过氧化氢、单糖分子在修饰电极上的电化学行为研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
化学修饰电极是当前电化学、电分析化学方面十分活跃的研究领域,将化学修饰电极用于环境和生命科学现象的研究己是当今化学重要的发展方向之一。纳米微粒具有庞大的比表面积、较强的催化活性和较好的生物相容性等优点,研究过氧化氢及单糖分子在纳米修饰电极的电化学行为是本论文的主要工作之一。该论文的主要研究内容如下:1.过氧化氢在纳米普鲁士蓝/聚L-半胱氨酸修饰电极上的电化学行为研究
     在铂电极表面制备了聚L-半胱氨酸(p-L-Cysteine,p-L-Cys)/纳米普鲁士蓝(Nanosized Prussian blue,Nano-PB)修饰电极,研究了H_2O_2在该电极上的电化学性质,建立了测定H202的方法。在磷酸缓冲溶液(pH=4.5)中,在1.5×10~(-5)-1.52×10~(-3)mol/L范围内,H_2O_2的浓度与还原峰电流呈良好线性关系,相关系数为0.9996;检出限为4.2×10~(-7)mol/L;达到稳定电流所用时间<9s。实验结果表明:该修饰电极具有制备简单、灵敏度高、响应速度快和抗干扰强等特点.2.过氧化氢在纳米普鲁士蓝修饰铂电极上的电化学行为研究
     采用静电吸附作用原理,将纳米普鲁士蓝固载在带正电荷的Pt电极上而研制出一种新型过氧化氢(H_2O_2)传感器。采用循环伏安法和计时安培电流法考察了传感器的电化学特性,被吸附的纳米普鲁士蓝对H_2O_2的具有良好的电化学活性,研究结果表明:在优化的实验条件下,该传感器对H_2O_2测定的线性范围为4.0×10~(-6)mol/L-4.0×10-mol/L,检出限为5.1×10-mol/L。该传感器具有响应快、灵敏度高、制作简便、抗干扰强等特点。3.对巯基苯硼酸/纳米金修饰玻碳电极用于葡萄糖的识别
     采用自组装技术,将对巯基苯硼酸(MPBA)自组装于带正电荷纳米金(nano-gold,NG)修饰的玻碳电极(GCE)表面,从而制得用于识别葡萄糖的无酶传感器(MPBA/NG/GCE)。通过交流阻抗技术和循环伏安法考察了MPBA/NG/GCE修饰电极的表面电化学特性,同时研究了葡萄糖在该修饰电极上的电化学行为,讨论了利用该修饰电极测定葡萄糖的最佳条件。结果表明:在优化的条件下,氧化峰电流与葡萄糖浓度在1.0-150.0 mmol/L范围内呈良好的线性关系,其回归方程为:.△i_p(μA):3.37+0.342C(C,mmol/L),相关系数为r=0.999,检出限为3.8×10~(-5)mol/L(S/N=3),可用于葡萄糖分子的电化学识别。4.4-甲酰基苯硼酸/对氨基苯硫酚自组装膜电极对单糖的电化学识别研究
     采用分子自组装技术,将对氨基苯硫酚(p-ATP)自组装于金电极表面形成一层单分子膜,再通过席夫碱反应,将4-甲酰基苯硼酸(BA)连接在p-ATP单分子层上,构建起BA/ATP/Au电极,通过伏安法和交流阻抗技术研究了修饰电极的电化学特性并讨论了该修饰电极上的端基与葡萄糖,果糖,甘露糖结合的pK_a变化值。研究结果表明,在优化的实验条件下,此传感器在0.1-100.0 mmol/L浓度范围内对各单糖有良好的线性响应,可用于单糖分子的电化学识别。
The chemically modified electrode (CME) is currently a very flourish research realm in the electrochemistry and electroanalytical chemistry. The study of CME on environment and life science fields has become one of the most important chemical applications. Nanoparticles have many extraordinary features such as huge specific surface area, strong catalytic activity and good bio-compatibility. Study on the electrochemical behavior of hydrogen peroxide and monosaccharides on the nanoparticles modified electrode is one of the main research works of the thesis, which involves the following subjects:1. Study on the electrochemical behavior of hydrogen peroxide on the Nano-PB/poly-(L-Cys) modified Pt electrode
     A novel Nano-PB/poly-L-cysteine film modified Pt electrode was fabricated. The electrochemical properties of hydrogen peroxide (H_2O_2) on the modified electrode were studied and a new method for the determination of H_2O_2 was developed. In the phosphate buffer of pH 4.5, The reduction peak current has a good linear relationship with the H_2O_2 concentration in the range from 1.5×10~(-5) to 1.52×10~(-3) mol/L with a correlation coefficient of 0.9996. The detection limit was 4.2×10~(-7) mol/L (S/N=3). The time to obtain stable current was below 9 s. The experimental results showed that the modified electrode has the characteristics such as simple fabrication, high sensitivity, rapid response and high selectivity.2. Electrochemical behavior of hydrogen peroxide on prussian blue nanoparticles immobilized platinum electrode 13653405895
