一维纳米氧化物和聚合物的合成及其应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在自供能紫外传感器中,高性能的电源和高性能低功耗的紫外传感器一直是人们追求的目标,如果进一步通过赋予紫外传感器窗口材料和封装材料特殊性能的话(如自清洁、定向传输等),该系统在很多特殊环境中的实际应用将会进一步得到拓展。对于发电机、传感器和自清洁界面来说,使用一维纳米材料来实现上述的目标具有很大的可行性。本文利用化学气相沉积、静电纺丝、水热和离子刻蚀等办法制备了多种一维纳米材料及其阵列。然后我们利用这些纳米材料,实现了高输出的压电纳米发电机和高响应电流的氧化锌紫外传感器,并将之结合形成自供能紫外传感器。随后我们研究了用一维纳米材料构建的仿生界面,实现了高分子材料的定向传输。最后我们通过研究仿荷叶表面结构,制备了具有自清洁性能的高分子表面。这两个工作为随后具有特殊性能的窗口材料和自供能紫外传感器的结合与应用奠定了基础。
For self-powered UV sensor, high output electric power source and high performance sensor with low energy consumption is desired. If people can take advantage of smart surface (self-cleaning surface, directional transporting surface and so on) to construct the window of UV sensor, the application will be greatly augmented in many harsh environments. Using one dimensional nonmaterials to fabricate self-powered UV sensor and smart surface is practical。In this study, we synthesized many kinds of one dimensional nonmaterial's through CVD, electrospinning, hydrothermal and ion milling methods. Based on those materials, we fabricated high output nanogenerator and high performance UV sensor. Furthermore, we integrate them together as a self-powered UV sensor. Then, two kinds of smart surfaces are prepared and investigated. One can directionally transport polymer sheet and small sphere. The other is lotus-leaf like and self-cleaning. These works paves the way of combining smart surface and self-powered UV sensor to work in harsh environment in the future.
引文
[1]李群.纳米材料的制备与应用技术[M].化学工业出版社.2008.
    [2]Liu, K., Jiang, L. Bio-inspired design of multiscale structures for function integration[J]. Nano Today.2011,6 (2):155-175.
    [3]Xia, F., Jiang, L. Bio-Inspired, Smart, Multiscale Interfacial Materials[J]. Advanced materials. 2008,20 (15):2842-2858.
    [4]Fritsch, E., Gaillou, E., Rondeau, B., Barreau, A., Albertini, D., Ostroumov, M. The nanostructure of fire opal[J]. Journal of Non-Crystalline Solids.2006,352 (38-39): 3957-3960.
    [5]Marlow, F., Muldarisnur, Sharifi, P., Brinkmann, R., Mendive, C. Opals:Status and Prospects[J]. Angewandte Chemie International Edition.2009,48 (34):6212-6233.
    [6]Katti, K. S., Mohanty, B., Katti, D. R. Nanomechanical properties of nacre[J]. Journal of Materials Research.2006,21 (05):1237-1242.
    [7]Li, X., Chang, W. C., Chao, Y. J., Wang, R., Chang, M. Nanoscale Structural and Mechanical Characterization of a Natural Nanocomposite Material:The Shell of Red Abalone[J]. Nano letters.2004,4 (4):613-617.
    [8]Li, X., Nardi, P. Micro/nanomechanical characterization of a natural nanocomposite material-the shell of Pectinidae[J]. Nanotechnology.2004,15 (1):211.
    [9]Tan, T., Rahbar, N., Allameh, S. M., Kwofie, S., Dissmore, D., Ghavami, K., Soboyejo, W. O. Mechanical properties of functionally graded hierarchical bamboo structures[J]. Acta Biomaterialia.2011,7 (10):3796-3803.
    [10]Zou, L., Jin, H., Lu, W. Y., Li, X. Nanoscale structural and mechanical characterization of the cell wall of bamboo fibers[J]. Materials Science and Engineering:C.2009,29 (4):1375-1379.
    [11]Gao, H. Application of Fracture Mechanics Concepts to Hierarchical Biomechanics of Bone and Bone-like Materials[J]. International Journal of Fracture.2006,138 (1-4):101-137.
    [12]Ji, B., Gao, H. Elastic properties of nanocomposite structure of bone[J]. Composites Science and Technology.2006,66 (9):1212-1218.
    [13]Rubin, M. A., Jasiuk, I., Taylor, J., Rubin, J., Ganey, T., Apkarian, R. P. TEM analysis of the nanostructure of normal and osteoporotic human trabecular bone[J]. Bone.2003,33 (3): 270-282.
    [14]Biro, L. P., Kertesz, K., Vertesy, Z., Mark, G. I., Balint, Z., Lousse, V., Vigneron, J. P. Living photonic crystals:Butterfly scales-Nanostructure and optical properties[J]. Materials Science and Engineering:C.2007,27 (5-8):941-946.
    [15]Potyrailo, R. A., Ghiradella, H., Vertiatchikh, A., Dovidenko, K., Cournoyer, J. R., Olson, E. Morpho butterfly wing scales demonstrate highly selective vapour response[J]. Nature Photonics.2007,1 (2):123-128.
    [16]VERtesy, Z., BALint, Z., KertESz, K., Vigneron, J. P., Lousse, V., BirO, L. P. Wing scale microstructures and nanostructures in butterflies-natural photonic crystals[J]. Journal of Microscopy.2006,224 (1):108-110.
    [17]Zheng, Y, Gao, X., Jiang, L. Directional adhesion of superhydrophobic butterfly wings[J]. Soft Matter.2007,3 (2):178-182.
