几类重要含氮自由基反应机理的理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文利用量子化学计算方法对几类重要的含氮自由基的自由基-自由基或自由基-分子反应的反应机理进行了详细的理论研究,给出了反应物、产物、中间体和过渡态的几何结构、能量以及相应反应势能面的信息,讨论了可能的反应通道和反应机理,并对一些反应进行了主方程速率常数计算,获得了在不同压力和温度条件下产物的分布情况以及反应速率常数。论文主要内容有:i)首次对NCO+C2H4反应的机理进行了理论研究,结果表明该反应在高压和低温条件下以加成化合物C2H4NCO的稳定化效应为主,而在低压和高温条件下该化合物将解离返回到反应物,在高温燃烧条件中被实验工作者忽视的H-提取得到产物HNCO+C2H3的过程将成为主要反应渠道;ii)第一次在理论上详细地研究了HCNO+CN反应,从头算和主方程计算的结果都表明该反应的主要产物并非实验中预测的3HCCN+NO而是HCN+NCO,该反应在1200K温度条件以下有正温度效应而没有压力依靠,室温速率常数的值为1.1×10?10 cm3molec?1s?1;iii)对于H2CN+H2CN反应进行了第一次结合势能面和主方程速率常数计算的理论研究,当温度达到500K以上以及在低温低压的星际环境中该反应能够经由一个四元环中间体生成产物N2+C2H4,而在0.5-1300Torr压力范围内的低温条件下以形成自由基直接缔合物CH2NNCH2的稳定化为主,我们计算得到的速率常数值与可用的实验数据符合的非常好;iv)通过势能面和主方程速率常数计算,第一次揭示了H2CN+OH反应的反应机理,该反应有微小的正压力依靠和正温度依靠。在低于400K的温度条件下,H2CNOH的稳定化效应起主要作用,当温度达到500K时主要反应渠道为通过准直接氢提取过程得到产物HCN+H2O,在温度和压力都非常低的星际环境中经由中间体H2CNOH进而分解成产物HCN+H2O的过程是最有利的。本文结果丰富了含氮自由基的化学反应信息,有助于人们更全面地理解在燃烧化学、星际化学以及环境化学中的氮循环过程,并为实验室合成以及在星际空间中探测新型分子提供理论依据和支持。
Reactions of nitrogenous radical or molecule play a significant role in diverse environments such as combustion process, environmental chemistry, biochemistry, atmospheric chemistry, organic chemistry, and interstellar environment. In this thesis, detailed quantum chemical investigations on the potential energy surfaces of a series of important nitrogenous radical and molecule as well as radical-radical or radical-molecule reactions have been carried. Important information of potential energy surfaces such as structures and energies of reactants, products, intermediate isomers, and transition states, possible reaction channels, reaction mechanisms and major products are obtained. For deeper understanding of the reaction mechanism, we carried out master equation rate constant calculations and obtained information of rate constants and product in wide range of temperature and pressure for several reaction. The results obtained in the present thesis may be helpful for further theoretical and experimental studies of these kinds of reactions and detection of interstellar molecules in space. The main results are summarized as follows:
     1. The NCO + C2H4 reaction is simple and prototype for reaction of the NCO radical with unsaturated hydrocarbons, and is considered to be important in fuel-rich combustion. In this paper, we for the first time performed detailed theoretical investigations for its reaction mechanism based on Gaussian-3//B3LYP scheme covering various entrance and decomposition channels. The most favorable channel is: firstly the NCO and C2H4 approach each other, forming a weakly-bound complex L1 OCN…C2H4, followed by formation of isomer L2 OCNCH2CH2 via a small barrier of 1.3 kcal/mol. Transition states of any decomposable or isomeric channels for L2 in energy are much higher than reactants, which indicate that adduct L2 has stabilization effect in this NCO + C2H4 reaction. The direct H-abstraction channel leading to P1 HNCO + C2H3, might have an important contribution to the eventual products in high temperature. These results can well explain available kinetic experiment. Moreover, reaction mechanism for the title reaction is significantly different from the NCO + C2H2 reaction which proceeds on most favorably to generate the products HCN + HCCO and OCCHCN + H via a four-membered ring intermediate.
     2. The HCNO+CN reaction is one potentially important process during the NO-reburning process for the reduction of NOx pollutants from fossil-fuel combustion emissions. To compare with the recent experimental study, we performed the first theoretical potential energy surface investigation on the mechanism of HCNO+CN at the G3B3 and CCSD(T)/aug-cc-pVTZ levels based on the B3LYP/6-311++G(d,p) structures, covering various entrance, isomerization and decomposition channels. The results indicate that the most favorable channel is to barrierlessly form the entrance isomer L1c NCCHNO followed by successive ring-closure and concerted CC and NO bond-rupture to generate the product P1 HCN+NCO. However, the formation of P4 3HCCN+NO predicted as the only major product in the recent experiment, is kinetically much less competitive. This conclusion is further supported by the master equation rate constant calculation. Future experimental reinvestigations are strongly desired to test the newly predicted mechanism for the CN+HCNO reaction. Implications of the present results are discussed.
     3. The self-recombination of the methylene amidogen radical (H2CN) is known to be fast and should play an important role in determining the concentration of H2CN radicals in both combustion and astrophysical processes. The rate constants of H2CN+H2CN have been determined by previous experiments, whereas its detailed evolution process and product distribution are still unclear. In this work, by means of quantum chemical and master equation calculations, we for the first time theoretically explored the potential energy surface and kinetics of the H2CN+H2CN reaction. At the CCSD(T)/6-311++G(2df,p), CCSD(T)/aug-cc-pVTZ and Gaussian-3 single-point levels based on the B3LYP/6-31++G(d,p) structures, the dominant channel was found to be (R) H2CN+H2CN H2CNNCH2 (L1) r-CH2NNCH2 (r1) N2+C2H4 (P1) with a zero overall barrier. The calculated rate constants are in agreement with available experiments. Of particular interest, since the formed product involves molecular nitrogen, the H2CN+H2CN reaction might have important contribution to the nitrogen-recycling in a number of conflagrant and astrophysical processes.
     4. The reaction of the methylene amidogen radical (H2CN) with hydroxyl (OH) is potentially important in a number of chemical processes. In this paper, we performed the first theoretical potential energy surface investigation on the mechanism of H2CN+OH at the CCSD(T)/6-311++G(2df,p), G3B3, CCSD(T)/aug-cc-pVTZ and CCSD(T)/aug-cc-pVQZ single-point levels using the B3LYP/6-31++G(d,p), BH&HLYP/6-31++G(d,p), and QCISD/6-311++G(d,p) optimized geometrie,covering various entrance, isomerization, and decomposition channels. Two reaction channels are feasible in thermodynamics and kinetics: 1) the quasi hydrogen-abstraction of H2CN by OH to form product HCN+H2O via a weakly-bound complex NC(H)H···OH, and 2) the addition-elimination to form HCN+H2O via a stable intermediate CH2NOH. According to the master equation rate constant calculations in the wide ranges of temperature (50-1100 K) and pressure (120-1300 Torr) range, when the temperature is below 400 K, the effective stabilization takes place, making CH2NOH as the dominant product. Once the temperature reaches 500 K, the formation of the product HCN+H2O by the quasi-direct H-abstraction process becomes favorable. The calculated rate constants are consistent with available experiments. Moreover, under the experimental conditions (298 K, 120 and 200 Torr), the H2CN+OH reaction favors the effective condensation forming H2CNOH, whereas the previously suggested hydrogen-abstraction mechanism prevails only after 500 K. The implications of the present study in combustion and astrophysical processes are discussed.
引文
1. KOCHI J K, Free radicals [M], in 2 Vols, 1973.
    2. HAY K H, WATERS W A, Some organic reactions involving the occurence of free radicals in solution [J], Chemical Reviews, 1937, 21:169-208.
    3. KHARASCH M S, MANSFIELD J V, MAYO F R, The Decomposition of 2-Fluorenediazonium Chloride and 2-Fluorenonediazonium Chloride in Acetic Acid [J], Journal of the American Chemical Society, 1937, 59:1155-1156.
    4. HUANG R L, The chemistry of free radicals, 1974.
    5. WALDEN P, AUDRIETH L F, Free inorganic radicals [J], Chemical Reviews, 1928, 5:339-359.
    6. URI N, Inorganic Free radicals in solution [J], Chemical Reviews, 1952, 50:375-454.
    7. GARCIS H, ROTH H D, Generation and reactions of organic radical cations in zeolites [J], Chemical Reviews, 2002, 103:3947-4008.
    8. JOHNSTON L J, Photochemistry of radicals and biradicals [J], Chemical Reviews, 1993, 93:251-266.
    9. MONROE B M, WEED G C, Photoinitiators for free-radical-initiated photoimaging systems [J], Chemical Reviews, 1993, 93:435-448.
    10. SABLIER M, FUJII T, Mass spectrometry of free radicals [J], Chemical Reviews, 2002, 102:2855-2924.
    11. ATKINSON R, Kinetics and mechanisms of the gas-phase reactions of the hydroxyl radical with organic compounds under atmospheric conditions [J], Chemical Reviews, 1986, 86:69-201.
    12. BEDJANIAN Y, POULET G., Kinetics of halogen oxide radicals in the stratosphere [J], Chemical Reviews, 2003, 103:4639-4656.
