北祁连榴辉岩相变沉积岩的特征及其构造意义
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在北祁连HP/LT变质带中,榴辉岩相变质作用普遍记录在变质基性岩中。已有的地质和地球化学研究认为榴辉岩是洋壳俯冲的产物。最近的研究显示榴辉岩相矿物组合不仅限定在基性岩中,在榴辉岩的围岩——变沉积岩中,也发现有榴辉岩相矿物组合。本文展示了榴辉岩相变质沉积岩的岩石学、地球化学、锆石年代学和Hf同位素方面的一些研究结果,这些研究结果为北祁连早古生代构造演化提供新的约束。
     在北祁连的百经寺地区,变沉积岩包裹有榴辉岩透镜体,局部可见榴辉岩和变沉积岩互层产出。变沉积岩主要为石榴蓝闪石(绿辉石)多硅白云母石英片岩、硬绿泥石石榴多硅白云母石英片岩和变硅质岩等,峰期温压条件为T=450-520℃,P=1.9-2.3 GPa,与相邻榴辉岩的温压条件一致。
     全岩地球化学分析显示这些变沉积岩的原岩是不成熟的,可能产出在大陆岛弧或大陆边缘环境中。10个变硅质岩样品在页岩标准化图解上显示:轻重稀土元素分异不明显,(La/Yb)N在0.48-0.82之间,Ce/Ce*在0.91-1.19之间,无Ce异常,无Eu异常;明显不同于太平洋的硅质岩(具有明显的Ce负异常,Ce/Ce~*<<1)以及大西洋的硅质岩(中等程度的Ce负异常),而与产于大陆边缘的南部高纬度硅质岩的特征相似。
     4个变沉积岩中的碎屑锆石年龄主要集中在480-560 Ma和1800 Ma左右。Hf同位素特征显示,480-560 Ma年龄的碎屑锆石的~(176)Hf/~(177)Hf比值较高,εHf(t)值为正,部分接近亏损地幔εHf值(16.4),U-Pb年龄与单阶段、双阶段模式年龄相近,表明这些锆石没有经历明显的再循环演化过程,与古祁连洋的开启或弧增生活动有关;年龄为1800 Ma的碎屑锆石~(176)Hf/~(177)Hf值相对较低,εHf(t)值大多在零值附近,以老的单阶段模式年龄以及双阶段模式年龄为特征,结合区域资料,这些锆石应来自相邻的前寒武纪陆块。综合地质、地球化学及年代学资料,这些榴辉岩相变沉积岩的原岩不是形成于典型的洋壳环境,而可能形成于洋壳俯冲带之上的弧前盆地,并在北祁连早古生代洋壳俯冲过程中,通过俯冲(构造)剥蚀作用被运移到俯冲带中,俯冲到60-70 km深处,发生榴辉岩相变质作用。
In the HP/LT belt of North Qilian Mountains, eclogitic metamorphism is always recorded in the basaltic rocks and eclogites were previously regarded as the product of the sea floor subduction. However, present study reveals that elcogitic minereal assemblages are not only recorded in the basaltic rocks, but also in the metasedimentary rocks, which are the host rock of eclogites.
     In this paper, we present new Petrological, geochemical and age data for metasedimentary rocks from Baijingsi area, North Qilian Mountains, in which typical early-Paleozoic ophiolitic sequences and HP/LT metamorphic rocks have been previously recognized. The studied metasedimentary rocks contain eclogitic facies assemblages reflecting PT conditions of 450-520℃and 1.9-2.3 GPa, consistent with those of adjacent eclogites.
     Geochemical data indicate that the precursor rocks of the metasedimentary rocks were immature sediments formed in continental margin or island arc environments. Zircons from 4 eclogitic metasedimentary samples were separated for U-Pb and Lu-Hf dating. The data demonstrate detrital zircon ages concentrate in 480-560 Ma and around ca.1800 Ma, suggesting that they derived from the mixture of Paleoproterozoic continent basement and Late Neoproterozoic-early Paleozoic oceanic materials, which were probably accreted into active continental margin during subduction. These data implies that subduction erosion of the active continental margin occurred, as these sediments, formed in the upper plate (fore-arc basin or accretionary prism), were transported into the subduction zone to 60-70 km depth prior to their exhumation.
