用户名: 密码: 验证码:
共振瑞利散射法灵敏测定蛋白质
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
共振瑞利散射(Resonance Rayleigh scattering, RRS)法是一种20世纪90年代后发展起来的新的定量分析技术。近年来,RRS法由于操作简单、灵敏度高而受到人们的广泛关注。目前,RRS法不仅应用到生物大分子、无机离子、医药和阳离子表面活性剂的测定,而且在胶束浓度和包容常数等方面的测定也被广泛应用。
     蛋白质在生物体中担负着各种重要的生理功能。它是构成细胞内原生质的主要组成成分,是组成自然界中各类生命的最重要的物质,可以这样说,没有蛋白质就没有生命。因此,蛋白质的定量测定对于生命科学和生物化学研究具有重要意义,是临床检验中的重要指标,也是许多生化物质和药物分离提纯中质量检验及食品检验中常见的分析项目。蛋白质的测定方法主要有:紫外吸收法、荧光光度法和共振光散射法等。共振瑞利散射法是近几年才发展起来的新技术。其特点是灵敏度高和简便实用,在蛋白质及核酸等生物大分子的分析测定中优势明显。
     本论文基于共振瑞利散射法,开展了蛋白质的检测工作,主要包括两个方面内容:
     1、在pH 4.2的BR(H3PO4,H3BO3和CH3COOH与0.2mol/L NaOH溶液按一定比例混合)缓冲溶液中,甲基蓝与免疫球蛋白相互作用生成复合物,使溶液的350nm处的共振瑞利散射光谱显著增强,增强程度与免疫球蛋白的浓度成正比关系。据此建立了测定免疫球蛋白的新方法,方法的线性范围为0.3-67.2μg/mL,检出限为0.03μg/mL。方法稳定性好、灵敏度高,用于人血清样品测定,结果令人满意。
     2、以巯基乙酸为稳定剂,合成了CdSe量子点,用该量子点作探针共振瑞利散射法测定人血清蛋白。在pH 7.4的Tris-HCl缓冲溶液中,巯基乙酸包被的CdSe量子点通过共价偶联标记了人血清蛋白,生成的复合物导致溶液的共振瑞利散射光谱和二级散射光谱(second-order scattering, SOS)显著增强,散射光强度的增加与人血清蛋白的浓度在0.4-48μmol/L的范围内成正比关系,检出限分别为0.1μmol/L (RRS)和0.25μmol/L (SOS)。实验结果表明,RRS法的灵敏度比SOS高。该方法具有简单、灵敏度高和选择性好等优点。将所建立的方法用于尿样中HSA的测定,结果令人满意。
Resonance Rayleigh scattering(RRS) method is a new quantitative analytical technique which was developed in 1990s. In recent years, More attention has been paid to RRS methods, since it is very sensitive and simple. The RRS technique can not only be applied to the determination of biological macromolecules, inorganic ions, pharmaceuticals, and cationic surfactant, but also can be used to the determination of critical micelle concentration and inclusion constant.
     Protein has many physiological functions. Intracellular proteins that form the main components of protoplasm, which occupy an important place in vivo, are composed of various types of natural life in the most important material. It can be said that without the protein there is no life. Quantitative analysis of protein is often involved in biochemistry and other biological disciplines. It has been an important indicator of clinical testing. Quantitative analysis of protein is also the means of purifying and separation in many biochemicals. Many methods have been developed for protein determination, such as UV absorption spectrophotometry, fluorescence spectrometry, resonance light scattering techniques, etc. Resonance Rayleigh scattering method is a new technology. The main advantage of this technique is sensitive and simple.
     The main research content and innovation points are as follows:
     1. In pH 4.2 BR buffer, the binding reaction of methyl blue with proteins enhanced remarkably the resonance Rayleigh scattering (RRS) signal at maximum emission wavelength of 350 nm. It was found that the increase value of RRS intensities were in proportion to the concentrations of IgG under optimum conditions. Based on this, a new method for the determination of IgG using methyl blue as indicator has been developed. The linear ranges of the calibration curves were 0.3-67.2μg/mL, and the detection limit was 0.3μg/mL. The method has the advantages of simplicity and high sensitivity. It has been used to determine IgG in human serum samples. The results were satisfactory.