    13. ORLANDO J J, TYNDALL G S, WALLINGTON T J, The atmospheric chemistry of alkoxy radicals [J], Chemical Reviews, 2003, 103:4657-4690.
    14. KURYLO M J, ORKIN V L, Determination of atmospheric lifetimes via themeasurement of OH radical kinetics [J], Chemical Reviews, 2003, 103:5049-5076.
    15. WILSON S, Theoretical studies of interstellar radicals and ions [J], Chemical Reviews, 1980, 80:263-267.
    16. HIMO F, SIEGBAHN P E M, Quantum chemical studies of radical-containing enzymes [J], Chemical Reviews, 2003, 103:2421-2456.
    17. WHITTAKER J W, Free radical catalysis by galactose oxidase [J], Chemical Reviews, 2003, 103:2347-2364.
    18. RAGSDALE S W, Pyruvate ferredoxin oxidoreductase and its radical intermediate [J], Chemical Reviews, 2003, 103:2333-2346.
    19. STUBBE J, NOCERA D G., Yee C S, et al, Radical initiation in the class I ribonucleotide reductase: long-range proton-coupled electron transfer? [J], Chemical Reviews, 2003, 103:2167-2202.
    20. FONTECAVE M, OLLAGNIER-DE-CHOUDENS S, MULLIEZ E, Biological radical sulfur insertion reactions [J], Chemical Reviews, 2003, 103:2149-2166.
    21. BANERJEE R, Introduction: radical enzymology [J], Chemical Reviews, 2003, 103: 2081-2082.
    22. MURPHY R C, Free-radical-induced oxidation of arachidonoyl plasmalogen phospholipids: antioxidant mechanism and precursor pathway for bioactive eicosanoids [J], Chemical Research In Toxicology, 2001, 14:463-472.
    23. STRBBE J, VAN DER DONK W A, Protein radicals in enzyme catalysis [J], Chemical Reviews, 1998, 98:2661-2662.
    24. STRBBE J, VAN DER DONK W A, Protein radicals in enzyme catalysis [J], Chemical Reviews, 1998, 98:705-762.
    25. HANSCH C, GAO H, Comparative QSAR: radical reactions of benzene derivatives in chemistry and biology [J], Chemical Reviews, 1997, 97:2995-3060.
    26. EASTON C J, Free-radical reactions in the synthesis ofα-amino acids and derivatives [J], Chemical Reviews, 1997, 97:53-82.
    27. CHARLES GRISSOM B, Magnetic field effects in biology: a survey of possible mechanisms with emphasis on radical-pair recombination [J], Chemical Reviews,1995, 95:3-24.
    28. FREY P A, Importance of organic radicals in enzymic cleavage of unactivated carbon-hydrogen bonds [J], Chemical Reviews, 1990, 90:1343-1357.
    29. FOLLMANN H, Deoxyribonucleotides: the unusual chemistry and biochemistry of DNA precursors [J], Chemical Society Reviews, 2004, 33:225-233.
    30. KHARASCH M S, MANSFIELD J V, MAYO F R, The Decomposition of 2-fluorenediazonium chloride and 2-fluorenonediazonium chloride in acetic acid [J], Journal of the American Chemical Society, 1937, 59:1155-1156.
    31. MILLER J A, KEE R J, WESTBROOL C K, Chemical kinetics and combustion modeling [J], Annual Review of Physical Chemistry, 1990, 41:345-387.
    32. FOLLMANN H, Deoxyribonucleotides: the unusual chemistry and biochemistry of DNA precursors [J], Chemical Society Reviews, 2004, 33:225-233.
    33. BORN M, OPPENHEIMER R, Zur quantentheorie der molekeln [J], 1927, 389:457-484.
    34.唐敖庆,杨忠志,李前树,量子化学[M],北京,科学出版社,1982。
    35.徐光宪,王德民,量子化学基本原理和从头算法[M],北京,科学出版社,1985。
    36.赵学庄,罗渝然,臧雅茹,万学适,化学反应动力学原理[M],下册,高等教育出版社,1990。
    37. MILLER J A, BOWMAN C T, Mechanism and modeling of nitrogen chemistry in combustion [J], Progress in Energy and Combustion Science, 1989, 15:287-338.
    38. BAULCH D L, COBOS C J, COX R A, et al, Evaluated kinetic data for combustion modelling [J], Journal of Physical Chemical Reference Data, 1992, 21:411-429.
    39. BECKER K H, KURTENBACH R, SCHMIDT F, et al, Kinetics of the reactions of NCO radicals with NO and NH3 [J], Physikalische Chemie, 1997, 101:128-133, and references cited therein.
    40. BROWNSWORD R A, HANCOCK G, Time-resolved FTIR emission study of product dynamics in the NO+NCO reaction [J], Journal of the Chemical Society,Faraday Transactions, 1997, 93:1279-1286.
    41. SIEBERS D L, CATON J A, Removal of nitric oxide from exhaust gas with cyanuric acid [J], Combustion and Flame, 1990, 79:31-46.
    42. JODAL M, NIELSON C, HULGAARD T, et al, Symposium (International) on Combustion [C], 1990, 23;237-243.
    43. PRASAD S S, HUNTRESS W T Jr, NCO: a potential interstellar species [J], Monthly Notices of the Royal Astronomical Society 1978, 185, 741-744.
    44. GAO Y D, MACDONALD R G, Determination of the Rate Constants for the NCO(X2Π) + Cl(2P) and Cl(2P) + ClNCO(X1A‘) Reactions at 293 and 345 K [J], The Journal of Physical Chemistry A, 2005, 109:5388-5397.
    45. COOPER W F, PARK J, HERSHBERGER J F, Product channel dynamics of the cyanato radical + nitric oxide reaction [J], The Journal of Physical Chemistry, 1993, 97:3283-3290, and references therein.
    46. JUANG D Y, LEE J S, WANG N S, Kinetics of the reactions of NCO with NO and NO2 [J], International Journal of Chemical Kinetics, 1995, 27:1111-1120, and references therein.
    47. HU C G, ZHU Z Q PEI L S, et al, Time-resolved kinetic studies on quenching of NCO (A 2 +) by alkanes and substituted methane molecules [J], The Journal of Chemical Physics, 2003, 118:5408-5412.
    48. PEI L S, HU C, LIU Y Z, ZHANG Z Q, et al, Kinetic studies on reactions of NCO(X 2Πi) with alcohol molecules [J], Chemical Physics Letters, 2003, 381:199-204.
    49. WATEGAONKAR S, SETSER D W, The fluorine atom + isocyanic acid reaction system: a flow reactor source for isocyanate radical(~X2.PI.) and nitrogen monofluoride(X3.SIGMA.-) [J], The Journal of Physical Chemistry, 1993, 97:10028-10034.
    50. BECHER K H, KURTENBACH R, SCHMIDT F, et al, Temperature and pressure dependence of the NCO + C2H2 reaction [J], Chemical Physics Letters, 1995, 235:230-234.
    51. PERRY R A, Kinetics of the reactions of NCO radicals with H2 and NO usinglaser photolysis–laser induced fluorescence [J], The Journal of Chemical Physics, 1985, 82:5485-5488.
    52. PERRY R A, Symposium (International) on Combustion, 1986, 25:913-918.
    53. PARK J, HERSHBERGER J F, Kinetics of NCO + hydrocarbon reactions [J], Chemical Physics Letters,1994, 218:537-547.
    54. BECHER K H, KURTENBACH R, WIESEN P, Kinetic Study of the NCO + C2H4 Reaction [J], The Journal of Physical Chemistry, 1995, 99:5986-5991.
    55. PEW R A, Symp (Znt.) Combust. [Proc.] 21sr, 1986, 913.
    56. LOUGE M Y, HANSON R K, High temperature kinetics of NCO [J], Combustion and Flame, 1984, 58:291-300.
    57. ZHOU Z Y, GUO L, GAO H W, Theoretical studies on the mechanism and kinetics of the reaction of F atom with NCO radical [J], International Journal of Chemical Kinetics, 2003, 35:52-60.
    58. GAO Y, MACDONALD R J, Determination of the Rate Constant for the NCO(X2Π) + O(3P) Reaction at 292 K [J], The Journal of Physical Chemistry A, 2003, 107:4625-4635.
    59. ZHU R S, LIN M C, The NCO + NO Reaction Revisited: Ab Initio MO/VRRKM Calculations for Total Rate Constant and Product Branching Ratios [J], The Journal of Physical Chemistry A, 2000, 104:10807-10811.
    60. WEI Z G, HUANG X R, SUN Y B, et al, A theoretical study on the potential energy surface of the NCO+NO2 reaction [J], Journal of Molecular Structure: THEOCHEM, 2004, 679:101-106, and references therein.
    61. CAMPOMANES P, MENENDEZ I, SORDO T, A Theoretical Study of the 2NCO + 2OH Reaction [J], The Journal of Physical Chemistry A, 2001, 105:229-237.
    62. ZHANG W C, DU B N, Ab initio quantum chemical studies of reaction mechanism for CH2CO with NCO [J], Journal of Molecular Structure: THEOCHEM, 2006, 760:131-140.
    63. CHEN H T, HO J J, Theoretical Study of Reaction Mechanisms for NCX (X = O, S) + C2H2 [J], The Journal of Physical Chemistry A, 2003, 107, 7004-7012.