引文
[1] Armstrong H A, Owen A W, Floyd J D. Rare earth geochemistry of Arenig cherts from the Ballantrae Ophiolite and Leadhills Imbricate Zone, southern Scotland: Implications for origin and significance to the Caledonian Orogeny. Journal of the geological society, London, 1999, 156: 549-560
    [2] Barth, Schneiderman. A Comparison of Structures in the Andean Orogen of Northern Chile and Exhumed Mid-crustal Structures in Southern California, USA: An Analogy in Tectonic Style. International Geology review, 1996, 38 (12): 1075-1085
    [3] Bhatia M R, Crook K A W. Trace element characteristics of graywackes and tectonic setting discrimination of sedimentary basins. Contrib Mineral Petrol, 1986, 92: 181-193
    [4] Blichert-Toft J, Chauvel C, Albarede F. Separation of Hf and Lu for high-precision isotope analysis of rock samples by magnetic sector-multiple collector ICP-MS, Contrib. Mineral. Petrol., 1997, 127: 248-260
    [5] Compston W, Williams I S, Kirschvink J L, et al. zircon U-Pb ages for early Cambrian time-scale. Journal of geologist society of London, 1992, 149: 171-184
    [6] Elhlou S, Belousova E, Griffin W L et al. Trace element and isotopic composition of GJ-red zircon standard by laser ablation. Geochim Cosmochim Acta, 2006, suppl, A158
    [7] Gerdes A, Zeh A. Combined U-Pb and Hf isotope LA-(MC-)ICP-MS analyses of detrital zircons: Comparison with SHRIMP and new constraints for the provenance and age of an Armorican metasediment in Central Germany. Earth and Planetary Science Letters, 2006, 249: 47-61
    [8] Gehrels, G. E., Yin, A., and Wang, X. F. Magmatic history of the northeastern Tibetan Plateau. Journal of Geophysical Research, 2003, 108(B9) doi:10.1029/ 2002JB001876
    [9] Giacomini F, Bomparola R M, Ghezzo C, et al. The geodynamic evolution of the Southern European Variscides: constraints from the U-Pb geochronology and geochemistry of the lower Palaeozoic magmatic-sedimentary sequences of Sardinia (Italy). Contrib Mineral Petrol, 2006, 152: 19-42
    [10]Girty G H, Ridge D L, Knaack C, et al. Provenance and depositional setting of Paleozoic chert and argillite, Sierra Nevada, Califonia. Journal of Sedimentary Research, 1996, 66(1): 107-118
    [11]Griffin W L, Pearson N J, Belousova E, et al. The Hf isotope composition of cratonic mantle: LA-MC-ICPMS analysis of zircon metacrysts in kimberlites. Geochimica et Cosmochimica Acta, 2000, 64: 133-147
    [12] Haskin M A, Haskin L A. Rare earths in European shales, a redetermination. Science, 1966, 154: 507-509
    [13] Herve F, Fanning C M. Early Cretaceous subduction of continental crust at the Diego de Almagro archipelago, southern Chile. Episodes, 2003, 26 (4): 285-289
    [14] Huene V, Scholl R D W. Observations at Convergent Margins Concerning Sediment Subduction, Subduction Erosion, and the Growth of Continental Crust. Rev. Geophys., 1991, 29(3), 279-316
    
