang, J. Wang, L. Huang, L. Shi, X. Fan, Z. Zou, T. Yu, M. Zhu, Z. Li, A novel Zn-sensitive fluorescent chemosensor assembled within aminopropyl- functionalized mesoporous SBA-15. Inorg. Chem., 2006, 45, 6844-6850.
    [18] L. Zhao, Q. Hou, D. Sui, Y. Wang, S. Jiang, Multistate/multifunctional switches based on photochromic Schiff base. Spectrochim. Acta A, 2007, 67, 1120-1125.
    [19] L. Zhao, D. Sui, J. Chai, Y. Wang, S. Jiang, Digital logic circuit based on a single molecular system of salicylidene Schiff base. J. Phys. Chem. B, 2006, 110, 24299-24304.
    [20] L. Zhao, S. Wang, Y. Wu, Q. Hou, Y. Wang, S. Jiang, Salicylidene Schiff base assembled with mesoporous silica SBA-15 as hybrid materials for molecular logic function. J. Phys. Chem. C, 2007, 111, 18387-18391.
    [21] P. Xue, R. Lu, G. Chen, Y. Zhang, H. Nomoto, M. Takafuji, H. Ihara, Functional organogel based on a salicylideneaniline derivative with enhanced fluorescence emission and photochromism. Chem. Eur. J., 2007, 13, 8231-8239.
    [22] S. Bhattacharya, A. Pal, Physical gelation of binary mixtures of hydrocarbons mediated by n-lauroyl-L-alanine and characterization of their thermal and mechanical properties. J. Phys. Chem. B, 2008, 112, 4918-4927.
    [23] K. Sugiyasu, N. Fujita, S. Shinkai, Visible-light-harvesting organogel composed of cholesterol-based perylene derivatives. Angew. Chem. Int. Ed., 2004, 43, 1229-1233.
    [24] Y. Ji, Y.-F. Luo, X.-R. Jia, E.-Q. Chen, Y. Huang, C. Ye, B.-B. Wang, Q.-F. Zhou, Y. Wei, A dendron based on natural amino acids: synthesis and behavior as an organogelator and lyotropic liquid crystal. Angew. Chem. Int. Ed., 2005, 44, 6025-6029.
    [25] Y. Xiong, Z. Li, G. Feng, H. Wang, H. Xu, X. Yang, Y. Yang, Self-assembly of gelators confined within the nano-scale interlayer space of organo-montmorillonite. Phys. Chem. Chem. Phys., 2008, 10, 6479-6482.
    [26] C. Zhan, P. Gao, M. Liu, Self-assembled helical spherical-nanotubes from an L-glutamic acid based bolaamphiphilic low molecular mass organogelator. Chem. Commun., 2005, 462-464.
    [27] Y. Yang, T. Chen, J.-F. Xiang, H.-J. Yan, C.-F. Chen, L.-J. Wan, Mutual responsive hydrazide-based low-molecular-mass organic gelators: probing gelation on themolecular level. Chem. Eur. J., 2008, 14, 5742-5746.
    [28] C. Wang, D. Zhang, D. Zhu, A low-molecular-mass gelator with an electroactive tetrathiafulvalene group: tuning the gel formation by charge-transfer interaction and oxidation. J. Am. Chem. Soc., 2005, 127, 16372-16373.
    [29] G. Cravotto, P. Cintas, Molecular self-assembly and patterning induced by sound waves. The case of gelation. Chem. Soc. Rev., 2009, 38, 2684-2697.
    [30] D. Bardelang, Ultrasound induced gelation: a paradigm shift. Soft Matter, 2009, 5, 1969-1971.
    [31] S. Zhang, S. Yang, J. Lan, Y. Tang, Y. Xue, J. You, Ultrasound-induced switching of sheetlike coordination polymer microparticles to nanofibers capable of gelating solvents. J. Am. Chem. Soc., 2009, 131, 1689-1691.
    [32] Z. Xie, A. Zhang, L. Ye, Z.-g. Feng, Organo- and hydrogels derived from cyclo(L-Tyr-L-Lys) and itsε-amino derivatives. Soft Matter., 2009, 5, 1474-1482.
