乙烯裂解炉非均匀性及其影响的数值模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
乙烯裂解炉是乙烯装置的核心设备,而乙烯裂解技术是整个乙烯工业的关键技术之一。乙烯裂解炉内包括了复杂的流体流动、燃烧反应、裂解反应以及热量传递等过程。国内在乙烯裂解技术的设计和开发方面还比较落后,目前世界上仅有少数公司掌握生产乙烯的成套技术。因此,整个乙烯裂解炉内的传递与反应过程研究对于裂解炉的设计与优化有着重要的意义。
     本文利用了计算流体力学的方法,并以KTI公司的GK-V型乙烯裂解炉为研究对象,建立了乙烯裂解炉的数学模型,对裂解炉内的流动、传热与反应过程进行了研究。主要工作如下:
     1、建立了包含1组炉管的1/4裂解炉的模型,对炉膛和炉管中的流动、传热以及裂解反应进行了考察,并分析了炉膛与炉管中的耦合影响。研究表明,由于各裂解炉炉管在整个炉膛中的空间位置分布不同,造成了各炉管的传热不均匀,各炉管的受热差异又导致了管内的主要产物收率存在差异。炉管壁面热边界分布是由炉膛内的流动、传热与炉管内的流动与裂解反应影响共同造成的。
     2、建立了更符合实际情况的1/2裂解炉模型,对其流动、传热以及裂解反应进行了考察,分析了包括两组炉管的裂解炉模型的传热与裂解反应。研究发现,由于结构的非对称性,1/2裂解炉的炉膛内的流动和传热情况与1/4裂解炉的流动和传热情况有差异。由于炉管的非均匀传热,1/2裂解炉和1/4裂解炉炉管的热边界条件和管内裂解反应存在差异,从而导致了各主要产物收率不相同。
     3、考察了炉管进料量和炉膛燃料量等操作条件对炉内主要产物收率的影响。研究发现,进料量影响了炉管内的二次反应,进而对主要产物收率有重要影响。
The ethylene cracking furnace was the core unit, and the thermal cracking process was one of the most important technologies of the ethylene industry. The main and complex process in a pyrolyzer include flow, combustion, pyrolysis reaction and heat transfer. China falls behind other countries of the cracking furnace in design and development. Only some foreign corporations hold the whole technique of cracking process. Thus, it is very significant to study details of transfer and reaction process in the cracking furnace.
     In this study, the numerical simulation of the flow and heat transfer in firebox and the reaction in tubes were carried out by establishing a three-dimensional model of a KTI GK-V cracking furnace. Majory research work was listed as follows:
     (1) A numerical model of the 1/4 furnace was developed by taking account of integrated phenomena that involves heat transfer, flow and pyrolysis reaction. The coupled impact of firebox and tubes was also studied. According to the research, non-uniform distribution of heat transfer existed in furnaces, thus resulted in a non-uniform distribution along the reactor tubes and a different product yield in each reactor tube. The mutual effects of heat transfer in the firebox and cracking reaction was responsible for the distribution of the heat boundary.
     (2) The coupled simulation was also carried out by establishing a three-dimensional model of the 1/2 furnace, which was close to the reality. The 1/2 furnace contains two sets of coils. According to the research, the temperature distribution was different between the 1/4 furnace and the 1/2 furnace due to the asymmetric structure. The coils which were near the wall got a poor heat transfer. The heat boundary condition and cracking reaction in 1/2 cracking furnace and 1/4 cracking furnace was different, due to the furnace tubes'non-uniform heat transfer, which caused different primary product yields.
     (3) The study of the feed quantity in the firebox and tubes on the yield of the main furnace were carried out. It was found that feed rate affected the secondary reaction in the pyrolysis furnace and the main product.