     A novel hydrogen peroxide sensor was prepared by immobilizing prussian blue nanoparticles on a platinum electrode with positive electrical charge by virtue of the principle of electrostatic adsorption. Cyclic voltommogram and chronoamperometry were employed to study the electrochemical characteristics of the sensor. The immobilized prussian blue nanoparticles exhibited an excellent electrochemical activity toward the reduction of H_2O_2. The experimental results showed that under optimum conditions, the linear range of the sensor for H_2O_2 was 4.0×10~(-6) mol/L to 4.0×10~(-5) mol/L, and the detection limit was 5.1×10~(-7)mol/L. The sensor exhibits the features of fast response, high sensitivity, easy fabrication and strong anti-interference ability.3. Recognition of glucose at a glassy carbon electrode modified with 4-mercaptop -henylboronic acid/Nano-gold films.
     A 4-mercaptophenylboronic acid/Nano-gold film modified glassy carbon electrode (MPBA/NG/GCE) was fabricated based on the self-assemble of MPBA on the surface of glassy carbon electrode modified with gold nanoparticles and its surface electrochemical characteristic was evaluated with cyclic voltammetry and electrochemical impedance spectroscopy. The electrchemical behavior of glucose on the modified electrode has been studied and the optimum conditions for the determination of glucose using this modified electrode were discussed. The results showed that the presence of gold nanoparticles could enhance the electroactivity of glucose at the modified electrode. The current response of MPBA/NG/GCE increased linearly with the glucose concentration in the range of 1.0-150.0 mmol/L with a detection limit of 3.8×10~(-5) mol/L (S/N=3), The linear regression equation is△i_p(μA)=0.337+0.0342C (C, mmol/L) with correlation coefficient of 0.999. This method can be used to the recognition of glucose.4. Electrochemical characterization of in situ functionalized gold p-aminothiophenol self-assembled monolayer with 4-formylphenylboronic acid for recognition of sugars
     The surface of a gold (Au) electrode was modified with p-aminothiophenol (p-ATP) and formed well-packed monomolecular layers through a sulfur-Au bond. Functionalization of ATP/Au self-assembled monolayer with 4-formylphenylboronic acid (BA) via Schiff s base formation, through in situ method to fabricate BA/ATP/Au electrode is presented. Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) measurements were used to investigate the changes of electrode behavior after each assembly step. The surface pK_a value of the BA/ATP/Au electrode was estimated by CV and EIS. In the presence of sugar, the terminal groups of BA/ATP/Au electrode can react with sugar by forming the phenylboronate esters of sugar on the surface of the electrode and the pK_a values for the BA/ATP/Au electrode in the presence of different sugars (D-glucose, D-fructose, and D-mannose) were also obtained. The fabricated electrode can be used as a novel biosensor for determining sugars on the basis of the change in i_p of the Fe(CN)_6~(3-/4-) ion in the presence of sugars. The biosensor exhibited excellent performances for determining D-glucose, D-fructose, and D-mannose with low detection limits, wide linear ranges and good sensitivities.