    [33] Y. Wang, C. Zhan, H. Fu, X. Li, X. Sheng, Y. Zhao, D. Xiao, Y. Ma, J. S. Ma, J. Yao, Switch from intra- to intermolecular H-bonds by ultrasound: induced gelation and distinct nanoscale morphologies. Langmuir, 2008, 24, 7635-7638.
    [34] R.-Y. Wang, X.-Y. Liu, J.-L. Li, Engineering molecular self-assembled fibrillar networks by ultrasound. Cryst. Growth Des., 2009, 9, 3286-3291.
    [35] Y. Li, T. Wang, M. Liu, Ultrasound induced formation of organogel from a glutamic dendron. Tetrahedron, 2007, 63, 7468-7473.
    [36] J. Wu, T. Yi, T. Shu, M. Yu, Z. Zhou, M. Xu, Y. Zhou, H. Zhang, J. Han, F. Li, C. Huang, Ultrasound switch and thermal self-repair of morphology and surface wettability in a cholesterol-based self-assembly system. Angew. Chem. Int. Ed., 2008, 47, 1063-1067.
    [37] M. Avalos, R. Babiano, P. Cintas, A. Gomez-Carretero, J. L. Jimenez, M. Lozano, A. L. Ortiz, J. C. Palacios, A. Pinazo, A family of hydrogels based on ureido-linked aminopolyol-derived amphiphiles and bolaamphiphiles: synthesis, gelation under thermal and sonochemical stimuli, and mesomorphic charcaterization. Chem. Eur. J., 2008, 14, 5656-5669.
    [38] Y. Wang, L. Tang, J. Yu, Investigation on the assembled structure-property correlation of supramolecular hydrogel formed from low-molecular-weight gelator. J. Colloid Interface Sci., 2008, 319, 357-364.
    [39] M. George, R. G. Weiss, Chemically reversible organogels: aliphatic amines as“latent”gelators with carbon dioxide. J. Am. Chem. Soc., 2001, 123, 10393-10394.
    [40] M. Suzuki, Y. Nakajima, M. Yumoto, M. Kimura, H. Shirai, K. Hanabusa, Effects of hrdrogen bonding and van der Waals interactions on organogelation using designed low-molecular-weight gelators and gel formation at room temperature. Langmuir, 2003, 19, 8622-8624.
    [41] M. George, R. G. Weiss, Chemically reversible organogels via“latent”gelators. Aliphatic amines with carbon dioxide and their ammonium carbamates. Langmuir, 2002, 18, 7124-7135.
    [42] M. Suzuki, Y. Nakajima, M. Yumoto, M. Kimura, H. Shirai, K. Hanabusa, In situ organogelation at room temperature: direct synthesis of gelators in organic solvents. Org. Biomol. Chem., 2004, 2, 1155-1159.
    [43] M. George, R. G. Weiss, Primary alkyl amines as latent gelators and their organogel adducts with neutral triatomic molecules. Langmuir, 2003, 19, 1017-1025.
    [44] K. Murata, M. Aoki, T. Suzuki, T. Harada, H. Kawabata, T. Komori, F. Ohseto, K. Ueda, S. Shinkai, Thermal and light control of the sol-gel phase transition in cholesterol-based organic gels. Novel helical aggregation modes as detected by circular dichroism and electron microscopic observation. J. Am. Chem. Soc., 1994, 116, 6664-6676.
    [45] L. A. Estroff, L. Leiserowitz, L. Addadi, S. Weiner, A. D. Hamilton. Characterization of an organic hydrogel: a cryo-transmission electron microscopy and X-ray diffraction study. Adv. Mater., 2003, 15, 38-42.
    [46] L. Gao, J. Q. Wang, L. Huang, X. X. Fan, J. H. Zhu, Y. Wang, Z. G. Zou, Novel inorganic-organic hybrid fluorescence chemosensor derived from SBA-15 for copper cation. Inorg. Chem., 2007, 46, 10287-10293.
    [47] M. Kumar, A. Dhir, V. Bhalla, A molecular keypad lock based on the thiacalix[4]arene of 1,3-alternate conformation. Org. Lett., 2009, 11, 2567-2570.
    [48] Y. M. Hijji, B. Barare, A. P. Kennedy, R. Butcher, Synthesis and photophysical characterization of a Schiff base as anion sensor. Sensors and Actuators B, 2009, 136, 297-302.