    [18]Zi, J., Yu, X., Li, Y, Hu, X., Xu, C., Wang, X., Liu, X., Fu, R. Coloration strategies in peacock feathers[J]. Proceedings of the National Academy of Sciences.2003,100 (22):12576-12578.
    [19]Zhao, Y., Cao, X., Jiang, L. Bio-mimic Multichannel Microtubes by a Facile Method[J]. Journal of the American Chemical Society.2007,129 (4):764-765.
    [20]Vollrath, F. Biology of spider silk[J]. International Journal of Biological Macromolecules. 1999,24 (2-3):81-88.
    [21]Zheng, Y., Bai, H., Huang, Z., Tian, X., Nie, F.-Q., Zhao, Y., Zhai, J., Jiang, L. Directional water collection on wetted spider silk[J]. Nature.2010,463 (7281):640-643.
    [22]Reinen, D., Kohl, P., Muller, C. The Nature of the Colour Centres in'Maya Blue'—the Incorporation of Organic Pigment Molecules into the Palygorskite Lattice[J]. Zeitschrift fur anorganische und allgemeine Chemie.2004,630 (1):97-103.
    [23]王文.纳米材料的鼻祖——中国墨[J].青年科学.2006,(04):7.
    [24]高魏梦佳,刘渝珍,储旺盛,吴自玉,王昌燧.黑漆古铜镜表面层的X射线近边吸收谱分析[J].核技术.2009,(09):662-666.
    [25]Frey, M. H., Payne, D. A. Grain-size effect on structure and phase transformations for barium titanate[J]. Physical Review B.1996,54 (5):3158-3168.
    [26]Kubo, R. Electronic Properties of Metallic Fine Particles. Ⅰ[J]. Journal of the Physical Society of Japan.1962,17 (6):975-986.
    [27]Geppert, L. Quantum transistors:toward nanoelectronics[J]. IEEE Spectrum.2000,37 (9): 46-51.
    [28]Narayanan, R., El-Sayed, M. A. Shape-Dependent Catalytic Activity of Platinum Nanoparticles in Colloidal Solution[J]. Nano letters.2004,4 (7):1343-1348.
    [29]Bell, A. J., Moulson, A. J., Cross, L. E. The effect of grain size on the permittivity of BaTiO3[J]. Ferroelectrics.1984,54(1):147-150.
    [30]Smith, M. B., Page, K., Siegrist, T., Redmond, P. L., Walter, E. C., Seshadri, R., Brus, L. E., Steigerwald, M. L. Crystal Structure and the Paraelectric-to-Ferroelectric Phase Transition of Nanoscale BaTiO3[J]. Journal of the American Chemical Society.2008,130 (22):6955-6963.
    [31]Zheng, J., Zhang, C., Dickson, R. M. Highly Fluorescent, Water-Soluble, Size-Tunable Gold Quantum Dots[J]. Physical Review Letters.2004,93 (7):077402.
    [32]Cahn, R. W. Strategies to defeat brittleness[J]. Nature.1988,332 (6160):112-113.
    [33]Cuy, J. L., Mann, A. B., Livi, K. J., Teaford, M. F., Weihs, T. P. Nanoindentation mapping of the mechanical properties of human molar tooth enamel[J]. Archives of Oral Biology.2002, 47 (4):281-291.
    [34]Fong, H., Sarikaya, M., White, S. N., Snead, M. L. Nano-mechanical properties profiles across dentin-enamel junction of human incisor teeth[J]. Materials Science and Engineering:C.2000, 7(2):119-128.
    [35]Leutwyler, W. K., Burgi, S. L., Burgl, H. Semiconductor clusters, nanocrystals, and quantum dots[J]. Science.1996,271 (5251):933-937.
    [36]Norris, D. J., Bawendi, M. G. Measurement and assignment of the size-dependent optical spectrum in CdSe quantum dots[J]. Physical Review B.1996,53 (24):16338-16346.
    [37]Murray, H. H. Traditional and new applications for kaolin, smectite, and palygorskite:a general overview[J]. Applied Clay Science.2000,17 (5-6):207-221.
    [38]Antolini, E., Salgado, J. R. C., Gonzalez, E. R. The methanol oxidation reaction on platinum alloys with the first row transition metals:The case of Pt-Co and -Ni alloy electrocatalysts for DMFCs:A short review[J]. Applied Catalysis B:Environmental.2006,63 (1-2):137-149.
    [39]Corma, A., Garcia, H. Supported gold nanoparticles as catalysts for organic reactions[J]. Chemical Society reviews.2008,37 (9):2096-2126.
    [40]Liu, H., Song, C., Zhang, L., Zhang, J., Wang, H., Wilkinson, D. P. A review of anode catalysis in the direct methanol fuel cell[J]. Journal of Power Sources.2006,155 (2):95-110.
    [41]Iijima, S. Helical microtubules of graphitic carbon[J]. Nature.1991,354 (6348):56-58.
    [42]Xia, Y, Yang, P., Sun, Y, Wu, Y, Mayers, B., Gates, B., Yin, Y., Kim, F., Yan, H. One-Dimensional Nanostructures:Synthesis, Characterization, and Applications[J]. Advanced materials.2003,15 (5):353-389.
    [43]Liu, B., Zeng, H. C. Hydrothermal Synthesis of ZnO Nanorods in the Diameter Regime of 50 nm[J]. Journal of the American Chemical Society.2003,125 (15):4430-4431.
    [44]Zhang, Y X., Li, G. H., Jin, Y. X., Zhang, Y, Zhang, J., Zhang, L. D. Hydrothermal synthesis and photoluminescence of TiO2 nanowires[J]. Chemical Physics Letters.2002,365 (3-4): 300-304.