    64. CHEN H T, HO J J, Theoretical Study of NCO and RCCH (R = H, CH3, F, Cl,CN) [3 + 2] Cycloaddition Reactions [J], The Journal of Physical Chemistry A, 2003, 107, 7643-7649.
    65. XIE H B, Wang J, ZHANG S W, et al, An ignored but most favorable channel for NCO+C2H2 reaction [J], The Journal of Chemical Physics, 2006, 125:124317.
    66. TANG Y Z, SUN H, SUN J Y, et al, Theoretical study of H-abstraction reaction of C2H5OH with NCO [J], Chemical Physics, 2007, 337:119-124.
    67. MILLER J A, KLIPPENSTEIN S J, GLARBORG P, A kinetic issue in reburning: the fate of HCNO [J], Combustion and Flame, 2003, 135:357-362.
    68. FENG W H, HERSHBERGER J F, Kinetics of the CN + HCNO Reaction [J],The Journal of Physical Chemistry A, 2006, 110:12184-12190.
    69. FENG W H, MEYER J P, HERSHBERGER J F, Kinetics of the OH + HCNO Reaction [J], The Journal of Physical Chemistry A, 2006, 110:4458-4464.
    70. FENG W H, HERSHBERGER J F, Kinetics of the NCO + HCNO Reaction [J], The Journal of Physical Chemistry A, 2007, 111:3831-3835.
    71. LI B T, ZHANG J, WU H S, SUN G D, Theoretical Study on the Mechanism of the NCO + HCNO Reaction [J], The Journal of Physical Chemistry A, 2007, 111:7211-7217.
    72. ZHANG W C, DU B N, FENG C J, Theoretical study of reaction mechanism for NCO + HCNO [J], Chemical. Physics. Letters, 2007, 442:1-6.
    73. ZABARDASTI A, SOLIMANNEJAD M, Theoretical study of hydrogen bonded clusters of water and fulminic acid [J], Journal of Molecular Structure: THEOCHEM, 2007, 810:73-79.
    74. FENIMORE C P, Proceedings of Thirteenth Symposium (International) on Combustion, 1971, 13:373-380.
    75. HAYNES B S, IVERACH D, KIROV N Y, Proceedings of Thirteenth Symposium (International) on Combustion, 1974, 15:1103.
    76. FENIMORE C P, Formation of nitric oxide from fuel nitrogen in ethylene flames [J], Combustion and Flame, 1972, 19:289-296.
    77. ADAMSON J D, DESAIN J D, CURL R F, et al, Reaction of Cyanomethylene with Nitric Oxide and Oxygen at 298 K: HCCN + NO, O2 [J], The Journal ofPhysical Chemistry A, 1997, 101:864-870.
    78.魏志钢,黄旭日,孙延波,等。亚甲基氰自由基(HCCN)与一氧化氮(NO)反应势能面的理论研究,高等学校化学学报,2004,25:2112-2115。
    79. COCHRAN E L, ADRIAN F J, BOWERS V A, ESR Detection of the Cyanogen and Methylene Imino Free Radicals [J], The Journal of Chemical Physics, 1962, 36:1938-1942.
    80. JACOX M E, Vibrational and electronic spectra of the hydrogen atom + hydrogen cyanide reaction products trapped in solid argon [J], The Journal of Physical Chemistry, 1987, 91:6595-6600.
    81. DAGDIGIAN P J, ANDERSON W R, SAUSA R C, et al, Photodissociation of formaldoxime and its methylated homologs: search for methylamidogen radical fluorescence [J], The Journal of Physical Chemistry, 1989, 93:6059-6064.
    82. BERNARD E J, STRAZISAR B R, DAVIS H F, Excited state dynamics of H2CN radicals [J], Chemical Physics Letters, 1999, 313:461-466.
    83. NIZAMOV B, DAGDIGIAN P J, Spectroscopic and Kinetic Investigation of Methylene Amidogen by Cavity Ring-Down Spectroscopy [J], The Journal of Physical Chemistry A, 2003, 107:2256-2263.
    84. YAMAMOTO S, SAITO S, The microwave spectrum of the CH2N radical in the 2B2 ground electronic state [J], The Journal of Chemical Physics, 1992, 96:4157-4162.
    85. TESLJA A, DAGDIGIAN P J, BANCK M, et al, Experimental and Theoretical Study of the Electronic Spectrum of the Methylene Amidogen Radical (H2CN): Verification of the 2A1←2B2 Assignment [J], The Journal of Physical Chemistry A, 2006, 110:7826-7834.
    86. SO S P, Structures and electronic states of the H2Bo and H2CN radicals [J], Chemical Physics Letters, 1981, 82:370-372.
    87. BAIR R A, DUNNING T H, Theoretical studies of the reactions of HCN with atomic hydrogen [J], The Journal of Chemical Physics, 1985, 82:2280-2294.
    88. CHIPMAN D M, CARMICHAEL L, FELLER D, Molecular orbital studies of hyperfine coupling constants in the H2CN and H(HO)CN radicals [J], TheJournal of Physical Chemistry, 1991, 95:4702-4708.
    89. BRINKMANN N R, WESOLOWSKI S S, SCHAEFER H F, Coupled-cluster characterization of the ground and excited states of the CH2N and CH2P radicals [J], The Journal of Chemical Physics, 2001, 114:3055-3064.
    90. EISFELD W, Theoretical investigation of ground and excited states of the methylene amidogene radical (H2CN) [J], The Journal of Chemical Physics, 2004, 120:6056-6063.
    91. EISFELD W, Theoretical study of the photodetachment spectrum of the methylene amidogene anion (H2CN–) [J], Physical Chemistry Chemical Physics, 2005, 7:832-839.
    92. BARONE V, CARBONNIERE P, POUCHAN C, Accurate vibrational spectra and magnetic properties of organic free radicals: The case of H2CN [J], The Journal of Chemical Physics, 2005, 122:224308.
    93. MARSTON G, NESBITT F L, NAVA D F, et al, Temperature dependence of the reaction of nitrogen atoms with methyl radicals [J], The Journal of Physical Chemistry, 1989, 93:5769-5774.
    94. MARSTON G, NESBITT F L, STEIF L J, Branching ratios in the N+CH3 reaction: Formation of the methylene amidogen (H2CN) radical [J], The Journal of Chemical Physics, 1989, 91:3483-3491.
    95. MILLER J A, MELIUS C F, GLARBORG P, The CH3+NO rate coefficient at high temperatures: Theoretical analysis and comparison with experiment [J], International Journal of Chemical Kinetics 1998, 30:223-228.
    96. MORGAN C U, BEYER R A, Electron-spin-resonance studies of HMX pyrolysis products [J], Combustion and Flame 1979, 36:99-101.
    97. ALEXANDER M H, DAGDIGIAN P J, JACOX M E, et al, Nitramine propellant ignition and combustion research [J], Progress in Energy and Combustion Science, 1991, 17:263-296.
    98. ADAMS G F, SHAW Jr R W, Chemical Reactions in Energetic Materials [J], Annual Review of Physical Chemistry, 1992, 43:311-340.
    99. CHAKRABORTY D, MULLER R P, DASGUPTA S, et al, A detailed model forthe decomposition of nitramines: RDX and HMX [J], Journal of Computer-Aided Materials Design, 2001, 8:203-212.
    100. LEBONNOIS S, TOUBLANC D, HOUDIN F, et al, Seasonal Variations of Titan's Atmospheric Composition [J], Icarus, 2001, 152, 384:406.
    101.MARSTON G, STEIF L J, Structure, Spectroscopy and Kinetics of the Methylene Amidogen (H2Cn) Radical [J], Research on Chemical Intermediates, 1989, 12:161.
    102.OHISHI M, MCGONAGLE D, IRVINE W M, et al, Detection of a new interstellar molecule, H2CN [J], Astrophysical Journal, 1994, 427:L51-4.
    103. MARSTON G, NESBITT F L, STEIF L J, Branching ratios in the N+CH3 reaction: Formation of the methylene amidogen (H2CN) radical [J], The Journal of Chemical Physics, 1989, 91:3483-3493.
    104.GONZALEZ C, SCHLEGEL H B, Atmospheric chemistry of titan: ab initio study of the reaction between nitrogen atoms and methyl radicals [J], Journal of the American Chemical Society, 1992, 114:9118-9122.
    105.CIMAS A, LARGO A, The Reaction of Nitrogen Atoms with Methyl Radicals: Are Spin-Forbidden Channels Important? [J], The Journal of Physical Chemistry A, 2006, 110:10912-10920.
    106.GUO Y, HARDING L B, WAGNER A F, et al, Interpolating moving least-squares methods for fitting potential energy surfaces: An application to the H2CN unimolecular reaction [J], The Journal of Chemical Physics, 2007, 126, 104105.
    107.TER HORST M A, SCHATZ G C, HARDING L B, et al, Potential energy surface and quasiclassical trajectory studies of the CN+H2 reaction [J], The Journal of Chemical Physics, 1996, 105:558-571.
    108.METROPOULOS A, THOMPSON D L, A quantum chemistry study of the dissociation and isomerization reactions of methylene amidogene [J], Journal of Molecular Structure: THEOCHEM, 2007, 822:125-132.
    109.BAIR R A, DUNNING Jr T H, Theoretical studies of the reactions of HCN with atomic hydrogen [J], The Journal of Chemical Physics, 1985, 82:2280-2294.