    [49] S. Khatua, S. H. Choi, J. Lee, J. O. Huh, Y. Do, D. G. Churchill, Highly selective fluorescence detection of Cu2+ in water by chiral dimeric Zn2+ complexes through direct displacement. Inorg. Chem., 2009, 48, 1799-1801.
    [1] S. Shinkai, K. Murata, Cholestrol-based functional tectons as versatile building-blocks for liquid crystals, organic gels and monolayers. J. Mater. Chem., 1998, 8, 485-495.
    [2] J. Wu, T. Yi, Y. Zou, Q. Xia, T. Shu, F. Liu, Y. Yang, F. Li, Z. Chen, Z. Zhou, C. Huang, Gelation induced reversible syneresis via structural evolution. J. Mater. Chem., 2009, 19, 3971-3978.
    [3] Q. Chen, D. Zhang, G. Zhang, D. Zhu, New cholesterol-based gelators with maleimide unit and the relevant michael adducts: chemoresponsive organogels. Langmuir, 2009, 25, 11436-11441.
    [4] C. Dou, D. Li, H. Gao, C. Wang, H. Zhang, Y. Wang, Sonication-induced molecular gels based on mono-cholesterol substituted quinacridone derivatives. Langmuir, 2010, 26, 2113-2118.
    [5] S. Kong, L. Xiao, Z. Chen, X. Yan, B. Qu, S. Wang, Q. Gong, Enhanced photoluminescence and the self-assembled fibrillar nanostructure of 5-(cholesteryloxy)methyl-8-hydroxyquinoline lithium in a gel state. New J. Chem., 2010, 34, 325-330.
    [6] D. M. Huck, H. L. Nguyen, P. N. Horton, M. B. Hursthouse, D. Guillon, B. Donnio, D. W. Bruce, Mesomorphic silver(I) complexes of polycatenar 2’- and 3’-stilbazoles. Crystal and molecular structure of 3,4-dimethoxy-3’-stilbazole and of two silver triflate complexes. Polyhedron, 2006, 25, 307-324.
    [7] B. Donnio, D. W. Bruce, Liquid-crystalline, polycatenar complexes of silver(I): dependence of the mesomorphism on the ligand and the anion. New J. Chem., 1999, 275-286.
    [8] H.-C. Lin, J. Hendrianto, Synthesis and characterization of H-bonded side-chain andcrosslinking LC polymers containing donor/acceptor homopolymers and copolymers. Polymer, 2005, 46, 12146-12157.
    [9] A. Vasilev, T. Deligeorgiev, N. Gadjev, S. Kaloyanova, J. J. Vaquero, J. Alvarez-Builla, A. G. Baeza, Novel environmentally benign procedures for the synthesis of styryl dyes. Dyes and Pigments, 2008, 77, 550-555.
    [10] C. Qin, M. Zhou, W. Zhang, X. Wang, G. Chen, The synthesis and optical properties of three stilbene-type dyes. Dyes and Pigments, 2008, 77, 678-685.
    [11] O. S. Wenger, L. M. Henling, M. W. Day, J. R. Winkler, H. B. Gray, Photoswitchable luminescence of rhenium(I) tricarbonyl diimines. Inorg. Chem., 2004, 43, 2043-2048.
    [12] V. W. Yam, B. Li, Y. Yang, B. W. Chu, K. M. Wong, K.-K. Cheung, Preparation, photo-luminescence and electro-luminescence behavior of Langmuir-Blodgett films of bipyridylrhenium(I) surfactant complexes. Eur. J. Inorg. Chem., 2003, 4035-4042.
    [13] M. J. G. Lesley, A. Woodward, N. J. Taylor, T. B. Marder, Lewis acidic borane adducts of pyridines and stilbazoles for nonlinear optics. Chem. Mater., 1998, 10, 1355-1365.
    [14] W. Huang, M. Helvenston, Synthesis, characterization, and NLO properties of a phenothiazine-stilbazole monolayer. Langmuir, 1999, 15, 6510-6514.
    [15] C. Bao, R. Lu, M. Jin, P. Xue, C. Tan, G. Liu, Y. Zhao, L-Tartaric acid assisted binary organogel system: strongly enhanced fluorescence induced by supramolecular assembly. Org. Biomol. Chem., 2005, 3, 2508-2512.