引文
[1]王红秋,田然,全球乙烯工业最新动态[J],国际石油经济,2006,5:15-18
    [2]李军,我国乙烯工业发展现状及展望[J],国际石油经济,2003,10:42-46
    [3]孙可华,我国炼油/乙烯工业中长期发展专项规划获原则通过[J],国内外石油化工快报,2006,36(2),11
    [4]张敏,江林,何细藕等,世界乙烯生产及技术进展[J],乙烯工业(增刊),2006,10-21
    [5]王熔,西晓丽,乙烯裂解技术的新进展[J],乙烯工业,2003,12:56-58
    [6]何细藕,国外大型裂解炉的发展[J],1999,11(3):1-8
    [7]孙新民,刘立夫,刘全夫,烃类裂解制乙烯技术研究进展,2006,12:732-734
    [8]顾侃英,乙烯原料的裂解性能和结焦规律的研究[J],石油学报(石油加工),1998,13(1):22-26
    [9]宋立臣,过程模拟技术在燕化乙烯装置上的应用[J],石化技术,2007,41(1):31-34
    [10]S Barendregt, M Dente, E Ranzi, et al. History and Recent Developments in SPYRO(?), a Review[A]. In:AIChE 2002 Spring National Meeting[C]. New Orleans, LA, USA,2002, 30-70
    [11]申海女,何细藕,计算流体力学在裂解炉设计上的应用[J],乙烯工业,2004,16(4):34-37
    [12]Fluent Inc.Fluent use's guide release 6.3, Lebanon USA;Fluent Inc,2000
    [13]钱家麟.管式加热炉[M].(第二版).北京:中国石化出版社:2003.486,80
    [14]K M Sundaram, G F Froment. Modeling of thermal cracking kinetics Ⅰ:Thermal cracking of ethane, propane and their mixtures[J]. Chemical Engineering Science,1977,32 (6) 601-608
    [15]K M Sundaram, G F Froment. Modeling of thermal cracking kinetics Ⅱ:Cracking of iso-butane, of n-butane and of mixtures ethane-propane-n-butane [J]. Chemical Engineering Science,1977,32(6):609-617
    [16]K M Sundaram, G F Froment. Modeling of thermal cracking kinetics Ⅲ:Radical Mechanism for the Pyrolysis of Simple Paraffins, Olefins, and Their Mixtures [J]. Ind. Eng. Chem. Fundam,1978,17(3):174-182
    [17]王宗祥等.油田轻质油热裂解制乙烯反应动力学数学模型的初步探讨[J].大庆石油学院学报,1978(1):3-14
    [18]王宗祥等.油田轻质油热裂解制乙烯反应动力学数学模型Ⅰ[J].大庆石油学院学报,1978(2):3-14
    [19]王宗祥等.油田轻质油热裂解制乙烯反应动力学数学模型Ⅱ[J].大庆石油学院学报,1980(1):8-25
    [20]张海燕,王宗祥.大庆馏分油裂解制乙烯反应动力学数学模型Ⅰ[J].大庆石油学院学报,1985(1):1-10
    [21]黄莉莉,何小荣,邱彤等.拔头油热裂解制乙烯反应动力学模型及模拟[J].化工进展,2007,26(1):105-108
    [22]徐强,陈丙珍,何小荣.石脑油在SRT-Ⅳ型工业炉清洁辐射管中裂解的数学模拟[[J].计算机与应用化学,2001,18(3):223-28
    [23]周瀚章.乙烯裂解炉辐射段的三维数值模拟研究[D].北京:北京化工大学,2007
    [24]A J M. Oprins, G J Heynderickx. Calculation of three-dimensional flow and pressure fields in cracking furnaces [J]. Chemical Engineering Science,2003,58:4883-4893
    [25]蓝兴英,高金森,徐春明.乙烯裂解炉内传递和反应过程综合数值模拟研究Ⅲ炉膛内燃烧和传热过程的数值模拟[J].石油学报(石油加工),2004,20(1):46-51
    [26]吴德飞,何细藕,孙丽丽等.乙烯裂解炉辐射段三维流场和燃烧的数值模拟计算[J].石油化工,2005,34(8):749-753
    [27]G D Stefanidis, B Merci, G J Heynderickx, G B Marin. CFD simulations of steam cracking furnaces using detailed combustion mechanisms [J]. Computers and Chemical Engineering,2006,30:635-649
    [28]A J M. Oprins, G J Heynderickx. Calculation of three-dimensional flow and pressure fields in cracking furnaces [J]. Chemical Engineering Science,2003,58:4883-4893
    [29]周瀚章,贾志刚.乙烯裂解炉辐射段燃烧流场的三维数值模拟[J].石油化工,2007,
    36(6):584-590
    [30]K M Sundaram, G F Froment.46 Two dimensional model for the simulation of tubular reactors for thermal cracking[J]. Chemical Engineering Science,1980,35:64-371