引文
[1] Watkins B F, Behling J R, Kariv E, et al. Chiral electrode[J]. J. Am. Chem. Soc, 1975, 97: 3549-3550.
    [2] Moses P R, Wier L, Murray R W. Chemically modified tin oxide electrode[J]. Anal. Chem., 1975,47: 1882-1886.
    [3] 董绍俊,车广礼,谢远武.化学修饰电极(修订版)[M].北京:科学出版社,2003.
    [4] Miller L L, Mark M R. A poly-p-nitrostyrene electrode surface, potential development at conducting and electrocatalytic properties[J]. J. Am. Chem. Soc, 1978,100:3223-3231.
    [5] Walton D J, Hall O E. Characterization of poly(pyrroles) by cyclic voltammetry[J]. Analyst, 1992, 117: 1305-1311.
    [6] Ofer D, Crooks R M, Wrighton M S. Potential dependence of the conducting of highly oxidized polythiophenes, polypyroles and polyanilne[J]. J. Am. Cheln. Soc,1990,112:7869-7873.
    [7] Sittamplama G, Wilson G S. Surface modified electrochemical detection for LC[J]. Anal. Chem., 1983, 55: 1608-1613.
    [8] Cheek G, Wales C P. pH response of Pt and vitreous carbon electrode modified with electropolymerical films[J]. Anal. Chem., 1983, 55: 380-388.
    [9] Maskus M, Pariente F, Wu Q, et al. Electrocatalytic reduction of nitric oxide at electrodes modified with electropolymerized films of [Cr(v-tpy)(2)](3+) and their application to cellular NO determinations[J]. Anal. Chem., 1996, 68: 3128-3134.
    [10] Costa M. Special issue-conducting polymer on electrodes[J]. Electrochim. Acta., 1994,39: 171-171.
    [11] 周谷珍,孙元喜.聚结晶紫薄膜修饰电极测定尿酸[J].分析测试学报,2004,23:18-21.
    [12] 杜利成.玻碳电极上核黄素的电化学行为研究[J].中国测试技术,2008,34:81-85.
    [13] Chiorcea-Paquim A M, Pauliukaite R, Christopher M A B, et al. AFM nanometer surface morphological study of in situ electropolymerized neutral red redox mediator oxysilane sol-gel encapsulated glucose oxidase electrochemical biosensors[J]. Biosens. Bioelectron., 2008, 24: 297-305.
    [14] 孙登明,陈宁生,冷艳芳.聚甲基蓝修饰电极的制备及对多巴胺的测定[J],分析试验室,2004,23(5):41-43.
    [15] Zhang R, Jin G D, Chen D, et al. Simultaneous electrochemical determination of dopamine, ascorbic acid and uric acid using poly(acid chrome blue K) modified glassy carbon electrode [J]. Sen. Actuators B, 2009, 138(1): 174-181.
    [16] 靳桂英,张玉忠,杨周生.聚叮陡红修饰玻碳电极在抗坏血酸共存时测定肾上腺素[J],分析试验室,2004,23(4):1-4.
    [17] Shiu K K, Chan O Y. Electroanalysis of copper species at polypyrrole-modified electrodes bearing alizarin red S ligands [J]. J. Electroanal. Chem., 1995, 388: 45-51.
    [18] Cai C X, Xue K H. Electrocatalysis of NADH oxidation with electropolymerized films of azure I [J]. J. Electroanal. Chem., 1997, 427: 147-153.
    [19] 汪振辉,张永花,周漱萍.聚叮吮橙修饰电极的电化学行为及其对肾上腺素的电催化性能[J],分析化学,2001,29(12):1384-1388.
    [20] 焦奎,罗细亮,孙伟,等.聚天青A膜修饰电极的电化学特性及其对亚硝酸根的电催化性能[J],分析测试学报,2002,21(3):4-6.