    [16] A. Martinez-Otero, E. Evangelio, R. Alibes, J. L. Bourdelande, D. Ruiz-Molina, F. Busque, J. Hernando, Surface-structured molecular sensor for the optical detection of acidity. Langmuir, 2008, 24, 2963-2966.
    [17] L. R. MacGillivray, J. L. Reid, J. A. Ripmeester, G. S. Papaefstathiou, Toward a reactant library in template-directed solid-state organic synthesis: reactivity involving a monofunctional reactant based on a stilbazole. Ind. Eng. Chem. Res., 2002, 41, 4494-4497.
    [18] M. Vartanian, A. C. B. Lucassen, L. J. W. Shimon, M. E. Boom, Cocrystallization of a tripyridyl dondor with perfluorinated iodobenzene derivatives: formation of different N-I halogen bonds determining network vs plain packing crystals. Cryst. Growth Des., 2008, 8, 786-790.
    [19] D. M. Huck, H. L. Nguyen, S. J. Coles, M. B. Hursthouse, B. Donnio, D. W. Bruce,Mesomorphic silver(I) complexes of 4-alkyloxy-2’-stilbazoles and 4-alkyloxy-3’- stilbazoles. Crystal and molecular structure of 4-methanoxy -2’-stilbazole. J. Mater. Chem., 2002, 12, 2879-2886.
    [20] X.-H. Li, L.-Z. Wu, L.-P. Zhang, C.-H. Tung, Controlled photocyclization, photodimerization, and photoisomerization of stilbazole salts within nafion membranes. Org. Lett., 2002, 4, 1175-1177.
    [21] H. Maeda, R.-i. Hiranabe, K. Mizuno, Intramolecualr photocycloaddition ofβ-stilbazoles tethered by silyl chains. Tetrahedron Lett., 2006, 47, 7865-7869.
    [22] F. D. Lewis, R. S. Kalgutkar, J.-S. Yang, Highly regioselective anaerobic photocyclization of 3-styrylpyridines. J. Am. Chem. Soc., 2001, 123, 3878-3884.
    [23] H. Zhang, X. Lin, Y. Yan, L. Wu, Luminescent logic function of a surfactant- encapsulated polyoxometalate complex. Chem. Commun., 2006, 4575-4577.
    [24] F. Toda, K. Tanaka, S. Iwata, Oxidative coupling reactions of phenols with FeCl3 in the solid state. J. Org. Chem., 1989, 54, 3007-3009.
    [25] M. F. Budyka, N. I. Potashova, T. N. Gavrishova, V. M. Lee, Reconfigurable molecular logic gate operating in polymer film. J. Mater. Chem., 2009, 19, 7721-7724.
    [26] M. Amelia, M. Baroncini, A. Credi, A simple unimolecular multiplexer/ demultiplexer. Angew. Chem. Int. Ed., 2008, 47, 6240-6243.
    [27] J. Andreasson, U. Pischel, Smart molecules at work―mimicking advanced logic operations. Chem. Soc. Rev., 2010, 39, 174-188.
    [28] K. Szacillowski, Digital information processing in molecular systems. Chem. Rev., 2008, 108, 3481-3548.
    [29] A. Credi, Molecules that make decisions. Angew. Chem. Int. Ed., 2007, 46, 5472-5475.
    [30] U. Pischel, B. Heller, Molecular logic devices (half-subtractor, comparator, complementary output circuit) by controlling photoinduced charge transfer processes. New J. Chem., 2008, 32, 395-400.
    [31] T. Kato, N. Mizoshita, K. Kishimoto, Functional liquid-crystalline assemblies: self-organized soft materials. Angew. Chem. Int. Ed., 2006, 45, 38-68.
    [32] J. H. Lee, M.-J. Han, S. H. Hwang, I. Jang, S. J. Lee, S. H. Yoo, J. Y. Jho, S.-Y. Park, Self-assembled discotic liquid crystals formed by hydrogen bonding of alkoxystilbazoles. Tetrahedron Lett., 2005, 46, 7143-7146.
    [33] J. Xu, C. L. Toh, X. Liu, S. Wang, C. He, X. Lu, Synthesis and self-assembly ofdonor-spacer-acceptor molecules. Liquid crystals formed by single-component“complexes”via intermolecular hydrogen-bonding interaction. Macromolecules, 2005, 38, 1684-1690.