    [31]张红梅,王宗祥.轻质油裂解炉反应管的二维数学模型[J].石油学报(石油加工),1995,11(4):68-77
    [32]张红梅,华庆民,王宗祥.用二维数学模型分析选择乙烷裂解炉的尺寸和操作条件[J].黑龙江石油化工,1995(2):5-8
    [33]张红梅,关志文,毛过梁.用二维模型分析裂解炉管操作工况[J].大庆石油学院学报,1998,22(1):29-31
    [34]黄殿利.用二维模型优化W型裂解炉的操作条件[D].大庆:大庆石油学院,2003
    [35]麻立志.二维模型对影响80U炉产率分布主要因素的模拟分析[D].大庆:大庆石油学院,2003
    [36]沙利,张红梅,高金森等.乙烯裂解炉管内流动反应历程的数值模拟(Ⅰ):二维流动反应数学模型的建立[J].化工学报,2003,54(3):392-397
    [37]蓝兴英,高金森,徐春明.乙烯裂解炉反应管数学模拟新方法[J].计算机与应用化学,2003,20(5):672-676
    [38]蓝兴英,张红梅,高金森等.乙烯裂解炉内传递和反应过程综合数值模拟Ⅱ反应管内传递和反应过程的数值模拟[J].石油学报(石油加工),2003,19(6):64-69
    [39]蓝兴英,高金森,徐春明等.乙烯管式裂解炉的数值模拟[J].过程工程学报,2004,4(3):221-227
    [32]蓝兴英,高金森,徐春明.乙烯裂解炉内传递和反应过程综合数值模拟研究Ⅲ炉膛内燃烧和传热过程的数值模拟[J].石油学报(石油加工),2004,20(1):46-51
    [35]A Habibi, B Merci, G J Heynderickx. Impact of radiation models in CFD simulations of steam cracking furnaces [J]. Computers and Chemical Engineering,2007,31(11): 1389-1406
    [36]周瀚章,贾志刚.乙烯裂解炉辐射段燃烧流场的三维数值模拟[J].石油化工,2007,36(6):584-590
    [40]M V Ramana Rao, P M Plehiers, G F Froment. The coupled simulation of heat transfer and reaction in a pyrolysis furnace [J]. Chemical Engineering Science,1988,43(6):1223-1229
    [41]A Niaei, J Towfighi, S M Sadrameli, R Karimzadeh, The combined simulation of heat transfer and pyrolysis reactions in industrial cracking furnaces [J]. Applied Thermal Engineering,2004,24:2251-2265
    [42]M E Masoumia, S M Sadramelia, J Towfighi, et al. Simulation, optimization and control of a thermal cracking furnace [J]. Energy,2006(31):516-527
    [43]蓝兴英,高金森,徐春明等.乙烯裂解炉内传递及反应过程综合数值模拟Ⅰ数学模型的建立[J].石油学报(石油加工),2003,19(5):80-85
    [44]胡益锋.石脑油裂解炉建模技术研究[D].北京:清华大学,2005
    [45]张朝环.乙烯裂解炉内燃烧与反应过程过程数值模拟[D].天津:天津大学化工学院,2007
    [46]黄一俞.乙烯裂解炉过程建模与操作优化[D].北京:北京化工大学,2005
    [47]谈婷华.基于神经网络的乙烯裂解炉软测量建模与优化[D].上海:东华大学,2007
    [48]王晓明.GK-V型石脑油裂解炉建模仿真优化[D].北京:北京化工大学,2008
    [49]M Shahrokhi, A Nejati. Optimal Temperature Control of a Propane Thermal Cracking Reactor[J]. Ind. Eng. Chem. Res.2002,41:6572-6578
    [50]M Masoumi, M Shahrokhi, M Sadrameli, et. al. Modeling and control of naphtha thermal cracking pilot plant[J]. Ind. Eng. Chem. Res.2006,45:3574-3582
    [51]张红梅,贺永殿,曹胜.稀释比对管式裂解炉工况影响的模拟计算[J].炼油与化工,2006,17(4):4-6
    [52]张红梅,邵艳波,郭小强.用正交设计法对管式裂解炉汽烃比确定的模拟研究[J].炼油与化工,2008,19(2):21-24
    [53]张红梅,邵艳波,郭小强.管式裂解炉2种稀释比调节方法的正交数值模拟[J].石油学报(石油加工),2009,25(1):128-133
    [54]胡益锋,石脑油裂解炉建模技术研究[D],北京:清华大学,2005
    [55]胡益锋,基于常规物性参数的石脑油组成预估方法,2004,33(2):161-165
    [56]Kumar Pramod,Kunzru Deepak,Modeling of naphtha pyrolysis[J],Ind Eng Chem Proc Dev,1985,24:774-782
    [57]胡益锋,李纬明,何细藕等,Kumar模型一次选择性系数的随机调整算法[J],计算机工程与应用,2003,32(10-13)
    [58]高晓丹,陈丙珍,何小荣,石脑油裂解过程一次反应系数的估计[J],计算机与应用化学,2005,22(12):1119-1122
    [59]张照,操作条件对乙烯裂解炉内过程影响的数值模拟研究[D],北京,北京化工大学,2009

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700