    [15] Kretz, R. Symbols for rock-forming mineral. Am Mineral, 1983, 68: 277-279
    
    [16] Liou J G, Wang X W, Colemen R G.Blueschists in major suture zones of China. Tectonics, 1989, 8(3): 609-619
    
    [17] Iizuka T, Hirata T. Improvements of precision and accuracy in in situ Hf isotope microanalysis of zircon using the laser ablation-MC-ICPMS technique. Chem. Geol., 2005, 20: 121-137
    [18] Murray R W, Buchholtz Ten Brink M R, Gerlach D C, et al. Rare earth elements as indicators of different marine depositional environments in chert and shale. Geology, 1990, 88: 268-271
    [19] Murray R W, Buchholtz Ten Brink M R, Gerlach D C, et al. Rare earth, major, and trace elements in chert from the Franciscan Complex and Monterey group: assessing REE sources to fine-grained marine sediments. geochimica et cosmochimica acta, 1991, 55: 1875-1895
    [20] Murray R W, Buchholtz Ten Brink M R, Gerlach D C, et al. Interoceanic variation in the rare earth, major, and trace element depositional chemistry of chert: Perspectives gained from the DSDP and ODP record. Geochimica et Cosmochimica Acta, 1992, 56: 1897-1913
    [21] Murray R W. Chemical criteria to identify the depositional environment of chert: general principles and applications, sedimentary geology, 1994, 90: 213-232
    [22] Nancy J.Mahlen, Clark M.Johnson, Lukas P.Baumgartner, Brian L.Beard. Provenance of Jurassic tethyan sediments in the HP/UHP Zermatt-Saas ophiolite, western Alps. GSA bulletin, 2005,117(3/4): 530—544
    [23] Piper D Z. Rare earth elements in the sedimentary cycle, a summary. Chem. Geol. 1974, 14: 285-304
    [24] Ravna E J K. The garnet-clinopyroxene Fe~(2+)-Mg geothermometer: an updated calibration. Journal of Metamorphic Geology, 2000, 18: 211-219
    [25] Ravna E J K, Terry M P. Geothermobarometry of UHP and HP eclogites and schists-an evaluation of equilibria among garnet-clinopyroxene-kyanite-phengite- coesite/quartz. Journal of Metamorphic Geology, 2004, 22: 579-592
    [26] Reinecke T. Prograde high-to ultrahigh-pressure metamorphism and exhumation of oceanic sediments at Lago di Cignana, Zermatt-Saas Zone, western Alp. lithos, 1998,42: 147-189
    [27] Scherer C M, Mezger K. Calibration of the lutetium-hafnium clock. Science, 2001, 293(5530): 683-687
    [28] Sholkovitze R. Rare earth elements in the sediments of the North Atlantic Ocean, Amazon Delta, and East China Sea: Reinterpretation of terrigeneous input patterns to the oceans. Amer. J. Sci, 1988, 288: 236-281
    [29] Song Shuguang, Yang Jingsui, Xu Zhiqin, et al. Metamorphic evolution of the coesite-bearing ultrahigh-pressure terrane in the north Qaidam, northern Tibet, NW China. Journal of Metamorphic Geology, 2003a, 21: 631-644
    [30] Song Shuguang, Yang Jingsui, Liou, J.G., et al. Petrology, geochemistry and isotopic ages of eclogites from the Dulan UHPM Terrane, the North Qaidam, NW China. Lithos, 2003b, 70: 195-211