    [34] P. Massiot, M. Imperor-Clerc, M. Veber, R. Deschenaux, Supramolecular metallomesogens: hydrogen-bonded ferrocene-containing liquid crystals which display bicontinuous cubic phases. Chem. Mater., 2005, 17, 1946-1951.
    [35] T. Kato, H. Kihara, S. Ujiie, T. Uryu, J. M. J. Frechet, Structures and properties of supramolecular liquid-crystalline side-chain polymers built through intermolecular hydrogen bonds. Macromolecules, 1996, 29, 8734-8739.
    [36] P. Terech, C. Rossat, F. Volino, On the measurement of phase transition temperatures in physical molecular organogels. J. Colloid Interface Sci., 2000, 227, 363-370.
    [37] G. Palui, F.-X. Simon, M. Schmutz, P. J. Mesini, A. Banerjee, Organogelators from self-assembling peptide based dendrimers: structural and morphological features. Tetrahedron, 2008, 64, 175-185.
    [38] K. Murata, M. Aoki, T. Suzuki, T. Harada, H. Kawabata, T. Komori, F. Ohseto, K. Ueda, S. Shinkai, Thermal and light control of the sol-gel phase transition in cholesterol-based organic gels. Novel helical aggregation modes as detected by circular dichroism and electron microscopic observation. J. Am. Chem. Soc., 1994, 116, 6664-6676.
    [39] X. Luo, W. Xiao, Z. Li, Q. Wang, J. Zhong, Supramolecular organogels formed by monochain derivatives of succinic acid. J. Colloid Interface Sci., 2009, 329, 372-375.
    [40] D. Sui, Q. Hou, J. Chai, L. Ye, L. Zhao, M. Li, S. Jiang, Symmetric bi-pyridyl banana-shaped molecule and its intermolecular hydrogen bonding liquid-crystalline complexes. J. Mol. Struc., 2008, 891, 312-316.
    [41] M. Zinic, F. Vogtle, F. Fages, Cholesterol-based gelators. Top. Curr. Chem., 2005, 256, 39-76.
    [42] H. Yang, T. Yi, Z. Zhou, Y. Zhou, J. Wu, M. Xu, F. Li, C. Huang, Switchable fluorescent organogels and mesomorphic superstructure based on naphthalene derivatives. Langmuir, 2007, 23, 8224-8230.
    [43] H. Xin, H. Wang, B. Bai, D. Pang, M. Li, A family of low molecular weight organogelators based on mesomorphic dihydrazide derivatives. J. Mol. Liq., 2008, 139, 143-148.
    [44] Y. Zhou, T. Yi, T. Li, Z. Zhou, F. Li, W. Huang, C. Huang, Morphology and wettability tunable two-dimensional superstructure assembled by hydrogen bonds and hydrophobic interactions. Chem. Mater., 2006, 18, 2974-2981.
    [45] Y. Zhou, M. Xu, T. Yi, S. Xiao, Z. Zhou, F. Li, C. Huang, Morphology-tunable and photoresponsive properties in a self-assembled two-component gel system. Langmuir, 2007, 23, 202-208.
    [46] J. Liu, P. He, J. Yan, X. Fang, J. Peng, K. Liu, Y. Fang, An organometallic super-gelator with multiple-stimulus responsive properties. Adv. Mater., 2008, 20, 2508-2511.
    [47] J. Peng, K. Liu, J. Liu, Q. Zhang, X. Feng, Y. Fang, New dicholesteryl-based gelators: chirality and spacer length effect. Langmuir, 2008, 24, 2992-3000.
    [48] J. Wu, T. Yi, T. Shu, M. Yu, Z. Zhou, M. Xu, Y. Zhou, H. Zhang, J. Han, F. Li, C. Huang, Ultrasound switch and thermal self-repair of morphology and surface wettability in a cholesterol-based self-assembly system. Angew. Chem. Int. Ed., 2008, 47, 1063-1067.
    [49] L. A. Estroff, A. D. Hamilton, Water gelation by small organic molecules. Chem. Rev., 2004, 104, 1201-1217.
    [50] L. A. Estroff, L. Leiserowitz, L. Addadi, S. Weiner, A. D. Hamilton, Characterization of an organic hydrogel: a cryo-transmission electron microscopy and X-ray diffraction study. Adv. Mater., 2003, 15, 38-42.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700