    [45]Xu, G., Ren, Z., Du, P., Weng, W., Shen, G., Han, G. Polymer-Assisted Hydrothermal Synthesis of Single-Crystalline Tetragonal Perovskite PbZr052Ti0.48O3 Nanowires[J]. Advanced materials.2005,17 (7):907-910.
    [46]Ha, J.-H., Muralidharan, P., Kim, D. K. Hydrothermal synthesis and characterization of self-assembled h-WO3 nanowires/nanorods using EDTA salts[J]. Journal of Alloys and Compounds.2009,475 (1-2):446-451.
    [47]Li, W. J., Shi, E. W., Ko, J. M., Chen, Z. Z., Ogino, H., Fukuda, T. Hydrothermal synthesis of MoS2 nanowires[J]. Journal of Crystal Growth.2003,250 (3-4):418-422.
    [48]Liu, X., Cui, J., Zhang, L., Yu, W., Guo, F., Qian, Y Control to synthesize Bi 2 S 3 nanowires by a simple inorganic-surfactant-assisted solvothermal process[J]. Nanotechnology.2005,16 (9):1771.
    [49]Liu, Z., Yang, Y, Liang, J., Hu, Z., Li, S., Peng, S., Qian, Y. Synthesis of Copper Nanowires via a Complex-Surfactant-Assisted Hydrothermal Reduction Process[J]. The Journal of Physical Chemistry B.2003,107 (46):12658-12661.
    [50]Xie, B. Q., Qian, Y, Zhang, S., Fu, S., Yu, W. A Hydrothermal Reduction Route to Single-Crystalline Hexagonal Cobalt Nanowires[J]. European Journal of Inorganic Chemistry. 2006,2006 (12):2454-2459.
    [51]Tai, G., Guo, W., Zhang, Z. Hydrothermal Synthesis and Thermoelectric Transport Properties of Uniform Single-Crystalline Pearl-Necklace-Shaped PbTe Nanowires[J]. Crystal Growth & Design.2008,8 (8):2906-2911.
    [52]Yang, J., Hou, Y, Wang, C., Zhu, M., Yan, H. Relaxor behavior of (K0.5Bi0.5)Ti03 ceramics derived from molten salt synthesized single-crystalline nanowires[J]. Applied Physics Letters. 2007,91 (2):023118.
    [53]Wu, R., Zhou, K., Yang, Z., Qian, X., Wei, J., Liu, L., Huang, Y, Kong, L., Wang, L. Molten-salt-mediated synthesis of SiC nanowires for microwave absorption applications[J]. CrystEngComm.2013,15 (3):570-576.
    [54]Wang, W., Zhang, G. Synthesis and optical properties of high-purity CoO nanowires prepared by an environmentally friendly molten salt route[J]. Journal of Crystal Growth.2009,311 (17): 4275-4280.
    [55]Hosono, E., Kudo, T., Honma, I., Matsuda, H., Zhou, H. Synthesis of Single Crystalline Spinel LiMn2O4 Nanowires for a Lithium Ion Battery with High Power Density[J]. Nano letters. 2009,9(3):1045-1051.
    [56]Xu, C., Zhan, Y., Hong, K., Wang, G. Growth and mechanism of titania nanowires[J]. Solid State Communications.2003,126 (10):545-549.
    [57]Zhou, J. X., Zhang, M. S., Hong, J. M., Yin, Z. Raman spectroscopic and photoluminescence study of single-crystalline SnO2 nanowires[J]. Solid State Communications.2006,138 (5): 242-246.
    [58]Shankar, K.. S., Raychaudhuri, A. K. Fabrication of nanowires of multicomponent oxides: Review of recent advances[J]. Materials Science and Engineering:C.2005,25 (5-8): 738-751.
    [59]Zhang, Y., Li, G., Wu, Y., Zhang, B., Song, W., Zhang, L. Antimony Nanowire Arrays Fabricated by Pulsed Electrodeposition in Anodic Alumina Membranes[J]. Advanced materials.2002,14 (17):1227-1230.
    [60]Evans, P. R., Yi, G., Schwarzacher, W. Current perpendicular to plane giant magnetoresistance of multilayered nanowires electrodeposited in anodic aluminum oxide membranes[J]. Applied Physics Letters.2000,76 (4):481.
    [61]Liu, K.., Chien, C. L., Searson, P. C., Yu-Zhang, K. Structural and magneto-transport properties of electrodeposited bismuth nanowires[J]. Applied Physics Letters.1998,73 (10): 1436-1438.
    [62]Yin, A. J., Li, J., Jian, W., Bennett, A. J., Xu, J. M. Fabrication of highly ordered metallic nanowire arrays by electrodeposition[J]. Applied Physics Letters.2001,79 (7):1039-1041.
    [63]Xu, D., Xu, Y., Chen, D., Guo, G., Gui, L., Tang, Y. Preparation and characterization of CdS nanowire arrays by dc electrodeposit in porous anodic aluminum oxide templates[J]. Chemical Physics Letters.2000,325 (4):340-344.
    [64]Huang, Y. H., Okumura, H., Hadjipanayis, G. C, Weller, D. CoPt and FePt nanowires by electrodeposition[J]. Journal of Applied Physics.2002,91 (10):6869-6871.
    [65]Ferre, R., Ounadjela, K., George, J. M., Piraux, L., Dubois, S. Magnetization processes in nickel and cobalt electrodeposited nanowires[J]. Physical Review B.1997,56 (21): 14066-14075.
    [66]Zach, M. P., Ng, K. H., Penner, R. M. Molybdenum Nanowires by Electrodeposition[J], Science.2000,290 (5499):2120-2123.