     2. CdSe quantum dots were synthesized in aqueous solution by using thioglycolic acid as the stabilizer. The interaction between CdSe quantum dots and human serum albumin was investigated by resonance Rayleigh scattering and second-order scattering spectra. In pH 7.4 Tris buffer solution, the CdSe quantum dots (CdSe-QDs) capped thioglycolic acid (TGA) were labeling with HSA by covalence coupled action, resulting in the great enhancements of intensities of RRS and second-order scattering (SOS), respectively. The enhancements of scattering intensity were directly proportional to the concentration of HSA in a certain range. The detection limits were 0.1μmol/L for RRS method and 0.25μmol/L for SOS. The results showed that the method was simple and sensitive. In addition, the reaction mechanism was discussed. The proposed method was successfully applied to the determination of HSA in uric samples with satisfactory.
引文
1] Miller G A. Fluctuation theory of the resonance enhancement of Rayleigh scattering media[J]. J Phys Chem,1978,82(5):616-617.
    2] Lempert W, Wang C H. Studies of shear waves and translation-rotation coupling of liquid nitrobenzene in neat liquid and in carbon tetrachloride solution by depolarized Rayleigh scattering[J]. J Chem Phys,1980,72(6):3490-3492.
    3]中国大百科全书编委会编.中国大百科全书,生物学Ⅱ[M].北京:中国大百科全书出版社,1991,27(6):141374-141375.
    4] Tanford C. The interpretation of hydrogen ion titration curves of proteins. Physical Chemistry of
    Macromolecules[M]. New York and London:John Wiley and Sons.Inc,1961,15(6):275-278.
    5] Kuiper G P. The atmospheres of the Earth and Planets[M].2nd ed. Chicago:Univ of Chicago press, 1952:Chap.12.
    6] Debye P. Light scattering in solution[J]. J Appl Phys,1944,15(4):388-392.
    7] Toporowski E M, Roovers J. The intramolecular scattering function of model branched polymers[J]. Macromolecules,1978,11(2):365-369.
    8] Sun Z G, Tomlin C D, Sevick E M. Approach for particle sizing in dense polydisperse colloidal
    suspension using multiple scattered light[J]. Langmuir,2001,17(4):6142-6147.
    9] Huglin M B. Light scattering from polymer solution[M]. Academic Press. London and NewYork. 1972, 11(3):285-289..
    10] Bzuer D R, Hudson B, Pecora T. Resonance enhanced depolarized Rayleigh scattering from diphenyIpolyenes[J]. J Chem Phys,1975,63(1):588-590.
    11] Stanton S G. Resonance enhanced dynamic Rayleigh scattering[J]. J Chem Phys,1981,75(12): 5615-5626.
    :2] Anglister J, Steinberg I Z. Resonance Rayleigh scattering of cyanine dyes in solution[J]. J Chem Phys,1983,78(9):5358-5360.
    13] Bauer D, R Hudson B, Pecora R. Resonance enhanced depolarized Rayleigh scattering from diphenylpolyenes.J Chem Phys,1975,63(1):588-591.
    4]汪尔康主编.分析化学新进展[M].北京科学出版社,2002,63(1):280-283.
    15] Anglister J, Steinberg I Z. Measurement of the depolarization ratio of Rayleigh scattering at absorption bands, J Chem Phys,1981,74(11):786-791.
    1 6]刘绍璞,刘忠芳.汞(Ⅱ).硫氰酸盐.维多利亚蓝4R体系的共振发光和二级散射光谱及其分析应用[J].高等学校化学学报,1996,17(12):887-892.
    17] YangJi Dong, Zhong-Fang. Applied study of trellis-coded modulation technique in UWA
    communication based on OFDM.Chinese Journal of Chemistry,2008,26(5):893-897
    [18]张爱梅 聊城大学硕士学位论文[D],2006
    [19]范莉 西南师范大学硕士学位论文[D],2001
    [20]Zhongxian Guo, Hanxi Shen. Analytical Applications of Porphyrins and Their Analogs With Supramolecular Functions.Analytica Chimica Acta,2000,408(10):177-182.
    [21]Xiufen Long, Shuping Bi, Xiancong Tao, et al. Resonance Rayleigh scattering determination of trace amounts of Al in natural waters and biological samples based on the formation of an Al(III)-morin-surfactant complex.Spectrochimica Acta Part A,2004,60(12):455-462.
    [22]Hong Qun Luo, Nian Bing Li, Shao Pu Liu. Resonance Rayleigh scattering study of interaction of hyaluronic acid with ethyl violet dye and its analytical application. Biosensors and Bioelectronics,2006,21 (7):1186-1194.
    [23]Shao Pu Liu, Hong Qun Luo, Hong Xu. Resonance Rayleigh scattering study of interaction of heparin with some cationic surfactants and their analytical application. Spectrochimica Acta Part A,2005,61(11):861-867.