    [21] 易求实,万其进,喻玖宏,等.聚甲基红膜修饰电极的电化学性质及其对盐酸毗哆辛的伏安测定[J],分析科学学报,2001,17(5):379-382.
    [22] 姚军,李将渊.核酸碱基鸟嘌呤在聚溴甲酚绿修饰电极上的电化学行为及其动力学研究[J],分析化学研究报告,2008,36(12):1672-1676.
    [23] 周跃明,马建国,范杰平,等.聚灿烂甲酚蓝膜修饰电极测定抗坏血酸的研究[J],分析试验室,2005,24(7):51-54.
    [24] Li X, Zhong M, Sun C, et al. A novel bilayer film material composed of polyaniline and poly(methylene blue) [J]. Mater. Lett., 2005, 59: 3913-3916.
    [25] 汪云,周东美.亚甲紫的电化学聚合和亚硝酸根的电催化还原[J],高等学校化学学报,1997,18(6):864-868.
    [26] 靳保辉,夏萍,杨冉,等.聚亮甲酚蓝修饰碳纤维微电极及催化性能研究[J],郑州大学学报(自然科学版),2000,32(4):65-69.
    [27] Shi A W, Qu F L, Yang M H, et al. Amperometric H_2O_2 biosensor based on poly-thionine nanowire/HRP/nano-Au-modified glassy carbon electrode[J]. Sen. Actuators B, 2008, 129: 779-783.
    [28] Mao L Q, Yamamoto K. Glucose and choline on-line biosensors based on electropolymerized Meldola's blue[J]. Talanta, 2000, 51: 187-195.
    [29] 王晋芬,袁若,柴雅琴.碱性品红/纳米金/聚碱性品红修饰电极的制备及其对抗坏血酸的催化氧化[J],西南大学学报(自然科学版),2008,30(3):42-46.
    [30] Cai C X, Xue K H. Electrochemical characherization of electropolymerized film of 1996, 96(4): 1533-1554.
    [45] Bryee M R, Petty M C. For are view of electronieally conduetive LB films see [J]. Nature, 1995, 374:771-776.
    [46] 吴扬哲,王彬,雷勇波,等.壳聚糖的分维模拟及自组装复合膜的制备与表征[J].高分子材料科学与工程,2005,21(3):258-265.
    [47] Mallavarapu A, Sawin K, Mitchison T. A switch in microtubule dynamics at the onset of anaphase B in the mitotic spindle of schizosaccharomyces pombe[J]. Curr.Biol., 1999, 9(23): 1423-1426.
    [48] Matteson D S, Man H-W J.Structure, properties, and preparation of boronic acid derivatives. overview of their reactions and applications[J]. Org. Chem., 1996, 61: 6047.
    [49] Ishiyama T, Murata M, Miyaura N. Palladium(0)-catalyzed cross-coupling reaction of alkoxydiboron with haloarenes: a direct procedure for arylboronic esters[J]. J. Org. Chem., 1995, 60: 7508
    [50] Ishihara K, Yamamoto H. Arylboron compounds as acid catalysts in organic synthetic transformations[J]. Eur. J. Org. Chem., 1999, 527.
    [51] Petasis N A, Zavialov I A. A new and practical synthesis of a-amino acids from alkenyl boronic acids[J]. J. Am. Chem. Soc, 1997, 119: 445.
    [52] Lee S E, Sidorov A, Grasby J A, et al. Enhancing the catalytic repertoire of nucleic acids: a systematic study of linker length and rigidity[J]. Nucleic Acids Res., 2001,29: 1565.
    [53] Latta R P, Springsteen G, Wang B. Development of an arylboronic acid-based solid-phase. amidation catalyst[J]. Synthesis, 2001, 1611.
    [54] Ishihara K, Ohara S, Yamamoto H. 3,4,5-Trifluorobenzeneboronic acid as an extremely active amidation catalyst[J]. J. Org. Chem., 1996, 61: 4196.
    [55] Duggan P. J. Fructose-permeable liquid membranes containing boronic acid carriers[J]. Aust. J. Chem., 2004, 57: 291-299.