    [31] Song Shuguang, Zhang Lifei, Niu Yaoling. Zircon U-Pb SHRIMP ages of eclogites in the North Qilian Mountains and their tectonic implications. Chinese Science Bulletin, 2004, 49: 848-852
    [32] Song Shuguang, Zhang Lifei, Niu Yaoling. Ultra-deep origin of garnet peridotite from the North Qaidam ultrahigh-pressure belt, Northern Tibetan Plateau, NW China. American mineralogist, 2004, 89: 1330-1336
    [33] Song Shuguang, Zhang Lifei, Niu Yaoling, et al. Evolution from oceanic subduction to continental collision: a case study from the northern Tibetan Plateau based on geochemical and geochronological data. Journal of Petrology, 2006, 47(3): 435-455
    [34] Song Shuguang, Zhang Lifei, Niu Yaoling, et al. Eclogite and carpholite-bearing metasedimentary rocks in the North Qilian suture zone, NW China: implications for early Palaeozoic cold oceanic subduction and water transport into mantle. Journal of Metamorphic Geology, 2007, 25: 547-563
    [35] Tung Kuoan, Yang Hongyi, Liu Dunyi, et al. SHRIMP U-Pb geochronology of the detrital zircons from the Longshoushan Group and its tectonic significance. Chinese Science Bulletin, 2007a, 52(10): 1414-1425
    [36] Tung Kuoan, Yang Huairen, Yang Hongyi, et al. SHRIMP U-Pb geochronology of the zircons from Precambrian basement of the Qilian block and its geological significances. Chinese Science Bulletin, 2007b, 52(19): 2687-1701
    [37] Wan Yusheng., Zhang Jianxin, Yang Jingsui., Xu Zhiqin. Geochemistry of high-grade metamorphic rocks of the North Qaidam Mountains and their geological significance. Journal of Asian Earth Sciences, 2006, 28: 174-184
    [38] Wei Chunjing and Song Shuguang. Chloritoid-glaucophane schist in the north Qilian orogen, NW China: phase equilibria and P-T path from garnet zonation. Journal of metamorphic Geology, 2008, 26: 301-316
    [39] Wu Fuyuan, Yang Y H, Xie L W, et al. Hf isotopic compositions of the standard zircons and addeleyites used in U-Pb geochronology. Chem. Geol., 2006, 234: 105-126
    [40] Wu Hanquan. The glaucophane-schists of Eastern Qiling and Northern Qilian Mountains in China. Acta geologica sinica, 1980, 195~208(in Chinese with English abstract)
    [41] Wu Hanquan, Feng Yimin. Metamorphism and deformation of blueschist belts and their tectonic implications, North Qilian Mountains, China. Journal of Metamorphic Geology., 1993,11: 523-536
    [42] Xia Linqi, Xia Zuchun, Xu Xueyi. Magmagenesis in the Ordovician backarc basins of the Northern Qilian Mountains, China. GSA Bulletin, 2003, 115(12):1510~1522
    [43] Yang Jingsui, Xu Zhiqin, Zhang Jianxin et al. Early Paleozoic North Qaidam UHP metamorphic belt on the northeastern Tibetan plateau and a paired subduction model. Terra Nova, 2002, 14: 397-404