    [24]Shao Pu Liu, Sa Chen, Zhong Fang Liu. Resonance Rayleigh scattering spectra of interaction of sodium carboxymethylcellulose with cationic acridine dyes and their analytical applications. Analytica Chimica Acta,2005,535(1-2):169-175.
    [25]Qiu-E Cao, Yun kun Zhao, Xiaojun Yao, et al. The synthesis and application of 1-(o-nitrophenyl)-3-(2-thiazolyl)triazene for the determination of palladium(II) by the resonance enhanced Rayleigh light-scattering technique. Spectrochimica Acta Part A,2000, 56(7):1319-1327.
    [26]Shao Pu Liu, Zhuo Yang, Zhong Fang Liu, et al. Resonance Rayleigh scattering study on the interaction of gold nanoparticles with berberine hydrochloride and its analytical application. Analytica Chimica Acta,2006,572(2):283-289.
    [27]Shao Pu Liu, You Qiu He, Zhong Fang Liu. Resonance Rayleigh scattering spectral method for the determination of raloxifene using gold nanoparticle as a probe. Analytica Chimica Acta,2007, 598(9):304-311.
    [28]Qingling Yang, Qunmin Lu, Zhongfang Liu. Resonance Rayleigh scattering spectra of ion-association nanoparticles of [Co(4-[(5-Chloro-2-pyridyl) azo]-1,3-diaminobenzene)2]2+-sodium dodecyl benzene sulfonate system and its analytical application. Analytica Chimica Acta, 2009,632(1):115-121.
    [29]Jiang ZhiLiang, Li Fang,Liang Hong. The relationship between resonance scattering intensity and the size of Au particles.ACTA CHIMICA SINICA,2000,58(8):1059-1062.
    [30]刘绍璞,刘忠芳,罗红群.硒(Ⅳ)一碘化物-维多利亚蓝4R 体系共振瑞利散射,二级散 射和倍频散射法测定痕量硒(Ⅳ)EJ.Journal of Southwest China Normal University (Natural Science),2000,25(4):408-412.
    [31]Zhiliang Jiang, Qingye Liu, Shaopu Liu. Resonance scattering spectral analysis of chlorides based on the formation of (AgCl)n(Ag)s nanoparticle. Spectrochimica Acta Part A,2002,58(12):2759-2764.
    [32]梁爱惠,蒋治良.丙三醇存在下硫酸钡微粒体系的光谱特性研究及其分析应用.分析科学学报,2005,21(5):542-544.
    [33]Jiang Zhiliang, Zou M ing jing, Liang Aihui. Sp ect ral Study of A cr idine Red A ssociat ion Par t icle System and Its Applicat ion to Determ inat ion of Trace IO3-. N atural Science Edition,2006,24(1):68-71.
    [34]Jian Wang, Zhongfang Liu, Jiangtao Liu, et al. Study on the interaction between fluoroquinolones and erythrosine by absorption, fluorescence and resonance Rayleigh scattering spectra and their application. Spectrochimica Acta Part A,2008,69(3):956-963.
    [35]Hong Qun Luo, Shao Pu Liu, Nian Bing Li, et al. Resonance Rayleigh scattering, frequency doubling scattering and second-order scattering spectra of the heparin-crystal violet system and their analytical application. Analytica Chimica Acta,2002,468(2):275-286.
    [36]Hong Qun Luo, Shao Pu Liu, Zhong Fang Liu. Resonance Rayleigh scattering spectra for studying the interaction of heparin with some basic phenothiazine dyes and their analytical applications. Analytica Chimica Acta,2001,449(1-2):261-270.
    [37]Shaopu Liu, Fen Wang, Zhongfang Liu. Resonance Rayleigh scattering spectra for studying the interaction of anthracycline antineoplastic antibiotics with some anionic surfactants and their analytical applications. analytica chimica acta,2007,601(1):101-107.
    [38]Wang Qi, Liu Zhong-Fang, Kong Ling. Resonance Rayleigh Scattering Spectra Method for the Determination of Anthracycline Anticancer Drugs with CdS Nanoparticles as Probe..Chin J Anal Chem,2007,35(3):365-369.
    [39]Clays K, Persoons A. Hyper-Rayleigh scattering in solution[J].Pbys Rev Lett.1991,66(23): 2980-2983.