    110.PFEIFFER H M, METZ R B, THOEMKE J D, et al, Reactions of O, H, and Clatoms with highly vibrationally excited HCN: Using product states to determine mechanisms [J], The Journal of Chemical Physics, 1996, 104: 4490-4501.
    111.NIZAMOV B, DAGDIGIAN P J, Spectroscopic and Kinetic Investigation of Methylene Amidogen by Cavity Ring-Down Spectroscopy [J], The Journal of Physical Chemistry A, 2003, 107:2256-2263.
    112.CHAKRABORTY D, LIN M C, Theoretical Studies of Methyleneamino (CH2N) Radical Reactions. 1. Rate Constants and Product Branching Ratios for the CH2N + N2O Process by ab Initio Molecular Orbital/Statistical Theory Calculations [J], The Journal of Physical Chemistry A, 1999, 103:601-606.
    113.CHEN H L, WU C W, HO J J, Theoretical Investigation of the Mechanisms of Reactions of H2CN and H2SiN with NO [J], The Journal of Physical Chemistry A, 2006, 110:8893-8900.
    114. HORNE D G, NORRISH R G W, The Photolysis of Acyclic Azines and the Electronic Spectra of R1R2CN·Radicals [J], Proceedings of the Royal Society of London. Series A, 1970, 315:301-322.
    115.WAYNE R P, Photochemistry and kinetics applied to atmospheres chemistry of atmospheres (third ed.) [M], Oxford University Press, 2000, Chapter 3.
    116. NIZAMOV B, DAGDIGIAN P J, Spectroscopic and Kinetic Investigation of Methylene Amidogen by Cavity Ring-Down Spectroscopy [J], The Journal of Physical Chemistry A, 2003, 107:2256-2263.
    117. GIBIAN M J, CORLEY R C, Organic radical-radical reactions. Disproportionation vs. combination [J], Chemical Reviews. 1973, 73:441-464.
    1. BORN M, OPPENHEIMER R, Zur Quantentheorie der Molekeln [J], 1927, 389:457-484.
    2. (a)唐敖庆,杨忠志,李前树,量子化学[M],北京,科学出版社,1982。(b)徐光宪,黎乐民,王德民,量子化学基本原理和从头计算法[M],北京,科学出版社,1985。(c)王志中,现代量子化学计算方法[M],长春,吉林大学出版社,1998。
    3. HEHRE W J, RADOM L, SCHLEYER P R, et al., Ab Initio molecular orbital theory [M], John Wiley &Sons Inc, 1986. (b) MCQUARRIE D A, Quantum Chemistry University Science [M], Mill Vally CA, 1983.
    4. LOWDIN P O, A classic review on electron correlation [J], Advances in Chemical Physics, 1959, 2:207.
    5. POPLE J A, SEEGER R, KRISHNAN R, Variational configuration interaction methods and comparison with perturbation theory [J], International journal of quantum chemistry. Sympos, 1977, 11:149-163.
    6. FORESMAN J B, HEAD-GORDON M, POPLE J A, et al, Toward a systematic molecular orbital theory for excited states [J], Journal of Physical Chemistry, 1992, 96:135-149.
    7. KRISHNAN R., SCHLEGEL H B, POPLE J A, Derivative studies in configuration–interaction theory [J], Journal of Chemical Physics, 1980, 72:4654-4655.
    8. BROOKS B R, LAIDIG W D, SAXE P, et al, Analytic gradients from correlated wave functions via the two-particle density matrix and the unitary group approach [J], Journal of Chemical Physics, 1980, 72:4652-4653.
    9. SALTER E A, TRUCKS G W, BARTLETT R J, Analytic energy derivatives in many-body methods. I. First derivatives [J], Journal of Chemical Physics, 1989, 90:1752-1756.
    10. RAGHAVACHARI K, POPLE J A, Specificity and molecular mechanism of abortificient action of prostaglandins [J], International Journal of Quantum Chemistry, 1981, 20:167-178.
    11. POPLE J A, HEAD-GORDON M, RAGHAVACHARI K, Quadratic configuration interaction. A general technique for determining electron correlation energies [J], Journal of Chemical Physics, 1987, 87:5968-5975.
    12. SHAVITT I., lecture Notes in Chemistry, vol 22, Eds, BERTHIER G., et al, Springer-Verlag, New York(1981), 51.
    13. SUTCLIFFE B T, Matrix elements between bonded functions [J], Journal ofChemical Physics, 1966, 45:235-239.
    14. EADE R H E, ROBB M A, Direct minimization in mc scf theory. the quasi-newton method [J], Chemical Physics Letters, 1981, 83:362-368.
    15. HEGARTY D, ROBB M A, Application of unitary group methods to configuration interaction calculations [J], Molecular Physics, 1979, 38:1795-1812.
    16. SCUSERIA G E, SCHAEFER III H F, Is coupled cluster singles and doubles (CCSD) more computationally intensive than quadratic configuration interaction (QCISD)? [J], Journal of Chemical Physics, 1989, 90:3700-3703.
    17. PURVIS G D, BARTLETT R J, A full coupled-cluster singles and doubles model: The inclusion of disconnected triples [J], Journal of Chemical Physics, 1982, 76:1910-1918.
    18. SCUSERIA G E, JANSSEN C L, Schaefer III H F, An efficient reformulation of the closed-shell coupled cluster single and double excitation (CCSD) equations [J], Journal of Chemical Physics, 1988, 89:7382-7387.
    19. HOHENBERG P, KOHN W, Inhomogeneous electron gas [J], Physical Review, 1964, 136:B864-B871.
    20. KOHN W, SHAM L J, Self-consistent equations including exchange and correlation effects [J], Physical Review, 1965, 140:A1133-A1138.
    21. SLATER J C, Quantum Theory of Molecular and Solids. Vol. 4: The Self-Consistent Field for Molecular and Solids McGraw-Hill: New York, 1974.
    22. SALAHUB D R, ZERNER M C, eds, The Challenge of d and f Electrons ACS: Washington, D.C. 1989.
    23. PARR R G, YANG W, Density-functional theory of atoms and molecules Oxford Univ. Press: Oxford, 1989.
    24. POPLE J A, GILL P M W, JOHNSON B G, Kohn—Sham density-functional theory within a finite basis set [J], Chemical Physics Letters, 1992, 199:557-560.
    25. JOHNSON B G, FRISCH M J, An implementation of analytic second derivatives of the gradient-corrected density functional energy [J], Journal of Chemical Physics, 1994, 100:7429-7442.
    26. LABANOWSKI J K, ANDZELM J W, eds., Density Functional Methods in Chemistry [M], Springer-Verlag: New York, 1991.
    27. POPLE J A, HEAD-GORDON M, FOX D J, et al, Gaussian-1 theory: A general procedure for prediction of molecular energies [J], Journal of Chemical Physics, 1989, 90:5622-5629; CURTISS L A, RAGHAVACHARI K, TRUCKS G. W, et al, Gaussian-2 theory for molecular energies of first- and second-row compounds [J], Journal of Chemical Physics, 1991, 94:7221-7230; CURTISS L A, RAGHAVACHARI K, POPLE J A, Gaussian-2 theory using reduced M?ller–Plesset orders [J], Journal of Chemical Physics, 1993, 98:1293-1298; SMITH B J, RADOM L, Calculation of Proton Affinities Using the G2(MP2,SVP) Procedure [J], The Journal of Physical Chemistry, 1995, 99:6468-6471; MEBEL A M, MOROKUMA K, LIN M C, Modification of the gaussian?2 theoretical model: The use of coupled-cluster energies, density-functional geometries, and frequencies [J], Journal of Chemical Physics, 1995, 103:7414-7421; CURTISS L A, RAGHAVACHARI K, REDFERN P C, et al, Gaussian-3 (G3) theory for molecules containing first and second-row atoms [J], Journal of Chemical Physics, 1998, 109:7764-7776; the G3large basis set is downloaded from the website http://chemistry.anl.gov/compmat/ g3theory.htm; CURTISS L A, REDFERM P C, RAGHAVACHARI K, et al, Gaussian-3 theory using reduced M?ller-Plesset order [J], Journal of Chemical Physics, 1999, 110:4703-4709; BAUSCHLICHER C W, PARTRIDGE H, A modification of the Gaussian-2 approach using density functional theory [J], Journal of Chemical Physics, 1995, 103:1788-1791; HAHN D K, KLIPPENSTEIN S J, MILLER J A, A theoretical analysis of the reaction between propargyl and molecular oxygen [J], Faraday Discuss, 2001, 119:79-100.
    28. BABOUL A G, CURTISS L A, REDFERN P C, et al, Gaussian-3 theory using density functional geometries and zero-point energies [J], Journal of Chemical Physics, 1999, 110:7650-7657.
    29. MELIUS C F, BINKLEY J S, The 20th Symposium (International) on Combustion, The Combustion Institute. Pittsburgh, 1984, p.575.
    30. SIEGBAHN P E M, BLOMBERG M R A, SVENSSON M, PCI-X, aparametrized correlation method containing a single adjustable parameter X [J], Chemical Physics Letters, 1994, 223:35-45.
    31. HENRY D J, SULLIVAN M B, RADOM L, G3-RAD and G3X-RAD: modified Gaussian-3 (G3) and Gaussian-3X (G3X) procedures for radical thermochemistry [J], Journal of Chemical Physics, 2003, 118:4849-4860.