    [44] Yang Jingsui, Wu Cailai, Zhang Jianxin, et al. Protolith of eclogites in the North Qaidam and Altun UHP terrane, NW China: earlier oceanic crust? Journal of Asian Earth Sciences, 2006, 28: 185-204
    [45] Yin, A. and Harrison, T.M. Geologic evolution of the Himalayan-Tibetan orogen: Annual Review of Earth and Planetary Sciences, 2000, 28: 211-280
    [46] Yuan Honglin, Gao Shan, Dai Mengning, et al. Simultaneous determinations of U-Pb age, Hf isotopes and trace element compositions of zircon by excimer laser ablation quadrupole and multiple collector ICP-MS. Chemical Geology, 2008, 247: 100-117
     [47] Zhang J, Zhang Z. Xu Z, et al. Petrology and geochronology of eclogites from the western segment of the Altyn Tagh, northwestern China[J]. Lithos, 2001, 56: 187-206
    [48] Zhang Jianxin, Mattinson C G, Meng Fancong, et al. An early Palaeozoic HP/HT granulite-garnet peridotite association in the south Altyn Tagh, NW China: P-T history and U-Pb geochronology. Journal of Metamorphic Geology, 2005, 23(7): 491-510
    [49] Zhang Jianxin, Meng Fancong, Yang Jingsui. A new HP/LT metamorphic terrane in the northern Altyn Tagh, western China [J]. International Geology Review, 2005b, 47: 371-386
    [50] Zhang Jianxin, Meng Fancong. Lawsonite-bearing eclogites in the north Qilian and north Altyn Tagh: evidence for cold subduction of oceanic crust. Chinese Science Bulletin,2006,51(10):1238-1244
    [51]Zhang Jainxin, Meng Fancong, Wan Yusheng. A cold early Palaeozoic subduction zone in the North Qilian Mountains, NW China:petrological and U-Pb geochronological constraints. Joural of metamorphic Geology.,2007,25: 285~304
    [52]Zhang Jianxin, Mattinson, C. G., Meng Fancong, et al. Polyphase tectonothermal history recorded in granulitized gneisses from the North Qaidam HP/UHP metamorphic terrane, Western China: Evidence from zircon U-Pb geochronology. Geological Society of America Bulletin, 2008,120:732~749
    [53]Zhang Jianxin, Meng Fancong, Li Jinping, et al. Coesite in eclogite from the North Qaidam and its implications. Chinese Science Bulletin, 2009, 54(6): 1105~1110
    [54]董国安,杨宏仪,刘敦一,等.龙首山岩群碎屑锆石SHRIMP U-Pb年代学及其地质意义.科学通报,2007a,52(6):687-697
    [55]董国安,杨怀仁,杨宏仪,等.祁连地块前寒武纪基底锆石SHRIMP U-Pb年代学及其地质意义.科学通报,2007b,52(13):1571~1585
    [56]杜远生,朱杰,顾松竹.北祁连肃南一带奥陶纪硅质岩沉积岩地球化学特征及其多岛洋构造意义.地球科学-中国地质大学学报,2006,31(1):101-109
    [57]冯胜斌,周洪瑞,燕长海,等.东秦岭二郎平群硅质岩地球化学特征及其沉积环境意义.现代地质,2007,21(4):675~682
    [58]冯益民,何世平.祁连山及其邻区大地构造基本特征——兼论早古生代海相火山岩的成因环境.西北地质科学,1995,16(1):92-103
    [59]冯益民.祁连造山带研究概况—历史、现状及展望.地球科学进展,1997,12(4):307~314
    [60]郭进京,张国伟,陆松年,等.中祁连地块东段元古宙基底地层格架讨论.中国区域地质.1999,18(4):379~396
    [61]侯可军.LA-MC-ICP-MS锆石Hf同位素的分析方法及地质应用.岩石学报, 2007,23(10):2595~2604
    [62]黄汲清,张正坤,张之孟,等.中国的优地槽和冒地槽以及它们的多旋回发展.北京:中国工业出版社,1965,19~25
    [63]霍有光,吴汉泉,冯益民.北祁连奥陶系地体中蓝片岩、绿片岩岩石矿物化学特征及地质意义.中国地质科学院院报,1992,25:59-70
    [64]李春昱,刘仰文,朱宝清,等.秦岭及祁连山构造发展史.国际交流地质学术论文集(1).北京:地质出版社.1978,174-187