    [67]Yi, G., Schwarzacher, W. Single crystal superconductor nanowires by electrodeposition [J]. Applied Physics Letters.1999,74 (12):1746-1748.
    [68]Pauporte, T., Bataille, G., Joulaud, L., Vermersch, F. J. Well-Aligned ZnO Nanowire Arrays Prepared by Seed-Layer-Free Electrodeposition and Their Cassie-Wenzel Transition after Hydrophobization[J]. The Journal of Physical Chemistry C.2009,114 (1):194-202.
    [69]Ramanathan, K., Bangar, M. A., Yun, M., Chen, W., Mulchandani, A., Myung, N. V. Individually Addressable Conducting Polymer Nanowires Array[J]. Nano letters.2004,4 (7): 1237-1239.
    [70]Lu, G., Li, C., Shi, G. Polypyrrole micro-and nanowires synthesized by electrochemical polymerization of pyrrole in the aqueous solutions of pyrenesulfonic acid[J]. Polymer.2006, 47(6):1778-1784.
    [71]Hu, H., He, D. Fabrication of Si nanodot arrays by plasma enhanced CVD using porous alumina templates[J]. Materials Letters.2006,60 (8):1019-1022.
    [72]Caroff, P., Wagner, J. B., Dick, K. A., Nilsson, H. A., Jeppsson, M., Deppert, K., Samuelson, L., Wallenberg, L. R., Wernersson, L. E. High-Quality InAs/InSb Nanowire Heterostructures Grown by Metal-Organic Vapor-Phase Epitaxy[J]. Small.2008,4 (7):878-882.
    [73]Hu, L., Yan, J., Liao, M., Xiang, H., Gong, X., Zhang, L., Fang, X. An Optimized Ultraviolet-A Light Photodetector with Wide-Range Photoresponse Based on ZnS/ZnO Biaxial Nanobelt[J]. Advanced materials.2012,24 (17):2305-2309.
    [74]Huang, Z.-M., Zhang, Y. Z., Kotaki, M., Ramakrishna, S. A review on polymer nanofibers by electrospinning and their applications in nanocomposites[J]. Composites Science and Technology.2003,63 (15):2223-2253.
    [75]Chronakis, I. S. Novel nanocomposites and nanoceramics based on polymer nanofibers using electrospinning process—A review[J]. Journal of Materials Processing Technology.2005,167 (2-3):283-293.
    [76]Wu, H., Zhang, R., Liu, X., Lin, D., Pan, W. Electrospinning of Fe, Co, and Ni Nanofibers: Synthesis, Assembly, and Magnetic Properties[J]. Chemistry of Materials.2007,19 (14): 3506-3511.
    [77]Hsu, K. C, Liao, J. D., Yang, J. R., Fu, Y. S. Cellulose acetate assisted synthesis and characterization of kesterite quaternary semiconductor Cu2ZnSnS4 mesoporous fibers by an electrospinning process[J]. CrystEngComm.2013,15 (21):4303-4308.
    [78]Song, R. Q., Colfen, H. Mesocrystals—Ordered Nanoparticle Superstructures[J]. Advanced materials.2010,22 (12):1301-1330.
    [79]Colfen, H., Antonietti, M. Mesocrystals:Inorganic Superstructures Made by Highly Parallel Crystallization and Controlled Alignment[J]. Angewandte Chemie International Edition.2005, 44 (35):5576-5591.
    [80]Reyntjens, S., Puers, R. A review of focused ion beam applications in microsystem technology [J]. Journal of Micromechanics and Microengineering.2001,11 (4):287.
    [81]Reyntjens, S., Puers, R. Focused ion beam induced deposition:fabrication of three-dimensional microstructures and Young's modulus of the deposited materialfJ]. Journal of Micromechanics and Microengineering.2000,10 (2):181.
    [82]Shul, R. J., McClellan, G. B., Pearton, S. J., Abernathy, C. R., Constantine, C., Barratt, C. Comparison of dry etch techniques for GaN[J]. Electronics Letters.1996,1408-1409.
    [83]Garnett, E., Yang, P. Light Trapping in Silicon Nanowire Solar Cells[J]. Nano letters.2010,10 (3):1082-1087.
    [84]Wu, W., Cheng, L., Bai, S., Wang, Z. L., Qin, Y. Directional Transport of Polymer Sheet and a Microsphere by a Rationally Aligned Nanowire Array[J]. Advanced materials.2012,24 (6): 817-821.
    [85]Qiu, T., Wu, X. L., Mei, Y. F., Wan, G. J., Chu, P. K., Siu, G. G. From Si nanotubes to nanowires:Synthesis, characterization, and self-assembly [J]. Journal of Crystal Growth.2005, 277 (1-4):143-148.
    [86]Chen, H., Wang, H., Zhang, X. H., Lee, C. S., Lee, S. T. Wafer-Scale Synthesis of Single-Crystal Zigzag Silicon Nanowire Arrays with Controlled Turning Angles[J]. Nano letters.2010,10 (3):864-868.
    [87]Teo, E. J., Breese, M. B. H., Tavernier, E. P., Bettiol, A. A., Watt, F., Liu, M. H., Blackwood, D. J. Three-dimensional microfabrication in bulk silicon using high-energy protons[J]. Applied Physics Letters.2004,84 (16):3202-3204.
    [88]Ghicov, A., Schmuki, P. Self-ordering electrochemistry:a review on growth and functionality of TiO2 nanotubes and other self-aligned MOx structures[J]. Chemical Communications.2009, (20):2791-2808.
    [89]Xiang, J., Lu, W., Hu, Y., Wu, Y., Yan, H., Lieber, C. M. Ge/Si nanowire heterostructures as high-performance field-effect transistors[J]. Nature.2006,441 (7092):489-493.