    [56] Draffin S P, Duggan P J, Duggan S A M. Highly fructose selective transport promoted by boronic acids based on a pentaerythritol core[J]. Org. Lett., 2001, 3:917.
    [57] Fevig J M, Buriak J J, Cacciola J, et al. Rational design of boropeptide thrombin inhibitors: β,β-dialkyl-phenethylglycine P2 analogs of DuP 714 with greater selectivity over complement factor I and an improved safety profile[J]. Bioorg.Med. Chem. Lett., 1998, 8: 301. compounds and implications regarding the development of new laser dyes and the primary process of vision and photosynthesis[J]. Angew Chem. Int. Ed. Engl, 1986,25:971.
    [73] Grabowski Z R, Rotkiewicz K, Siemiarczuk A, et al. Twisted intramolecular charge transfer states (TICT). Anew class of excited states with a full charge separation[J]. Nouv. J. Chim., 1979, 3: 443
    [74] Zachariasse K A, Grobye M, von der Haar T, et al. Intramolecular charge transfer in the excited state. Kinetics and configurational changes[J]. J. Photochem. Photobiol. A: Chem., 1996, 102: 59
    [75] Sobolewski A L, Domcke W. Promotion of intramolecular charge transfer in dimethylamino derivatives: twisting versus acceptor-group rehybridization[J]. Chem. Phys. Lett., 1996, 259: 119-127.
    [76] Cesare N D, Lakowicz J R. Chalcone-analogue fluorescent prfobes for saccharides signaling using the boronic acid group [J]. Tetrahedron Lett., 2002, 43: 2615-2618.
    [77] 柳清湘,徐凤波.硼酸及其衍生物在荧光分子开关中的应用[J].化学通报,2002(10):650-656.
    [78] James T D, Sandanayake K R A S, Shinkai S. Novel photoinduced electron-transfer sensor for saccharides based on the interaction of boronic acid and amine[J]. J. Chem. Soc, Chem. Commun., 1994: 477-478.
    [79] Dusemund C, Sandanayake K R A S, Shinkai S. Selective fluoride recognition with ferroceneboronic acid[J]. J. Chem. Soc, Chem. Commun. 1995, 333-334.
    [80] Nicolas M, Fabre B, Chapuzet J M, Lessard J, et al. Boronic ester-substituted triphenylamines as new Lewis base-sensitive redox receptors[J]. J. Electroanal. Chem., 2000, 482:211-216.
    [81] Lee M, Kim T, Kim K, et al. Formation of a self-assembled phenylboronic acid monolayer and its application toward developing a surface plasmon resonance-based monosaccharide sensor [J]. Anal. Biochem, 2002, 310:163-170.
    [82] 刘斌,孙向英,徐金瑞.含硼酸基的自组装膜对糖的电化学识别[J].分析化学,2004,601-605.
    [83] TAKAHASHI S, KASHIWAGI Y, HOSHI T, et al. Voltammetric response of phenylboronic acid monolayer-modified gold electrode to sugars [J]. Anal. Sci, 2004, 20: 757-759.
    [84] Ma Y, Yang X R. One saccharide sensor based on the complex of the boronic acid and the monosaccharide using electrochemical impedance spectroscopy[J]. J. Electroanal. Chem., 2005, 580: 348-352.
    [85] P~vribyl, Skl'adal P. Quartz crystal biosensor for detection of sugars and glycated hemoglobin[J]. Anal. Chim. Acta, 2005, 530: 75-84.
    [86] Takahashi S, Anzai J. Voltammetric response of Au electrodes modified with layer-by-layer film composed of phenylboronic acid polymer and carboxymethylcellose to D-glucose and D-fructose[J]. Bunseki Kagaku,2007, 56:951-955.
    [87] Tanner P A, Wong A Y S. Spectrophotometric determination of hydrogen peroxide in rainwater[J]. Anal. Chim. Acta,1998, 370: 279-287.