    [40]Vance F W, Lemom B I, Ekhoff J A. Interrogation of nanoscale silicondioxide/water interfaces via hyper-Rayleigh scattering[J]. J Phys Chem B,1998,102(11):1845-1848.
    [41]Jacobsohn M, Banin U. J Size dependence of second harmonic generation in CdSe nanocrystal quantum dots[J]. Phys Chem B,2001,104(1):1-5.
    [42]林章碧,苏星光,金钦汉,等.利用水相合成的量子点标记木瓜蛋白酶的研究.高等学校化学学报,2003,24(4):p.609-611.
    [43]Medintz I L, Sapsford K E, Konnert J H, et al. Decoration of Discretely Immobilized Cowpea MosaicVirus with Luminescent Quantum Dots. Langmuir,2005,21(12):5501-5510.
    [44]Aldana J, Wang Y A, Peng X G. Photochemical Instabifity of CdSe Nanocrystals Coated by Hydrophilic Thiols[J]. J Am Chem Soc,2001,123(36):8844-8850.
    [45]Agrawal A, Zhang C Y, Byassee T, et al. Counting Single Native Biomolecules and Intact Viruses with Color-Coded Nanoparticles. Anal Chem,2006,78(4):1061-1070.
    [46]Nie S M, Lcvemon M R. In vivo cancer targeting and imaging with semiconductor quantum dots. Nature Biotechnol,2004,22(5):969-976.
    [47]Oliver H. Lowery, Nira J, et al. Protein measurement with the Folin phenol reagent.Biochem,1951,193(7):265-268.
    [48]Levin R., et. al. The Structure of Saccharomyces carlsbergensis and S. cerevisiae as Determined by Ultra-thin Sectioning Methods and Electron Microscopy. J. Lab. Clin. Med,1951,38(4):474-476.
    [49]Itzhak R. F., et.al. Heterogeneous distribution of DNA alkylation products in rat liver chromatin after in vivo administration of N,N-DI[14C]methyl nitro samine.Anal Biochem,1964, 9(11):401-404.
    [50]周祖钊,朱文雅,彭小玲,等.喻床检验杂志,1992,10(3):134-136.
    [51]Andreiw E Pinnell, Barry E. New automated dye-binding method for serum albumin determination with bromcresol purple. Clin. Chem,1978,24(1):80-86.
    [52]Ma Chun Qi, Li Ke An, Tong Shen Yang. Elastic Light-scattering of Protein-Chrome Azurol S Complex and Its Preliminary Analytical Application.Anal. Lett,1998,31(6):1021-1025.
    [53]Yoshikazu F, Itsuo M, Shoko K. Color reaction between pyrogallol red-molybdenum(VI) complex and protein. Japan analyst.1983,32(12):379-382.
    [54]Wei Yong-ju, Li Ke-an, Tong Shen-yang. Interaction of Arsenazo III with Serum Albumin.Anal Chim. Acta,1997,34(1):97-100.
    [55]魏永巨,李克安,童沈阳.蛋白质与铁(Ⅲ)—铬天青S结合反应的研究.高等学校化学学报,1994,15(10):1470-1472.
    [56]魏永巨,李克安,童沈阳.血清白蛋白与偶氮胂Ⅲ结合反应的研究.高等学校化学学报,1996,17(11):1689-1672.
    [57]朱铿,童沈阳.牛血清白蛋白与有机小分子偶氮磺Ⅲ,溴偶氮磺Ⅲ相互作用的研究.分析化学,1996,24(11):1263-1268.
    [58]李娜,李克安,童沈阳.偶氮类染料与蛋白质作用的分光光度研究.分析科学学报,1997,13(4):265-268.
    [59]杨晓波,陈艳峰.用茜素红结合法测定血清总蛋白.中华医学检验杂志,1992,15(2):66-68.
    [60]迟燕华,庄稼,李克安,等.与人血清白蛋白相互作用的分光光度研究.分析测试学 报,1999,18(1):9-12.
    [61]庄稼,迟燕华,李克安,等.茜素红与蛋白质反应机理的研究.1998,56(8):827-830.
    [62]迟燕华,庄稼,董发勤,等.3-[二(羟甲基)氨甲基]-1,2-二羟基蒽醌与蛋白质作用的研究.分析化学,1998,26(7):911-915.
    [63]Konez S V, Doklabyka A B, Nauk S R. Magnetic resonance angiography in the management of patients with portal hypertension. Anal Biochem,1957,116(7):594-598.