    32. HENRY D J, PARKINSON C J, RADOM L, On the electronic structure of bis(η5-cyclopentadienyl) titanium [J], The Journal of Physical Chemistry A, 2002, 106:7921-7926.
    33. KLIPPENSTEIN S J, MILLER J A, From the time-dependent, multiple-well master equation to phenomenological rate coefficients [J], The Journal of Physical Chemistry A, 2002, 106:9267-9277.
    34. MILLER J A, KLIPPENSTEIN S J, ROBERTSON S H, A Theoretical analysis of the reaction between vinyl and acetylene: quantum chemistry and solution of the master equation [J], The Journal of Physical Chemistry A, 2000, 104:7525-7536.
    35. PILLING M J, ROBERTSON S H, Master equation models for chemical reactions of importance in combustion [J], Annual Review of Physical Chemistry, 2003, 54:245-275.
    36. FRANKCOMBE T J, SMITH S C, Fast, scalable master equation solution algorithms. IV. Lanczos iteration with diffusion approximation preconditioned iterative inversion [J], Journal of Chemical Physics, 2003, 119:12741-12748.
    37. GILBERT R G, SMITH S C, Theory of Unimolecular and Recombination Reactions, Blackwell Scientific, Carlton, Australia, 1990.
    1. MILLER J A, BOWMAN C T, Mechanism and modeling of nitrogen chemistry in combustion [J], Progress in Energy and Combustion Science, 1989, 15:287-338.
    2. BAULCH D L, COBOS C J, COX R A, et al, Evaluated kinetic data for combustion modelling [J], Journal of Physical Chemical Reference Data, 1992,21:411-429.
    3. BECKER K H, KURTENBACH R, SCHMIDT F, et al, Kinetics of the reactions of NCO radicals with NO and NH3 [J], Physikalische Chemie, 1997, 101:128-133, and references cited therein.
    4. BROWNSWORD R A, HANCOCK G, Time-resolved FTIR emission study of product dynamics in the NO+NCO reaction [J], Journal of the Chemical Society, Faraday Transactions, 1997, 93:1279-1286.
    5. SIEBERS D L, CATON J A, Removal of nitric oxide from exhaust gas with cyanuric acid [J], Combustion and Flame, 1990, 79:31-46.
    6. JODAL M, NIELSON C, HULGAARD T, et al, Symposium (International) on Combustion [C], 1990, 23;237-243.
    7. PRASAD S S, HUNTRESS W T Jr, NCO: a potential interstellar species [J], Monthly Notices of the Royal Astronomical Society 1978, 185, 741-744.
    8. GAO Y D, MACDONALD R G, Determination of the Rate Constants for the NCO(X2Π) + Cl(2P) and Cl(2P) + ClNCO(X1A‘) Reactions at 293 and 345 K [J], The Journal of Physical Chemistry A, 2005, 109:5388-5397.
    9. COOPER W F, PARK J, HERSHBERGER J F, Product channel dynamics of the cyanato radical + nitric oxide reaction [J], The Journal of Physical Chemistry, 1993, 97:3283-3290, and references therein.
    10. JUANG D Y, LEE J S, WANG N S, Kinetics of the reactions of NCO with NO and NO2 [J], International Journal of Chemical Kinetics, 1995, 27:1111-1120, and references therein.
    11. HU C G, ZHU Z Q PEI L S, et al, Time-resolved kinetic studies on quenching of NCO (A 2 +) by alkanes and substituted methane molecules [J], The Journal of Chemical Physics, 2003, 118:5408-5412.
    12. PEI L S, HU C, LIU Y Z, ZHANG Z Q, et al, Kinetic studies on reactions of NCO(X 2Πi) with alcohol molecules [J], Chemical Physics Letters, 2003, 381:199-204.
    13. WATEGAONKAR S, SETSER D W, The fluorine atom + isocyanic acid reaction system: a flow reactor source for isocyanate radical(~X2.PI.) and nitrogenmonofluoride(X3.SIGMA.-) [J], The Journal of Physical Chemistry, 1993, 97:10028-10034.
    14. BECHER K H, KURTENBACH R, SCHMIDT F, et al, Temperature and pressure dependence of the NCO + C2H2 reaction [J], Chemical Physics Letters, 1995, 235:230-234.
    15. PERRY R A, Kinetics of the reactions of NCO radicals with H2 and NO using laser photolysis–laser induced fluorescence [J], The Journal of Chemical Physics, 1985, 82:5485-5488.
    16. PERRY R A, Symposium (International) on Combustion, 1986, 25:913-918.
    17. PARK J, HERSHBERGER J F, Kinetics of NCO + hydrocarbon reactions [J], Chemical Physics Letters,1994, 218:537-547.
    18. BECHER K H, KURTENBACH R, WIESEN P, Kinetic Study of the NCO + C2H4 Reaction [J], The Journal of Physical Chemistry, 1995, 99:5986-5991.
    19. PEW R A, Symp (Znt.) Combust. [Proc.] 21sr, 1986, 913.
    20. LOUGE M Y, HANSON R K, High temperature kinetics of NCO [J], Combustion and Flame, 1984, 58:291-300.
    21. ZHOU Z Y, GUO L, GAO H W, Theoretical studies on the mechanism and kinetics of the reaction of F atom with NCO radical [J], International Journal of Chemical Kinetics, 2003, 35:52-60.
    22. GAO Y, MACDONALD R J, Determination of the Rate Constant for the NCO(X2Π) + O(3P) Reaction at 292 K [J], The Journal of Physical Chemistry A, 2003, 107:4625-4635.
    23. ZHU R S, LIN M C, The NCO + NO Reaction Revisited: Ab Initio MO/VRRKM Calculations for Total Rate Constant and Product Branching Ratios [J], The Journal of Physical Chemistry A, 2000, 104:10807-10811.
    24. WEI Z G, HUANG X R, SUN Y B, et al, A theoretical study on the potential energy surface of the NCO+NO2 reaction [J], Journal of Molecular Structure: THEOCHEM, 2004, 679:101-106, and references therein.
    25. CAMPOMANES P, MENENDEZ I, SORDO T, A Theoretical Study of the 2NCO + 2OH Reaction [J], The Journal of Physical Chemistry A, 2001, 105:229-237.
    26. ZHANG W C, DU B N, Ab initio quantum chemical studies of reaction mechanism for CH2CO with NCO [J], Journal of Molecular Structure: THEOCHEM, 2006, 760:131-140.
    27. CHEN H T, HO J J, Theoretical Study of Reaction Mechanisms for NCX (X = O, S) + C2H2 [J], The Journal of Physical Chemistry A, 2003, 107, 7004-7012.
    28. CHEN H T, HO J J, Theoretical Study of NCO and RCCH (R = H, CH3, F, Cl, CN) [3 + 2] Cycloaddition Reactions [J], The Journal of Physical Chemistry A, 2003, 107, 7643-7649.
    29. XIE H B, Wang J, ZHANG S W, et al, An ignored but most favorable channel for NCO+C2H2 reaction [J], The Journal of Chemical Physics, 2006, 125:124317.
    30. TANG Y Z, SUN H, SUN J Y, et al, Theoretical study of H-abstraction reaction of C2H5OH with NCO [J], Chemical Physics, 2007, 337:119-124.
    31. FRISCH M J, TRUCKS G W, SCHLEGEL H B, et al., GAUSSIAN 98, Revision A.11, (Gaussian, Inc., Pittsburgh, PA, 1998).
    32. FRISCH M J, TRUCKS G W, SCHLEGEL H B, et al. GAUSSIAN 03, Revision B.03, (Gaussian, Inc., Pittsburgh, PA, 2003).
    33. SOSA C, SCHLEGEL H B, Calculated barrier heights for OH + C2H2 and OH + C2H4 using unrestricted Moeller-Plesset perturbation theory with spin annihilation [J], Journal of the American Chemical Society, 1987, 109:4193-4198.
    34. Sosa, C.; Schlegel, H. B. An ab initio study of the reaction pathways for OH + C2H4 .fwdarw. HOCH2CH2 .fwdarw. products [J], Journal of the American Chemical Society, 1987, 109:7007-7015.
    35. VILLA J, GONZA LEZ-LAFONT A, LLUCH J M, et al, Understanding the activation energy trends for the C2H4+OH C2H4OH reaction by using canonical variational transition state theory [J], The Journal of Chemical Physics 1997, 107:7266-7274.
    36. YAMADA T, BOZZELLI J W, LAY T, Kinetic and Thermodynamic Analysis on OH Addition to Ethylene: Adduct Formation, Isomerization, and Isomer Dissociations [J], The Journal of Physical Chemistry A, 1999, 103:7646-7655.
    37. PIQUERAS M C, CRESPO R, NEBOT-GIL I, et al, Thermochemical analysis ofthe OH+C2H4→C2H4OH reaction using accurate theoretical methods [J], Journal of Molecular Structure: THEOCHEM, 2001, 537:199-212.
    38. LIU G X, DING Y H, LI Z S, et al, Theoretical study on mechanisms of the high-temperature reactions C2H3 + H2O and C2H4 + OH [J], Physical Chemistry Chemical Physics, 2002, 4:1021-1027.
    39. SENOSIAIN J P, KLIPPENSTEIN S J, MILLER J A, Reaction of Ethylene with Hydroxyl Radicals: A Theoretical Study [J], The Journal of Physical Chemistry A, 2006, 110:6960-6970.