    [90]Liao, L., Fan, H. J., Yan, B., Zhang, Z., Chen, L. L., Li, B. S., Xing, G. Z., Shen, Z. X., Wu, T., Sun, X. W., Wang, J., Yu, T. Ferroelectric Transistors with Nanowire Channel:Toward Nonvolatile Memory Applications[J]. ACS Nano.2009,3 (3):700-706.
    [91]Yan, H., Choe, H. S., Nam, S., Hu, Y., Das, S., Klemic, J. F., Ellenbogen, J. C., Lieber, C. M. Programmable nanowire circuits for nanoprocessors[J]. Nature.2011,470 (7333):240-244.
    [92]Zhai, T., Li, L., Wang, X., Fang, X., Bando, Y., Golberg, D. Recent Developments in One-Dimensional Inorganic Nanostructures for Photodetectors[J]. Advanced Functional Materials.2010,20 (24):4233-4248.
    [93]Huang, J., Wan, Q. Gas Sensors Based on Semiconducting Metal Oxide One-Dimensional Nanostructures[J]. Sensors.2009,9(12):9903-9924.
    [94]Patolsky, F., Zheng, G., Lieber, C. M. Nanowire-based biosensors[J]. Analytical Chemistry. 2006,78 (13):4260-4269.
    [95]Shen, G., Chen, P.-C., Ryu, K., Zhou, C. Devices and chemical sensing applications of metal oxide nanowires[J]. Journal of Materials Chemistry.2009,19 (7):828-839.
    [96]Garnett, E. C., Brongersma, M. L., Cui, Y., McGehee, M. D. Nanowire Solar Cells[J]. Annual Review of Materials Research.2011,41 (1):269-295.
    [97]Jiang, J., Li, Y., Liu, J., Huang, X. Building one-dimensional oxide nanostructure arrays on conductive metal substrates for lithium-ion battery anodes[J]. Nanoscale.2011,3 (1):45-58.
    [98]Cavaliere, S., Subianto, S., Savych, I., Jones, D. J., Roziere, J. Electrospinning:designed architectures for energy conversion and storage devices[J]. Energy & Environmental Science. 2011,4 (12):4761-4785.
    [99]Hochbaum, A. I., Yang, P. Semiconductor Nanowires for Energy Conversion[J]. Chemical Reviews.2009,110 (1):527-546.
    [100]Wang, X., Shi, J., Piezoelectric Nanogenerators for Self-powered Nanodevices. In Piezoelectric Nanomaterials for Biomedical Applications[M]. Ciofani, G.; Menciassi, A., Eds. Springer Berlin Heidelberg:2012.
    [101]Paramasivam, I., Jha, H., Liu, N., Schmuki, P. A Review of Photocatalysis using Self-organized TiO2 Nanotubes and Other Ordered Oxide Nanostructures[J]. Small.2012,8 (20):3073-3103.
    [102]Shankar, K., Basham, J. I., Allam, N. K., Varghese, O. K., Mor, G. K., Feng, X., Paulose, M., Seabold, J. A., Choi, K.-S., Grimes, C. A. Recent Advances in the Use of TiO2 Nanotube and Nanowire Arrays for Oxidative Photoelectrochemistry[J]. The Journal of Physical Chemistry C.2009,113 (16):6327-6359.
    [103]Kim, T.-i., Jeong, H. E., Suh, K. Y., Lee, H. H. Stooped Nanohairs:Geometry-Controllable, Unidirectional, Reversible, and Robust Gecko-like Dry Adhesive[J]. Advanced materials. 2009,21 (22):2276-2281.
    [104]Liu, K., Yao, X., Jiang, L. Recent developments in bio-inspired special wettability[J]. Chemical Society reviews.2010,39 (8):3240-3255.
    [105]Pham, Q. P., Sharma, U., Mikos, A. G. Electrospinning of polymeric nanofibers for tissue engineering applications:a review[J]. Tissue engineering.2006,12(5):1197-1211.
    [106]易习锋.俘能器用压电陶瓷及其复合材料的制备与测试[硕士].湘潭大学.2011.
    [107]Espinosa, H. D., Bernal, R. A., Minary-Jolandan, M. A Review of Mechanical and Electromechanical Properties of Piezoelectric Nanowires[J]. Advanced materials.2012,24 (34):4656-4675.
    [108]Meyers, M. A., Mishra, A., Benson, D. J. Mechanical properties of nanocrystalline materials[J]. Progress in Materials Science.2006,51 (4):427-556.
    [109]Tan, E. P. S., Lim, C. T. Mechanical characterization of nanofibers-A review[J]. Composites Science and Technology.2006,66 (9):1102-1111.
    [110]Wang, Z. L., Gao, R. P., Poncharal, P., de Heer, W. A., Dai, Z. R., Pan, Z. W. Mechanical and electrostatic properties of carbon nanotubes and nanowires[J]. Materials Science and Engineering:C.2001,16 (1-2):3-10.
    [111]Bai, S., Xu, Q., Gu, L., Ma, F., Qin, Y., Wang, Z. L. Single crystalline lead zirconate titanate (PZT) nano/micro-wire based self-powered UV sensor[J]. Nano Energy.2012,1 (6):789-795.
    [112]Rohlig, C.-C., Niebelschutz, M., Brueckner, K., Tonisch, K., Ambacher, O., Cimalla, V. Elastic properties of nanowires[J]. physica status solidi (b).2010,247 (10):2557-2570.
    [113]Davila, L. P., Leppert, V. J., Bringa, E. M. The mechanical behavior and nanostructure of silica nanowires via simulations[J]. Scripta Materialia.2009,60 (10):843-846.