    [64]Garcial-Borron J C, Escribano J, Jimenez M, et al. Quantitative determination of tryptophanyl and tyrosyl residues of proteins by second-derivative fluorescence spectroscopy.Anal Biochem,1982,125(2):277-285.
    [65]Sackett Dan L, Wolff J. Nile red as a polarity-sensitive fluorescent probe of hydrophobic protein surfaces.Anal. Biochem,1987,167(2):228-234.
    [66]Chun Qi Ma, Ke An Li. Determination of proteins by fluorescence quenching of erythrosin B Shen Yang Tong. Anal Chim Acta,1996,333(1):83-86.
    [67]冯喜增,白春礼,林璋,等.DNA分子结构的多态性研究(Ⅲ)——生物大分子探针吖啶橙诱导λ-DNA由线型向环型的转变分析化学,1998,26(2):154-157.
    [68]Garcia-Borton J C, Escribano J, Jimenez M, IborraJ L. Anal Biochem,1982,125(2):277-280.
    [69]康四清,邹肇娥,乔小蓉.荧光探剂在生命科学中的应用.华西医科大学学报,1991,22(1):262-265.
    [70]Maria L B. Comparison of Short-Term Estrogenicity Tests for Identification of Hormone-Disrupting Chemicals.Anal Biochem,1973,53(2):12-15.
    [71]李东辉,杨黄浩,郑洪,等.耐尔蓝荧光探针法测定核酸.分析化学,1999,27(9):1081-1083.
    [72]Dong-Hui Li, Huang-Hao Yang, Hong Zheng, et al. Fluorimetric determination of albumin and globulin in human serum using tetra-substituted sulphonated aluminum phthalocyanine. Anal Chim Acta,1999,401(1-2):185-189.
    [73]Kinoshita T, Murayama J, Tsuji A. Fluorophotometric Assay of Proteins using Hypochlorite-Thiamine Reagent. Chem Pharm Bull,1976,24(11):2901-2902.
    [74]Kinoshita T, Murayama J, Muayama K, et al. Charmonium:Comparison with experimentChem. Pharm. Bull,1980,28(9):641-645.
    [75]Norko N, Toshio K. Effect of Seed-Tuber Generation, Soilborne Inoculum, and Azoxystrobin Application on Development of Potato Black Dot Caused by Colletotrichum coccodes.Anal Biochem,1990,184(1):184-186.
    [76]Na Li, Ke An Li. Fluorometric Determination for Micro Amounts of Albumin and Globulin Fractions without Separation by Using a,β,y,8-Tetra(4'-carboxyphenyl)porphin. Shen Yang Tong Anal,1996,233(2):151-155.
    [77]Yutaka Saito, Inden-Okazaki Y, Wada-Yano S, et al. A sensitive spectrofluorimetric determination of human serum albumin with chrome azurol S. Tanaka Y Anal Chem Acta,1985,178(10):337-339.
    [78]Yutaka S, Yukiku O, et al. Counter-attack success of a spider mite against its specific phytoseiid predator. Chem Pharm Bull,1986,34(7):2880-2884.
    [79]Takaji S, Makiko O, Tatsuya N, et al. Determination of trace amounts of albumin in human bronchoalveolar lavage fluids by fluorometry with chromazurol S.Clin Chim Acta, 1994,229(1-2):37-47.
    [80]Yun-xiang Ci, Lie Chen. Fluorimetric determination of human serum albumin with Eriochrome Cyanine R. Analyst,1988,113(8):679-681.
    [81]Farmer H, Yuan Zhengyu. A continuous fluorescent assay for measuring protease activity using natural protein substrate.Anal Biochem,1991,197(2):347-352.
    [82]黄承志,朱济兴,李克安,等.分析化学新进展(汪尔康主编).太原:山西科学技术出版社,1997,21(9):384-386.
    [83]Zhang zhu-yuan, Liu Shao-pu. Determination of Phenobarbital in Compound Phenobarbital Power by differential Spectrophotometry[J]云南大学学报(自然科学版),1997,21(2):63-64.
    [84]张爱梅,刘妮娜,梁云云.依文思蓝-蛋白质体系的共振瑞利散射光谱及其分析应用.Journal of Liaocheng University(Nat.Sic),2007,20(3):61-63.
    [85]张爱梅,李林尉,刘妮娜.溴百里酚蓝-蛋白质体系的共振瑞利散射光谱的研究及分析应用.PTCA(PART B:CHEM.ANAL,2007,43(2):575-577.
    [86]李永新,张德兴,赵丹华,等.四磺基锰酞菁-蛋白质体系的共振瑞利散射行为及其分析应用.Chinese Journal ofAnalytical Chemist,2003,31(4):1372-1375.