    1. MILLER J A, KLIPPENSTEIN S J, GLARBORG P, A kinetic issue in reburning: the fate of HCNO [J], Combustion and Flame, 2003, 135:357-362.
    2. FENG W H, HERSHBERGER J F, Kinetics of the CN + HCNO Reaction [J],The Journal of Physical Chemistry A, 2006, 110:12184-12190.
    3. FENG W H, MEYER J P, HERSHBERGER J F, Kinetics of the OH + HCNO Reaction [J], The Journal of Physical Chemistry A, 2006, 110:4458-4464.
    4. FENG W H, HERSHBERGER J F, Kinetics of the NCO + HCNO Reaction [J], The Journal of Physical Chemistry A, 2007, 111:3831-3835.
    5. LI B T, ZHANG J, WU H S, SUN G D, Theoretical Study on the Mechanism of the NCO + HCNO Reaction [J], The Journal of Physical Chemistry A, 2007, 111:7211-7217.
    6. ZHANG W C, DU B N, FENG C J, Theoretical study of reaction mechanism for NCO + HCNO [J], Chemical. Physics. Letters, 2007, 442:1-6.
    7. ZABARDASTI A, SOLIMANNEJAD M, Theoretical study of hydrogen bonded clusters of water and fulminic acid [J], Journal of Molecular Structure: THEOCHEM, 2007, 810:73-79.
    8. FENIMORE C P, Proceedings of Thirteenth Symposium (International) on Combustion, 1971, 13:373-380.
    9. HAYNES B S, IVERACH D, KIROV N Y, Proceedings of ThirteenthSymposium (International) on Combustion, 1974, 15:1103.
    10. FENIMORE C P, Formation of nitric oxide from fuel nitrogen in ethylene flames [J], Combustion and Flame, 1972, 19:289-296.
    11. ADAMSON J D, DESAIN J D, CURL R F, et al, Reaction of Cyanomethylene with Nitric Oxide and Oxygen at 298 K: HCCN + NO, O2 [J], The Journal of Physical Chemistry A, 1997, 101:864-870.
    12.魏志钢,黄旭日,孙延波,等。亚甲基氰自由基(HCCN)与一氧化氮(NO)反应势能面的理论研究,高等学校化学学报,2004,25:2112-2115。
    13. FROSCJ M J, TRUCKS G W, SCHLEGEL H B, et al. GAUSSIAN 98, Revision A.6, Gaussian, Inc, Pottsburgh, PA, 1998.
    14. FRISCH M J, TRUCKS G W, SCHLEGEL H B, et al. GAUSSIAN 03, Revision B.03, Gaussian, Inc, Wallingford, CT, 2004.
    15. CURTISS L A, RAGHAVACHARI K, REDFERN P C, et al, Gaussian-3 (G3) theory for molecules containing first and second-row atoms [J], The Journal of Chemical Physics, 1998, 109:7764-7776.
    16. BOBOUL A G, CURTISS L A, REDFERN P C, et al, Gaussian-3 theory using density functional geometries and zero-point energies [J], The Journal of Chemical Physics, 1999, 110:7650-7657.
    17. We should note that in the original G3 scheme that applies the DFT geometries, the B3LYP/6-31G(d) and zero-point energies were involved. The overall scheme is written as“G3//B3LYP”. In our previous and present work on G3-study of potential energy surfaces of reactive systems, geometries at higher levels such as B3LYP/6-311++G(d.p) and QCISD/6-311++G(d,p) levels are used for better structural description. The same scale factors as in the original G3//B3LYP scheme are still used. In this way, we denote the overall computational scheme as G3B3//B3LYP/6-311++G(d.p) and G3B3//QCISD/6-311++G(d.p) (if applied).
    18. (a) KLIPPENSTEIN S J, MILLER J A, From the Time-Dependent, Multiple-Well Master Equation to Phenomenological Rate Coefficients [J], The Journal of Physical Chemistry A, 2002, 106:9267-9277; (b) MILLER J A, KLIPPENSTEIN S J, ROBERTSON S H, A Theoretical Analysis of the Reaction between Vinyland Acetylene: Quantum Chemistry and Solution of the Master Equation [J], The Journal of Physical Chemistry A, 2000, 104:7525-7536; (c) PILLING M J, ROBERTSON S H, Master equation models for chemical reactions of importance in combustion [J], Annual Review of Physical Chemistry, 2003, 54:245-275; (d) FRANKCOMBE T J, SMITH S C, Fast, scalable master equation solution algorithms. IV. Lanczos iteration with diffusion approximation preconditioned iterative inversion [J], The Journal of Chemical Physics, 2003, 119:12741-12748; (e) GILBERT R G, SMITH S C, Theory of unimolecular and recombination reactions (Blackwell Scientific, Carlton, Australia, 1990); (f) MILLER J A, KLIPPENSTEIN S J, The reaction between ethyl and molecular oxygen II: Further analysis [J], International Journal of Chemical Kinetics, 2001, 33:654-668.
    19. ZHANG S W, TRUONG T N, VKLAB, version 1.0, University of Utah, 2001.
    20. SCHUURMAN M S, MUIR S R, ALLEN W D, et al, Toward subchemical accuracy in computational thermochemistry: Focal point analysis of the heat of formation of NCO and [H,N,C,O] isomers [J], The Journal of Chemical Physics, 2004, 120:11586-11599.
    21. CYR D R, CONTINETTI R E, METZ R B, et al, Fast beam studies of NCO free radical photodissociation [J], The Journal of Chemical Physics, 1992, 97:4937-4947.
    22. POUTSMA J C, UPSHAW S D, SQUIRES R R, et al, Absolute heat of formation and singlet?triplet splitting for HCCN [J], The Journal of Physical Chemistry A, 2002, 106:1067-1073.
    23. OSBORN D L, MORDAUNT D H, CHOI H, et al, Photodissociation spectroscopy and dynamics of the HCCO free radical [J], The Journal of Chemical Physics,1997, 106:10087-10098.
    24. CLIFFORD E P, WENTHOLD P G, LINEBERGER W C, et al, Properties of diazocarbene [CNN] and the diazomethyl radical [HCNN] via ion chemistry and spectroscopy [J], The Journal of Physical Chemistry A, 1998, 102, 7100-7112.
    25. CURTISS L A, RAGHAVACHARI K, REDFERN P C, et al, Assessment ofGaussian-2 and density functional theories for the computation of enthalpies of formation [J], The Journal of Chemical Physics, 1997, 106:1063-1079.
    26. FRANCISCO J S, LIU R F, An ab initio study of OCCN and OCCN+ [J], The Journal of Chemical Physics, 1997, 107:3840-3844.
    27. CHOI H, MORDAUNT D H, BISE R T, et al, Photodissociation of triplet and singlet states of the CCO radical [J], The Journal of Chemical Physics, 1998, 108:4070-4078.
    28. FRANCISCO J S, Heat of formation determination of the ground and excited state of cyanomethylene (HCCN) radical [J], Chemical Physics Letters, 1994, 230:372-376.
    29. KOPUT J, Ab initio heat of formation and singlet?triplet splitting for cyanocarbene (HCCN) and isocyanocarbene (HCNC) [J], The Journal of Physical Chemistry A, 2003, 107:4717-4723.
    30. MOSKALEVA L V, XIA W S, LIN M C, The CH+N2 reaction over the ground electronic doublet potential energy surface: a detailed transition state search [J], Chemical Physics Letters, 2000, 331:269-277.
    31. MILLER J A, BOWMAN C T, Mechanism and modeling of nitrogen chemistry in combustion [J], Progress in Energy and Combustion Science, 1989, 15:287-338.
    1. MARSTON G, NESBITT F L, NAVA D F, et al, Temperature dependence of the reaction of nitrogen atoms with methyl radicals [J], The Journal of Physical Chemistry, 1989, 93:5769-5774.
    2. MARSTON G, NESBITT F L, STEIF L J, Branching ratios in the N+CH3 reaction: Formation of the methylene amidogen (H2CN) radical [J], The Journal of Chemical Physics, 1989, 91:3483-3493.
    3. MILLER J A, MELIUS C F, GLARBORG P, The CH3+NO rate coefficient at high temperatures: Theoretical analysis and comparison with experiment [J],International Journal of Chemical Kinetics, 1998, 30-223-228.
    4. AHMAD F, SCHNITKER S P, NEWELL C J, Remediation of RDX-and HMX-contaminated groundwater using organic mulch permeable reactive barriers [J], Journal of contaminant hydrology, 2007, 90:1-20.
    5. BOPARAI H K, COMFORT S D, SHEA P J, et al, Remediating explosive-contaminated groundwater by in situ redox manipulation (ISRM) of aquifer sediments [J], Chemosphere, 2008, 71:933-941.
    6. MORGAN C U, BEYER R A, Electron-spin-resonance studies of HMX pyrolysis products [J], Combustion and Flame, 1979, 36:99-101.
    7. ALEXANDER M H, DAGDIGIAN P J, JACOX M E, et al, Nitramine propellant ignition and combustion research [J], Progress in Energy and Combustion Science, 1991, 17, 263.
    8. ADAMS G F, HAW Jr R W, Chemical Reactions in Energetic Materials [J], Annual Review of Physical Chemistry, 1992, 43:311-340.