    [114]Furmanchuk, A. O., Isayev, O., Dinadayalane, T. C., Leszczynska, D., Leszczynski, J. Mechanical properties of silicon nanowires[J]. Wiley Interdisciplinary Reviews: Computational Molecular Science.2012,2 (6):817-828.
    [115]Xiang, H. J., Yang, J., Hou, J. G., Zhu, Q. Piezoelectricity in ZnO nanowires:A first-principles study[J]. Applied Physics Letters.2006,89 (22):223111.
    [116]Wang, Z. L., Song, J. Piezoelectric Nanogenerators Based on Zinc Oxide Nanowire Arrays[J]. Science.2006,312 (5771):242-246.
    [117]Wang, X., Song, J., Liu, J., Wang, Z. L. Direct-Current Nanogenerator Driven by Ultrasonic Waves[J]. Science.2007,316 (5821):102-105.
    [118]Yang, R., Qin, Y., Dai, L., Wang, Z. L. Power generation with laterally packaged piezoelectric fine wires[J]. Nature Nanotechnology.2009,4 (1):34-39.
    [119]Xu, S., Qin, Y, Xu, C., Wei, Y., Yang, R., Wang, Z. L. Self-powered nanowire devices[J]. Nature Nanotechnology.2010,5 (5):366-373.
    [120]Xu, S., Hansen, B. J., Wang, Z. L. Piezoelectric-nanowire-enabled power source for driving wireless microelectronics[J]. Nature Communications.2010,1:93.
    [121]Zhu, G., Wang, A. C., Liu, Y., Zhou, Y, Wang, Z. L. Functional Electrical Stimulation by Nanogenerator with 58 V Output Voltage[J]. Nano letters.2012,12 (6):3086-3090.
    [122]Wang, Z. L., Wu, W. Nanotechnology-Enabled Energy Harvesting for Self-Powered Micro-/Nanosystems[J]. Angewandte Chemie International Edition.2012,51 (47): 11700-11721.
    [123]Su, B., Wu, Y, Jiang, L. The art of aligning one-dimensional (1D) nanostructures[J]. Chemical Society Reviews.2012,41 (23):7832-56.
    [124]Soci, C., Zhang, A., Xiang, B., Dayeh, S. A., Aplin, D. P. R., Park, J., Bao, X. Y, Lo, Y. H., Wang, D. ZnO Nanowire UV Photodetectors with High Internal Gain[J]. Nano letters.2007,7 (4):1003-1009.
    [125]Chang, Y. H., Liu, C. M., Tseng, Y C., Chen, C., Chen, C. C., Cheng, H. E. Direct probe of heterojunction effects upon photoconductive properties of TiO2 nanotubes fabricated by atomic layer deposition[J]. Nanotechnology.2010,21 (22):225602.
    [126]Fang, X., Bando, Y., Liao, M., Gautam, U. K., Zhi, C., Dierre, B., Liu, B., Zhai, T., Sekiguchi, T., Koide, Y, Golberg, D. Single-Crystalline ZnS Nanobelts as Ultraviolet-Light Sensors[J]. Advanced materials.2009,21 (20):2034-2039.
    [127]Fang, X., Xiong, S., Zhai, T., Bando, Y., Liao, M., Gautam, U. K., Koide, Y., Zhang, X., Qian, Y, Golberg, D. High-Performance Blue/Ultraviolet-Light-Sensitive ZnSe-Nanobelt Photodetectors[J]. Advanced materials.2009,21 (48):5016-5021.
    [128]Hsu, L. C., Kuo, Y. P., Li, Y. Y. On-chip fabrication of an individual a-Fe2O3 nanobridge and application of ultrawide wavelength visible-infrared photodetector/optical switching[J]. Applied Physics Letters.2009,94 (13):133108.
    [129]Jiang, Y., Zhang, W. J., Jie, J. S., Meng, X. M., Fan, X., Lee, S. T. Photoresponse Properties of CdSe Single-Nanoribbon Photodetectors[J]. Advanced Functional Materials.2007,17 (11): 1795-1800.
    [130]Jie, J. S., Zhang, W. J., Jiang, Y., Meng, X. M., Li, Y. Q., Lee, S. T. Photoconductive Characteristics of Single-Crystal CdS Nanoribbons[J]. Nano letters.2006,6 (9):1887-1892.
    [131]Kind, H., Yan, H., Messer, B., Law, M., Yang, P. Nanowire Ultraviolet Photodetectors and Optical Switches[J]. Advanced materials.2002,14 (2):158-160.
    [132]Li, L., Fang, X., Zhai, T., Liao, M, Gautam, U. K., Wu, X., Koide, Y., Bando, Y., Golberg, D. Electrical Transport and High-Performance Photoconductivity in Individual ZrS2 Nanobelts[J]. Advanced materials.2010,22 (37):4151-4156.
    [133]Liao, L., Yan, B., Hao, Y. F., Xing, G. Z, Liu, J. P., Zhao, B. C., Shen, Z. X., Wu, T., Wang, L. Thong, J. T. L., Li, C. M., Huang, W., Yu, T. P-type electrical, photoconductive, and anomalous ferromagnetic properties of Cu2O nanowires[J]. Applied Physics Letters.2009,94 (11):113106-113108.
    [134]Lui, T. Y., Zapien, J. A., Tang, H., Ma, D. D. D., Liu, Y. K., Lee, C. S., Lee, S. T., Shi, S. L. Xu, S. J. Photoluminescence and photoconductivity properties of copper-doped Cd1-x ZnxS nanoribbons[J]. Nanotechnology.2006,17 (24):5935.