    [65]李怀坤,陆松年,赵风清.柴达木北缘新元古代重大地质事件年代格架.现代地质,1999,13(2):224-225
    [66]李四光.旋卷构造及其他有关中国西北部大地构造体系复合问题.北京:科学出版社,1955
    [67]李献华,苏犁,宋彪,等.金川超镁铁侵入岩SHRIMP锆石U-pb年龄及地质意义.科学通报,2004,49(4):401-402
    [68]青海省地质矿产局.青海省区域地质志.地质出版社,1991
    [69]史仁灯,等.北祁连玉石沟蛇绿岩形成于晚震旦世的SHRIMP年龄证据.地质学报,2004,78(5):78(5):649-657
    [70]宋述光,张立飞,Y. L. Niu,等.北祁连榴辉岩锆石SHRIMP定年及其构造意义.科学通报,2004,49(6):592-595
    [71]万渝生,许志琴,杨经绥,张建新.祁连造山带及邻区前寒武纪变质基底的时代和组成.
    [72]王荃,刘雪亚.我国西部祁连山区的古海洋地壳及其大地构造意义.地质科学,1976,(1):42~55
    [73]吴才来,杨经绥,Wooden JL.2004b.柴达木北缘都兰野马滩花岗岩锆石SHRIMP定年.科学通报,49(16):1667~1672
    [74]吴汉泉,冯益民,霍有光.北祁连山中段甘肃肃南奥陶系变质硬柱石蓝闪片岩的发现及其意义.地质论评,1990,36(3):277~280
    [75]吴汉泉,宋述光.北祁连山两种蓝闪片岩及其构造特征.现代地质研究文集(上).南京:南京大学出版社,1992,74-80
    [76]吴汉泉.北祁连山多硅白云母矿物学和多型特征以及对K-Ar年龄的思考. 中国地质科学院西安地质矿产研究所所刊,1987,15:33~46
    [77]吴汉泉.北祁连山高压变质带的岩石学及矿物学.中国地质科学院西安地质矿产研究所所刊,1982,4(7):4-21
    [78]吴汉泉.东秦岭和北祁连山的蓝闪片岩.地质学报,1980,54(3):195-207
    [79]夏林圻,夏祖春,彭礼贵,等.北祁连山石灰沟奥陶纪岛弧火山岩系岩浆性质的确定.岩石矿物学杂志,1991,10(1):1~10
    [80]夏林圻,夏祖春,任有祥,等.北祁连山古海底火山作用与成矿.地球学报,1999,20(3):259~264
    [81]夏林圻,夏祖春,徐学义.北祁连山构造—火山岩浆演化动力学.西北地质科学,1995,16(1):1~28
    [82]夏林圻,夏祖春,徐学义.北祁连山海相火山岩岩石成因.北京:地质出版社,1996
    [83]夏林圻,夏祖春,徐学义.北祁连山早古生代洋脊—洋岛和弧后盆地火山作用.地质学报,1998,72(4):301~312
    [84]肖序常,陈国铭,朱志直.祁连古蛇绿岩的地质构造意义.地质学报,1978,52:287-295
    [85]肖序常,陈国铭,朱志直.祁连山古蛇绿岩的地质构造意义.地质学报,1978,54(4):287~295
    [86]修群业,陆松年,于海峰,等.龙首山岩群主体划归古元古代的同位素年龄证据.前寒武纪研究进展,2002,25(2):93~96
    [87]许志琴,徐慧芬,张建新,等.北祁连走廊南山加里东俯冲杂岩增生地体以及动力学.地质学报,1994,68(1):1~15
    [88]杨江海,杜远生,朱杰.甘肃省景泰正路下志留统复理石杂砂岩沉积地球化学特征.地质科技情报,2006,25(5):27~31
    [89]杨经绥,许志琴,李海兵,等.柴北缘地区榴辉岩的发现及潜在的地质意义.科学通报,1998,43(14):1544-1549
    [90]杨经绥,许志琴,宋述光,等.青海都兰地区榴辉岩的发现及对中国中央造山带高压-超高压变质带研究的意义.地质学报,2000,74(2):156~168
    [91]于胜尧,张建新,孟繁聪,等.北祁连俯冲增生杂岩带中低温榴辉岩的地球化学特征.岩石矿物学杂志,2007,26(2):101~108
    [92]袁桂邦,王懋功,李惠民,等.柴北缘绿梁山地区辉长岩的锆石u-Pb年龄及意义.前寒武纪研究进展,2002,25(1):36~40
    [93]曾建元,杨宏仪,等.北祁连山变质杂岩中新元古代岩浆活动记录的发现,来自SHRIMP锆石U-Pb定年的证据.科学通报,2006,51(5):575~581
    [94]曾建元,杨怀仁,杨宏仪,等.北祁连东草河蛇绿岩:一个早古生代的洋壳残片.科学通报,2007,52(7):825~835
    [95]张成立,周鼎武,陆关祥,等.南天山库米什蛇绿混杂岩带中硅质岩的元素地球化学特征及其形成环境.岩石学报,2006,22(1):57-64
    [96]张建新,孟繁聪,于胜尧,等.北阿尔金HP/LT蓝片岩和榴辉岩的Ar-Ar年代学及其区域地质意义.中国地质,2007,34(4):558-564
    [97]张建新,孟繁聪.北祁连和北阿尔金含硬柱石榴辉岩:冷洋壳俯冲作用的证据.科学通报,2006,51(14):1683~1688
    [98]张建新,许志琴,陈文,等.北祁连中段俯冲—增生杂岩/火山弧的时代探讨,岩石矿物学杂志.1997,16(2):112-119
    [99]张建新,许志琴,徐惠芬等.北祁连加里东俯冲—增生楔及动力学.地质科学,1998,33:290-299
    [100]张旗,Chen Y,周德进,等.北祁连大岔大坂蛇绿岩的地球化学特征及其成因.中国科学(D),1998,28(1):30-34
    [101]张旗,王焰,钱青.北祁连早古生代洋盆是裂陷槽还是大洋盆?—与葛肖虹讨论.地质学报,2000,35(1):121~128
    [102]张旗,周国庆,王焰.中国蛇绿岩的分布时代及其形成环境.岩石学报,2003,19(1):1~8
    [103]张旗,孙晓猛,周德进.北祁连蛇绿岩的特征,形成环境及其构造意义.地球科学进展,1997,12:366~393
    [104]张之孟.北祁连山的高压低温变质作用.中国地质科学探索.北京:地质出版社,1989,273-295
    [105]左国朝,刘寄陈.北祁连造古生代大地构造演化.地质科学,1987,1:14-24
    [106]左国朝,刘义科,张招崇.北祁连造山带中-西段陆壳残块群的构造-地层 特征.地质科学,2002,37(3):302~312
    [107]左国朝,吴茂炳,毛景文,等.北祁连西段早古生代构造演化史.甘肃地质学报,1999,8(1):6-13

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700