    9. CHAKRABORTY D, MULLER R P, DASGUPTA S, et al, A detailed model for the decomposition of nitramines: RDX and HMX [J], Journal of Computer-Aided Materials Design, 2001, 8:203-212.
    10. HERBSR E, Chemistry in the Interstellar Medium [J], Annual Review of Physical Chemistry, 1995, 46:27-54.
    11. LEBONNOIS S, TOUBLANC D, HOUDIN F, et al, Seasonal Variations of Titan's Atmospheric Composition [J], Icarus, 2001, 152, 384:406.
    12. MARSTON G, STEIF L J, Structure, Spectroscopy and Kinetics of the Methylene Amidogen (H2Cn) Radical [J], Research on Chemical Intermediates, 1989, 12:161.
    13. OHISHI M, MCGONAGLE D, IRVINE W M, et al, Detection of a new interstellar molecule, H2CN [J], Astrophysical Journal, 1994, 427:L51-4.
    14. SAGAN C, THOMPSON W R, KHARE B N, Titan: a laboratory for prebiological organic chemistry [J], Accounts of Chemical Research, 1992, 25:286-292.
    15. MARSTON G, NESBITT F L, STEIF L J, Branching ratios in the N+CH3 reaction:Formation of the methylene amidogen (H2CN) radical [J], The Journal of Chemical Physics, 1989, 91:3483-3493.
    16. GONZALEZ C, SCHLEGEL H B, Atmospheric chemistry of titan: ab initio study of the reaction between nitrogen atoms and methyl radicals [J], Journal of the American Chemical Society, 1992, 114:9118-9122.
    17. CIMAS A, LARGO A, The Reaction of Nitrogen Atoms with Methyl Radicals: Are Spin-Forbidden Channels Important? [J], The Journal of Physical Chemistry A, 2006, 110:10912-10920.
    18. GUO Y, HARDING L B, WAGNER A F, et al, Interpolating moving least-squares methods for fitting potential energy surfaces: An application to the H2CN unimolecular reaction [J], The Journal of Chemical Physics, 2007, 126, 104105.
    19. TER HORST M A, SCHATZ G C, HARDING L B, et al, Potential energy surface and quasiclassical trajectory studies of the CN+H2 reaction [J], The Journal of Chemical Physics, 1996, 105:558-571.
    20. METROPOULOS A, THOMPSON D L, A quantum chemistry study of the dissociation and isomerization reactions of methylene amidogene [J], Journal of Molecular Structure: THEOCHEM, 2007, 822:125-132.
    21. BAIR R A, DUNNING Jr T H, Theoretical studies of the reactions of HCN with atomic hydrogen [J], The Journal of Chemical Physics, 1985, 82:2280-2294.
    22. PFEIFFER H M, METZ R B, THOEMKE J D, et al, Reactions of O, H, and Cl atoms with highly vibrationally excited HCN: Using product states to determine mechanisms [J], The Journal of Chemical Physics, 1996, 104: 4490-4501.
    23. NIZAMOV B, DAGDIGIAN P J, Spectroscopic and Kinetic Investigation of Methylene Amidogen by Cavity Ring-Down Spectroscopy [J], The Journal of Physical Chemistry A, 2003, 107:2256-2263.
    24. CHAKRABORTY D, LIN M C, Theoretical Studies of Methyleneamino (CH2N) Radical Reactions. 1. Rate Constants and Product Branching Ratios for the CH2N + N2O Process by ab Initio Molecular Orbital/Statistical Theory Calculations [J], The Journal of Physical Chemistry A, 1999, 103:601-606.
    25. CHEN H L, WU C W, HO J J, Theoretical Investigation of the Mechanisms ofReactions of H2CN and H2SiN with NO [J], The Journal of Physical Chemistry A, 2006, 110:8893-8900.
    26. HOCHANADEL C J, SWORSKL T J, OGREN P J, Ultraviolet spectrum and reaction kinetics of the formyl radical [J], The Journal of Physical Chemistry, 1980, 84:231-235.
    27. HARWOOD M H, ROWLEY D M, ANTHONY Cox R, et al, Kinetics and mechanism of the BrO self-reaction: temperature- and pressure-dependent studies [J], The Journal of Physical Chemistry A, 1998, 102:1790-1082.
    28. BAKLANOV V, KRASNOPEROV L N, UV Absorption spectrum and rate constant for self-reaction of silyl radicals [J], The Journal of Physical Chemistry A, 2001, 105:4917-4922.
    29. Cheng M, Hung W C, Photoionization Efficiency Spectrum and Ionization Energy of HSSH Produced from Gaseous Self-Reaction of HS Radicals [J], The Journal of Physical Chemistry, 1996, 100:10210-10214.
    30. BLOSS W J, ROWLEY D M, ANTHONY Cox R, et al, Kinetics and Products of the IO Self-Reaction [J], The Journal of Physical Chemistry A, 2001, 105:7840-7854.
    31. HORNE D G, NORRISH R G W, The Photolysis of Acyclic Azines and the Electronic Spectra of R1R2CN·Radicals [J], Proceedings of the Royal Society of London. Series A, 1970, 315:301-322.
    32. FRISCH M J, TRUCKS G W, SCHLEGEL H B, et al. GAUSSIAN 03, Revision B.03, Gaussian, Inc, Wallingford, CT, 2004.
    33. ZHANG S W, TRUONG T N, VKLAB, version 1.0, University of Utah, 2001.
    34. MILLER J A, KLIPPENSTEIN S J, ROBERTSON S H, A Theoretical Analysis of the Reaction between Vinyl and Acetylene: Quantum Chemistry and Solution of the Master Equation [J], The Journal of Physical Chemistry A, 2000, 104:7525-7536.
    35. KLIPPENSTEIN S J, MILLER J A, From the Time-Dependent, Multiple-Well Master Equation to Phenomenological Rate Coefficients [J], The Journal of Physical Chemistry A, 2002, 106:9267-9277.
    36. MILLER J A, KLIPPENSTEIN S J, The reaction between ethyl and molecular oxygen II: Further analysis [J], International Journal of Chemical Kinetics, 2001, 33:654-668.
    37. FELDER P, HARRISON J A, HUBER J R, Formaldazine photodissociation and the pair formation of H2CN radicals [J], The Journal of Physical Chemistry, 1991, 95:1945-1950.
    38. LEE T J, RICE J E, SCUSERIA G E, et al, Theoretical investigations of molecules composed only of fluorine, oxygen and nitrogen: determination of the equilibrium structures of FOOF, (NO)2 and FNNF and the transition state structure for FNNF cis-trans isomerization Theoretica Chimica Acta, 1989, 75:81-98.
    39. BECKSTEADA M W, PUDUPPAKKAM K, THAKRED P, et al, Modeling of combustion and ignition of solid-propellant ingredients [J], Progress in Energy and Combustion Science, 2007, 33:497-551.
    40. MITANI T, WILLIAMS F A, 21st symposium (international) on combustion [C], the Combustion Institute, Pittsburgh, 1986.
    41. FULCHIGNONI M, FERRI F, ANGRILLI F, et al. In situ measurements of the physical characteristics of Titan's environment [J], Nature, 2005, 438:785-791.
    42. HENRY D J, SULLIVAN M B, RADOM L, G3-RAD and G3X-RAD: Modified Gaussian-3 (G3) and Gaussian-3X (G3X) procedures for radical thermochemistry [J], The Journal of Chemical Physics, 2003, 118:4849-4860.
    43. HENRY D J, PARKINSON C J, RADOM L, On the Electronic Structure of Bis(η5-cyclopentadienyl) Titanium [J], The Journal of Physical Chemistry A, 2002, 106:7921-7926.
    1. COCHRAN E L, ADRIAN F J, BOWERS V A, ESR Detection of the Cyanogen and Methylene Imino Free Radicals [J], The Journal of Chemical Physics, 1962, 36:1938-1942.
    2. JACOX M E, Vibrational and electronic spectra of the hydrogen atom + hydrogen cyanide reaction products trapped in solid argon [J], The Journal of Physical Chemistry, 1987, 91:6595-6600.
    3. DAGDIGIAN P J, ANDERSON W R, SAUSA R C, et al, Photodissociation of formaldoxime and its methylated homologs: search for methylamidogen radical fluorescence [J], The Journal of Physical Chemistry, 1989, 93:6059-6064.
    4. BERNARD E J, STRAZISAR B R, DAVIS H F, Excited state dynamics of H2CN radicals [J], Chemical Physics Letters, 1999, 313:461-466.
    5. NIZAMOV B, DAGDIGIAN P J, Spectroscopic and Kinetic Investigation of Methylene Amidogen by Cavity Ring-Down Spectroscopy [J], The Journal of Physical Chemistry A, 2003, 107:2256-2263.
    6. YAMAMOTO S, SAITO S, The microwave spectrum of the CH2N radical in the 2B2 ground electronic state [J], The Journal of Chemical Physics, 1992, 96:4157-4162.
    7. TESLJA A, DAGDIGIAN P J, BANCK M, et al, Experimental and Theoretical Study of the Electronic Spectrum of the Methylene Amidogen Radical (H2CN): Verification of the 2A1←2B2 Assignment [J], The Journal of Physical Chemistry A, 2006, 110:7826-7834.
    8. SO S P, Structures and electronic states of the H2Bo and H2CN radicals [J], Chemical Physics Letters, 1981, 82:370-372.