    [135]Meng, Q. F., Jiang, C. B., Mao, S. X. Ohmic contacts and photoconductivity of individual ZnTe nanowires[J]. Applied Physics Letters.2009,94 (4):043111.
    [136]Wang, D., Hao, C., Zheng, W., Peng, Q., Wang, T., Liao, Z., Yu, D., Li, Y. Ultralong Single-Crystalline Ag2S Nanowires:Promising Candidates for Photoswitches and Room-Temperature Oxygen Sensors[J]. Advanced materials.2008,20 (13):2628-2632.
    [137]Wang, J. J., Cao, F. F., Jiang, L., Guo, Y. G., Hu, W. P., Wan, L. J. High Performance Photodetectors of Individual InSe Single Crystalline Nanowire[J]. Journal of the American Chemical Society.2009,131 (43):15602-15603.
    [138]Wang, X., Wang, J., Zhou, M, Zhu, H., Wang, H., Cui, X., Xiao, X., Li, Q. CdTe Nanorod Arrays on ITO:From Microstructure to Photoelectrical Property[J]. The Journal of Physical Chemistry C.2009,113 (39):16951-16953.
    [139]Yan, C, Singh, N., Lee, P. S. Wide-bandgap Zn2Ge04 nanowire networks as efficient ultraviolet photodetectors with fast response and recovery time[J]. Applied Physics Letters. 2010,96 (5):053108.
    [140]Yoon, Y. J., Park, K. S., Heo, J. H., Park, J. G., Nahm, S., Choi, K. J. Synthesis of ZnxCd1-xSe (0≤x≤1) alloyed nanowires for variable-wavelength photodetectors[J]. Journal of Materials Chemistry.2010,20 (12):2386-2390.
    [141]Zhai, T., Liu, H., Li, H., Fang, X., Liao, M., Li, L., Zhou, H., Koide, Y., Bando, Y., Golberg, D. Centimeter-Long V2O5 Nanowires:From Synthesis to Field-Emission, Electrochemical, Electrical Transport, and Photoconductive Properties[J]. Advanced materials.2010,22 (23): 2547-2552.
    [142]Hahm, J. I., Lieber, C. M. Direct Ultrasensitive Electrical Detection of DNA and DNA Sequence Variations Using Nanowire Nanosensors[J]. Nano letters.2003,4 (1):51-54.
    [143]Patolsky, F., Zheng, G., Lieber, C. M. Fabrication of silicon nanowire devices for ultrasensitive, label-free, real-time detection of biological and chemical species[J]. Nature Protocols.2006,1 (4):1711-1724.
    [144]Patolsky, F., Zheng, G., Hayden, O., Lakadamyali, M., Zhuang, X., Lieber, C. M. Electrical detection of single viruses[J]. Proceedings of the National Academy of Sciences of the United States of America.2004,101 (39):14017-14022.
    [145]Wang, W. U., Chen, C., Lin, K. H., Fang, Y., Lieber, C. M. Label-free detection of small-molecule-protein interactions by using nanowire nanosensors[J]. Proceedings of the National Academy of Sciences of the United States of America.2005,102 (9):3208-3212.
    [146]Patolsky, F., Timko, B. P., Yu, G., Fang, Y., Greytak, A. B., Zheng, G., Lieber, C. M. Detection, Stimulation, and Inhibition of Neuronal Signals with High-Density Nanowire Transistor Arrays[J]. Science.2006,313 (5790):1100-1104.
    [147]Livage, J. Actuator materials:Towards smart artificial muscle[J]. Nature Materials.2003,2 (5): 297-299.
    [148]Sethi, S., Ge, L., Ci, L., Ajayan, P. M., Dhinojwala, A. Gecko-Inspired Carbon Nanotube-Based Self-Cleaning Adhesives[J]. Nano letters.2008,8 (3):822-825.
    [149]Ge, L., Sethi, S., Ci, L., Ajayan, P. M., Dhinojwala, A. Carbon nanotube-based synthetic gecko tapes[J]. Proceedings of the National Academy of Sciences.2007,104 (26):10792-10795.
    [150]Malvadkar, N. A., Hancock, M. J., Sekeroglu, K., Dressick, W. J., Demirel, M. C. An engineered anisotropic nanofilm with unidirectional wetting properties[J]. Nature Materials. 2010,9 (12):1023-1028.
    [151]Liu, K., Jiang, L. Bio-Inspired Self-Cleaning Surfaces[J]. Annual Review of Materials Research.2012,42 (1):231-263.
    [152]Li, X. M., Reinhoudt, D., Crego-Calama, M. What do we need for a superhydrophobic surface? A review on the recent progress in the preparation of superhydrophobic surfaces[J]. Chemical Society Reviews.2007,36 (8):1350-1368.
    [153]Sun, C.-H., Jiang, P., Jiang, B. Broadband moth-eye antireflection coatings on silicon[J]. Applied Physics Letters.2008,92 (6):061112.
    [154]Fortuna, S. A., Li, X. Metal-catalyzed semiconductor nanowires:a review on the control of growth directions[J]. Semiconductor Science and Technology.2010,25 (2):024005.
    [155]Hahn, C., Zhang, Z., Fu, A., Wu, C. H., Hwang, Y. J., Gargas, D. J., Yang, P. Epitaxial Growth of InGaN Nanowire Arrays for Light Emitting Diodes[J]. ACS Nano.2011,5 (5):3970-3976.
    [156]Goldstein, A. P., Andrews, S. C., Berger, R. F., Radmilovic, V. R., Neaton, J. B., Yang, P. Zigzag Inversion Domain Boundaries in Indium Zinc Oxide-Based Nanowires:Structure and Formation[J]. ACS Nano.2013,7 (12):10747-10751.