    [88] Tang B, Zhang L, Xu K H. FIA-near-infrared spectrofluorimetric trace determination of hydrogen peroxide using tricarchlorobocyanine dye[J]. Talanta, 2006, 68: 876-882.
    [89] Song Z H, Wang C N. Ultrasensitive assay of azithromycin in medicine and bio-fluids based on its enhanced luminol-H_2O_2 chemiluminescence reaction using flow injection technique[J]. Bioor. Med. Chem. 2003,11: 5375-5380.
    [90] Shobha Jeykumari D R, Sriman Narayanan S. Fabrication of bienzyme nanobiocomposite electrode using functionalized carbon nanotubes for biosensing applications[J]. Biosen. Bioelectron., 2008, 23: 1686-1693.
    [91] 潘勇军,谢洪泉,谭晓明,等.碘量滴定法测定过氧化氢溶液浓度的改进[J].理化检测-化学分册,2003,39(7):404-405.
    [92] Ferdousi B N, Islam M M, Okajima T, Electrochemical, HPLC and electrospray ionization mass spectroscopic analyses of peroxycitric acid coexisting with citric acid and hydrogen peroxide in aqueous solution[J]. Talanta, 2008, 74:1355-1362.
    [93] Yamamoto K, Ohgaru T, Torinura M, et al. Highly-sensitive flow injection determination of hydrogen peroxide with a peroxidase-immobilized electrode and its application to clinical chemistry[J]. Anal. Chim. Acta, 2000, 406: 201-207
    [94] Kumar A, Malhotra R, Malhotra B D. Co-immobilization of cholesterol oxidase and horseradish peroxidase in asol-gel film[J]. Anal. Chim. Acta, 2000, 414: 43-50.
    [95] Chen L, Lin M, Hara M, et al. Kohlrabi-based amperometric biosensor for hydroger peroxide measurement[J]. Anal. Lett., 1991, 4: 1-14.
    [96] Bogdanovskaya V A, Fridman V A, Tarasevich M R, et al. Bioelectrocatalysis by immobilized peroxidase the reaction mechanism and the possibility of electroanalytical detection of both inhibitors and actirators of enzyme[J]. Anal. Lett., 1994,27:2823-2847.
    [97] Mao Y Q, Tan S N. Amperometric hydrogen peroxide biosensor based on immobilization of peroxidase in chitosan matrix cross linked with glutaraldehyde[J]. Analyst, 2000,125: 1591-1594.
    [98] Karyakin A A, Karyalina E E, Gorton L, et al. Improvement of electrochemical biosensors using enzyme immobilization from water-organic mixtures with a high content of organic solvent[J]. Anal. Chem. 1996, 68: 4335-4341.
    [99] Tian F M, Xu B, Zhu L D, et al. Hydrogen peroxide biosensor with enzyme entrapped within electrodeposited polypyrrole based on mediated sol-gel derived composite carbon electrode[J]. Anal. Chim. Acta, 2001, 443: 9-16.
    [100] Keggin J F , Miles F D. Structures and formulas of the prussian blues and related compounds[J]. Nature , 1936, 137: 577-578.
    [101] Shou Q L, Jing J X, Hong Y C. Eletrochemical behavior of nanosized prussion blue self-assembled on Au electrode surface[J]. Electrochem. Commun., 2002,4:421-425.
    [102] Fan C H, Li G X, Zhu J Q, et al. A reagentless nitric oxide biosensor based on hemoglobin-DNA films [J]. Anal. Chim. Acta, 2000,423: 95-100.
    [103] Sun J J, Xu J J, Fang H Q, et al. Electrocatalytical oxidation of NADH with dopamine covalently bound to self-assembled cysteamine monolayers on a gold electrode[J]. Biosen. Bioelectron., 1997, 44: 45-50.
    [104] Katz E, Schlereth D D, Schmidt H L. Electrochemical study of pyrroloquinoline quinone covalently immobilized as a monolayer onto a cystamine-modifoed gold electrode [J]. J. Electroanal. Chem., 1994, 367: 59-70.