    9. BAIR R A, DUNNING T H, Theoretical studies of the reactions of HCN with atomic hydrogen [J], The Journal of Chemical Physics, 1985, 82:2280-2294.
    10. CHIPMAN D M, CARMICHAEL L, FELLER D, Molecular orbital studies of hyperfine coupling constants in the H2CN and H(HO)CN radicals [J], The Journal of Physical Chemistry, 1991, 95:4702-4708.
    11. BRINKMANN N R, WESOLOWSKI S S, SCHAEFER H F, Coupled-cluster characterization of the ground and excited states of the CH2N and CH2P radicals [J], The Journal of Chemical Physics, 2001, 114:3055-3064.
    12. EISFELD W, Theoretical investigation of ground and excited states of the methylene amidogene radical (H2CN) [J], The Journal of Chemical Physics, 2004,120:6056-6063.
    13. EISFELD W, Theoretical study of the photodetachment spectrum of the methylene amidogene anion (H2CN–) [J], Physical Chemistry Chemical Physics, 2005, 7:832-839.
    14. BARONE V, CARBONNIERE P, POUCHAN C, Accurate vibrational spectra and magnetic properties of organic free radicals: The case of H2CN [J], The Journal of Chemical Physics, 2005, 122:224308.
    15. MARSTON G, NESBITT F L, NAVA D F, et al, Temperature dependence of the reaction of nitrogen atoms with methyl radicals [J], The Journal of Physical Chemistry, 1989, 93:5769-5774.
    16. MARSTON G, NESBITT F L, STEIF L J, Branching ratios in the N+CH3 reaction: Formation of the methylene amidogen (H2CN) radical [J], The Journal of Chemical Physics, 1989, 91:3483-3491.
    17. MILLER J A, MELIUS C F, GLARBORG P, The CH3+NO rate coefficient at high temperatures: Theoretical analysis and comparison with experiment [J], International Journal of Chemical Kinetics 1998, 30:223-228.
    18. MORGAN C U, BEYER R A, Electron-spin-resonance studies of HMX pyrolysis products [J], Combustion and Flame 1979, 36:99-101.
    19. ALEXANDER M H, DAGDIGIAN P J, JACOX M E, et al, Nitramine propellant ignition and combustion research [J], Progress in Energy and Combustion Science, 1991, 17:263-296.
    20. ADAMS G F, SHAW Jr R W, Chemical Reactions in Energetic Materials [J], Annual Review of Physical Chemistry, 1992, 43:311-340.
    21. CHAKRABORTY D, MULLER R P, DASGUPTA S, et al, A detailed model for the decomposition of nitramines: RDX and HMX [J], Journal of Computer-Aided Materials Design, 2001, 8:203-212.
    22. AHMAD F, SCHNITKER S P, NEWELL C J, Remediation of RDX- and HMX-contaminated groundwater using organic mulch permeable reactive barriers [J], Journal of contaminant hydrology, 2007, 90:1-20.
    23. BOPARAI H K, COMFORT S D, SHEA P J, et al, Remediatingexplosive-contaminated groundwater by in situ redox manipulation (ISRM) of aquifers ediments, Chemosphere, 2008, 71:933-941.
    24. OHISHI M, MCGONAGLE D, IRVINE W M, et al, Detection of a new interstellar molecule, H2CN [J], Astrophysical Journal, 1994, 427:L51-4.
    25. YUNG Y L, ALLEN M, PINTO J P, Photochemistry of the atmosphere of Titan- Comparison between model and observations [J], Astrophysical Journal Supplement Series,1984, 55:465-506.
    26. MARSTON G, NESBITT F L, STIEF L J, Branching ratios in the N+CH3 reaction: Formation of the methylene amidogen (H2CN) radical [J], The Journal of Chemical Physics, 1989, 91:3483-3491.
    27. GONZALEZ C, SCHLEGEL H B, Atmospheric chemistry of titan: ab initio study of the reaction between nitrogen atoms and methyl radicals [J], Journal of the American Chemical Society, 1992, 114:9118–9122.
    28. CIMAS A, LARGO A, The Reaction of Nitrogen Atoms with Methyl Radicals: Are Spin-Forbidden Channels Important? [J], The Journal of Physical Chemistry A, 2006, 110:10921-10920.
    29. Guo Y, HARDING L B, WAGNER A F, MINKOFF M, et al, Interpolating moving least-squares methods for fitting potential energy surfaces: An application to the H2CN unimolecular reaction [J], The Journal of Chemical Physics, 2007, 126:104105.
    30. TER HORST M A, SCHATZ G C, HARDING L B, Potential energy surface and quasiclassical trajectory studies of the CN+H2 reaction [J], The Journal of Chemical Physics, 1996, 105:558-571.
    31. METROPOULOS A, THOMPSON D L, A quantum chemistry study of the dissociation and isomerization reactions of methylene amidogene [J], Journal of Molecular Structure: THEOCHEM, 2007, 822:125-132.
    32. BAIR R A, DUNNING. Jr T H, Theoretical studies of the reactions of HCN with atomic hydrogen [J], The Journal of Chemical Physics, 1985, 82:2280-2294.
    33. PFEIFFER H M, METZ R B, THOEMKE J D, et al, Reactions of O, H, and Cl atoms with highly vibrationally excited HCN: Using product states to determinemechanisms [J], The Journal of Chemical Physics, 1996, 104:4490-4501.
    34. CHAKRABORTY D, LIN M C, Theoretical Studies of Methyleneamino (CH2N) Radical Reactions. 1. Rate Constants and Product Branching Ratios for the CH2N + N2O Process by ab Initio Molecular Orbital/Statistical Theory Calculations [J], The Journal of Physical Chemistry A, 1999, 103:601-606.
    35. CHEN H L, WU C W, HO J J, Theoretical Investigation of the Mechanisms of Reactions of H2CN and H2SiN with NO [J], The Journal of Physical Chemistry A, 2006, 110:8893-8900.
    36. WAYNE R P, Photochemistry and kinetics applied to atmospheres chemistry of atmospheres (third ed.) [M], Oxford University Press, 2000, Chapter 3.
    37. GIBIAN M J, CORLEY R C, Organic radical-radical reactions. Disproportionation vs. combination [J], Chemical Reviews. 1973, 73:441-464.
    38. FRISCH M J, TRUCKS G W, SCHLEGEL H B, et al, GAUSSIAN 03, Revision B.03, Gaussian, Inc, Wallingford, CT, 2004.
    39. FRISCH M J, TRUCKS G W, SCHLEGEL H B, et al, GAUSSIAN 98, Revision A.6, Gaussian, Inc, Pittsburgh, PA, 1998.
    40. ZHANG S W, TRUONG T N, VKLAB, version 1.0, University of Utah, 2001.
    41. MILLE J A, KLIPPENSTEIN S J, The reaction between ethyl and molecular oxygen II: Further analysis [J], International Journal of Chemical Kinetics, 2001, 33:654-668.
    42. CURTISS L A, RAGHAVACHARI K, REDFERN P C, et al, Gaussian-3 (G3) theory for molecules containing first and second-row atoms [J], The Journal of Chemical Physics, 1998, 109:7764-7776.
    43. BOBOUL A G, CURTISS L A, REDFERN P C, et al, Gaussian-3 theory using density functional geometries and zero-point energies [J], The Journal of Chemical Physics, 1999, 110:7650-7657.
    44. SUMATHI R, NGUYEN M T, A Theoretical Study of the CH2N System: Reactions in both Lowest Lying Doublet and Quartet States [J], The Journal of Physical Chemistry A, 1998, 102:8013-8020.
    45. CHASE Jr M W, NIST-JANAF Themochemical Tables, Fourth Edition, Journalof Physical and Chemical Reference Data, Monograph 9, 1998, 1.
    46. CURTISS L A, RAGHAVACHARI K, REDFERN P C, et al, Gaussian-3 (G3) theory for molecules containing first and second-row atoms [J], The Journal of Chemical Physics, 1998, 109:7764-7776.
    47. COX J D, WAGMAN D D, MEDVEDEV V A, CODATA Key Values for Thermodynamics [M], Hemisphere Publishing Corp, New York, 1984, 1.
    48. BOBOUL A G, CURTISS L A, REDFERN P C, et al, Gaussian-3 theory using density functional geometries and zero-point energies [J], The Journal of Chemical Physics, 1999, 110:7650-7657.
    49. (a)HOLMES J L, LOSSING F P, MAYER P M, Concerning the Heats of Formation of CH2NH and CH2NH+ [J].Chemical Physics Letters, 1992, 198:211-213. (b) NGUYEN M T, RADEMAKERS J, MARTIN J M L, Concerning the Heats of Formation of the [C, H3, N]+ Radical Cations [J]. Chemical Physics Letters, 1994, 221:149-155.
    50. MITANI T, WILLIAMS F A. 21st Symposium (international) on Combustion[C], the Combustion Institute, Pittsburgh, 1986.
    51. BECKSTEADA M W, PUDUPPAKKAM K, THAKRED P, et al, Modeling of combustion and ignition of solid-propellant ingredients [J], Progress in Energy and Combustion Science, 2007, 33:497-551.
    52. FULCHIGNONI M, FERRI F, ANGRILLI F, et al. In situ measurements of the physical characteristics of Titan's environment [J]. Nature, 2005, 438, 785-791.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700