    [157]Yankovich, A. B., Puchala, B., Wang, F., Seo, J. H., Morgan, D., Wang, X., Ma, Z., Kvit, A. V., Voyles, P. M. Stable p-Type Conduction from Sb-Decorated Head-to-Head Basal Plane Inversion Domain Boundaries in ZnO Nanowires[J]. Nano letters.2012,12 (3):1311-1316.
    [158]Teo, W. E., Ramakrishna, S. A review on electrospinning design and nanofibre assemblies[J]. Nanotechnology.2006,17 (14):R89.
    [159]魏志阳.两类纳米材料的制备及其在能量转化中的应用[硕士].兰州大学.2013.
    [160]Zeng, Y., Zheng, Y., Tu, X., Lu, Z., Shi, E. Growth and characterization of lead-free Ba(1-x)CaxTi(1-y)ZryO3 single crystal[J]. Journal of Crystal Growth.2012,343 (1):17-20.
    [161]Praveen, J. P., Kumar, K., James, A. R., Karthik, T., Asthana, S., Das, D. Large piezoelectric strain observed in sol-gel derived BZT-BCT ceramics[J]. Current Applied Physics.2014,14 (3):396-402.
    [162]Hansen, P., Hennings, D., Schreinemacher, H. High-K Dielectric Ceramics from Donor/Acceptor-Codoped (Ba1-xCax)(Ti1-yZry)O3 (BCTZ)[J]. Journal of the American Ceramic Society.1998,81 (5):1369-1373.
    [163]Kobayashi, Y., Hernandez, O. J., Sakaguchi, T., Yajima, T., Roisnel, T., Tsujimoto, Y., Morita, M., Noda, Y., Mogami, Y., Kitada, A., Ohkura, M., Hosokawa, S., Li, Z., Hayashi, K., Kusano, Y., Kim, J. e., Tsuji, N., Fujiwara, A., Matsushita, Y., Yoshimura, K., Takegoshi, K., Inoue, M., Takano, M., Kageyama, H. An oxyhydride of BaTiO3 exhibiting hydride exchange and electronic conductivity[J]. Nature Materials.2012,11 (6):507-511.
    [164]Liu, W., Ren, X. Large Piezoelectric Effect in Pb-Free Ceramics[J], Physical Review Letters. 2009,103 (25):257602.
    [165]Gao, J., Xue, D., Wang, Y, Wang, D., Zhang, L., Wu, H., Guo, S., Bao, H., Zhou, C., Liu, W., Hou, S., Xiao, G., Ren, X. Microstructure basis for strong piezoelectricity in Pb-free Ba(Zr0.2Ti0.8)O3-(Ba0.7Ca0.3)TiO3 ceramics[J]. Applied Physics Letters.2011,99 (9):092901.
    [166]Li, D., Xia, Y. Direct Fabrication of Composite and Ceramic Hollow Nanofibers by Electrospinning[J]. Nano letters.2004,4 (5):933-938.
    [167]Lu, B., Guo, X., Bao, Z., Li, X., Liu, Y., Zhu, C., Wang, Y., Xie, E. Direct preparation of carbon nanotubes and nanobelts from polymer[J]. Nanoscale.2011,3 (5):2145-2149.
    [168]Gao, C., Li, X., Lu, B., Chen, L., Wang, Y., Teng, F., Wang, J., Zhang, Z., Pan, X., Xie, E. A facile method to prepare SnO2 nanotubes for use in efficient SnO2-TiO2 core-shell dye-sensitized solar cells[J]. Nanoscale.2012,4 (11):3475-3481.
    [169]张福学, 王丽坤. 现代压电学(中册) [M]. 科学出版社,2002.
    [170]Agrawal, R., Espinosa, H. D. Giant Piezoelectric Size Effects in Zinc Oxide and Gallium Nitride Nanowires. A First Principles Investigation[J]. Nano letters.2011,11 (2):786-790.
    [171]Chen, X., Xu, S., Yao, N., Shi, Y. 1.6 V Nanogenerator for Mechanical Energy Harvesting Using PZT Nanofibers[J]. Nano letters.2010,10 (6):2133-2137.
    [172]Rodel, J., Jo, W., Seifert, K. T. P., Anton, E.-M., Granzow, T., Damjanovic, D. Perspective on the Development of Lead-free Piezoceramics[J]. Journal of the American Ceramic Society. 2009,92(6):1153-1177.
    [173]Kim, I. T., Jang, J. W., Youn, H. J., Kim, C. H., Hong, K. S.180° ferroelectric domains in polycrystalline BaTiO3 thin films[J]. Applied Physics Letters.1998,72 (3):308-310.
    [174]Kinase, W., Takahasi, H. On the 180° type Domain Wall of BaTiO3 Crystal[J]. Journal of the Physical Society of Japan.1957,12 (5):464-476.
    [175]Bai, S., Wu, W., Qin, Y., Cui, N., Bayerl, D. J., Wang, X. High-Performance Integrated ZnO Nanowire UV Sensors on Rigid and Flexible Substrates[J]. Advanced Functional Materials. 2011,21 (23):4464-4469.
    [176]江雷,冯琳.仿生只能纳米界面材料[M].化学工业出版社,2007.
    [177]Barthlott, W., Neinhuis, C. Purity of the sacred lotus, or escape from contamination in biological surfaces[J]. Planta.1997,202 (1):1-8.
    [178]Cassie, A. B. D., Baxter, S. Wettability of porous surfaces[J]. Transactions of the Faraday Society.1944,40 (0):546-551.
    [179]贾贤.天然生物材料及其仿生工程材料[M].化学工业出版社,2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700