    [105] 华卉,陈袆玮,金万勤,等.自组装普鲁士蓝膜修饰电极的制备及表征[J].化工学报,2007,58(8):2056-2061.
    [106] Ramsden J J, Lvov Y M, Decher G Determination of optical constants of molecular films assembled via alternate polyion adsorption[J]. Thin Soild Films, 1995,254:246-251.
    [107] Jin W Q, Toutianoush A, Pyrasch M, et al. Selfassembled films of prussian blue and analogues: structure and morphology, elemental composition, film growth, and nanosieving of ions[J]. J. Phys. Chem. B, 2003, 107: 12062-12070
    [108] 张秀明.现代临床生化检验学[M].北京:人民军医出版社,2001,84-90.
    [109] TAKAHASHI S, ANZAI J. Phenylboronic acid monolayer-modified electrodes sensitive to sugars[J]. Langmuir, 2005, 21: 5102-5107.
    [110] EGAWA Y Y, GOTOH R, NIINA S, et al. Ortho-azo substituted phenylboronic acids for colorimetric sugar sensors[J]. Bioorg. Med. Chem. Lett., 2007, 17: 3789-3792.
    [111] 李波,滕大勇,王填,等.聚(3-丙烯酰胺基苯硼酸-N,N-二甲基丙烯酰胺-丙烯酰胺)凝胶的合成和糖敏感性能[J].高等学校化学学报,2007,28(2):376-381.
    [112] 高风仙,袁若,柴雅琴,等.基于聚硫堇和纳米金共修饰的过氧化氢生物传感器的研究[J].分析测试学报,2007,26(1):81-84.
    [113] 汪海燕,王晔,宋琼,等.葡萄糖在纳米金修饰金电极上电化学行为研究[J].分析科学学报,2007,23(2):185-188.
    [114] HOSHI T, SAGAE N, DAIKUHARA K, et al. Multilayer membranes via layer-by-layer deposition of glucose oxidase and Au nanoparticles on a Pt electrode for glucose sensing[J]. Mater. Sci. Eng. C, 2007, 27: 890-894.
    [115] Kang X H, Mai Z B, Zou X Y, et al. A novel glucose biosensor based on immobilization of glucose oxidase in chitosan on a glassy carbon electrode modified with gold-platinum alloy nanoparticles/multiwall carbon nanotubes[J]. Anal. Bionchem., 2007, 369: 71-79.
    [116] FINOT M O, BRAYBROOK G D, MCDERMOTT M T. Characterization of electrochemically deposited gold nanocrystals on glassy carbon electrodes[J]. Electroanal. Chem., 1999, 466: 234-241.
    [117] MAYYA K M, JAIN N, GOLE A. Time-dependent complexation of glucose-reduced gold nanoparticles with octade-cylamine langmuir monolayers [J]. Collo. Interf. Sci., 2004, 270(1): 133-139.
    [118] 曹楚南,张鉴清.电化学阻抗谱导论[M].北京:科学出版社,2002,46.
    [119] Zeng B Z, Wei S, Xiao F, Zhao F Q. Voltammetric behavior and determination of rutin at a single-walled carbon nanotubes modified gold electrode[J]. Sens. Actuators B, 2006, 115: 240-246.
    [120] Yang H F, Yang Y, Liu Z M, et al. Self-assembled monolayer of NAD at silver surface: a raman mapping study[J]. Surf. Sci., 2004, 551: 1-8.
    [121] Li D G, Chen S H, Zhao S Y, et al. The corrosion inhibition of the self-assembled Au, and Ag nanoparticles films on the surface of copper[J]. Colloids Surf. A, 2006, 273: 16-23.
    [122] Shimura T, Aramaki K. Preparation of ultrathin polymer coatings adsorbed on complexation[J]. Tetrahedron, 2002, 58: 5291-5300.
    [144] Yan J, Springsteen G, Deeter S S, et al. The relationship among pK_a, pH, and binding constants in the interactions between boronic acids and diols-it is not as simple as it appears[J]. Tetrahedron, 2004, 60: 11205-11209.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700