    [87]张爱梅,臧运波.偶氮洋红G-SDS体系共振光散射法测定蛋白质.食品科学,2005,26(2):191-193.
    [88]刘妮娜,张爱梅,李林尉.茜素绿-蛋白质体系的共振瑞利散射光谱及其分析应用.Chinese Journal of Analysis Laboratory,2006,25(11):86-89.
    [89]刘晓辉,高俊杰,余萍.偶氮胭脂红B与蛋白质的共振瑞利散射研究.Transactions of Shengyang Ligong University,2005,24(4):63-66.
    [90]张爱梅,臧运.吖啶红-SLS体系共振瑞利散射法测定蛋白质.Chinese Journal of Analysis Laboratory,2005,24(7):44-47.
    [91]张晓亮,陈亚东,徐伟民,等.双核铜(Ⅱ)-β-丙氨酸缩水杨醛席夫碱配合物与血清蛋白相互作用的共振瑞利散射光谱.Chinese Journal of Spectroscopy Laborator,2008,25(7):939-942.
    [92]刘立明,罗光富,李瑞萍,等.邻羟基苯基荧光酮共振瑞利散射法测量蛋白质含量.化学试
    剂,2008,30(2):191-193.
    [93]Ma C Q, Li K A, Tong S Y. Microdetermination of Proteins by Resonance Light Scattering Spectroscopy with Bromophenol Blue Analyst,1997,122(9):361-364.
    [94]Ping Feng, Xiao Li Hu, Cheng Zhi Huang. Determination of Proteins at Nanogram Levels With Their Enhancement Effects of Resonance Light-Scattering on Quercetin. Ana. Lett,1999,32(7): 1323-1325.
    [95]Wei X Q, Liu Z F, Liu S P. Resonance Rayleigh scattering method for the determination of tetracycline antibiotics with uranyl acetate and water blue.Anal Biochem,2005,346(2):330-332.
    [96]江虹.甲基蓝与庆大霉素、妥布霉素的褪色反应及其应用.理化检验(化学分册),2004,40(3):166-168.
    [97]湛海粼,胡小莉,刘绍璞,等.卡那霉素、新霉素对甲基蓝的褪色反应及其分析应用.西南师范大学学报(自然科学版),2004,29(1):106-108.
    [98]Shan Jinhuan, Ding Liang, Wang Li, et al. Spectrophotometric Etermination of Trace Amounts of Selenium (Ⅳ)by Catalytic Kinetic Method. Indian Joumal ofChemistry.Section A,2002,41A (11):2315-2318.
    [99]宁明远.催化动力学光度法测定痕量锰的研究.冶金分析,1998,18(3):22-25.
    [100]黄晓东,陈跃先.Fe(Ⅲ).H2O2.甲基蓝体系催化动力学光度法测定.福建农业大学学报,2000,29(3):363-366.
    [101]Cai Ch G, Gong H, Chen X M. Microchim Acta,2007,157 (3-4):165-168.
    [102]Shao H Y,Zhang A M. Shipin Kexue,2006,27 (3):199-203.
    [103]Hou X L, Tong X F, Dong W J, et al. A non-enzyme hydrogen peroxide sensor based on core/shell silica nanoparticles using synchronous fluorescence spectroscopy.Spectrochim Acta Part A,2007,66(2):552-556.
    [104]李慧君.检测免疫球蛋白的临床意义.实用医学杂志,1995,3(2):163-164.
    [105]Dewan P A, Ashwood P J, Rowan-Kelly B, et al. The Detection of IgG Antibodies to Silicone. Pediatr Surg Int,2003,19(1):20-24.
    [106]宋和平.两种方法检测新生儿免疫球蛋白的比较.中国误诊学杂志,2005,5(15):2872-2873.
    [107]Zhang J, Matveeva E, Grycaynski I, et al. Metal-Enhanced Fluoroimmunoassay on a Silver Film by Vapor Deposition. Journal of Physical Chemistry B,2005,109(16):7969-7975.
    [108]Ma C Q, Li K A, Tong S Y. Microdetermination of proteins by Rayleigh light scattering technique with acid green 25. Anal Chim Acta.,1997,338(3):255-260.
    [109]Yin Y B, Wang Y N, Ma J B. Aggregation of two carboxylicderivatives of porphyrin and their affinity to bovine serum albumin. Spectrochim. Acta A Mol Biomol Spectrosc,2006, 64(4):1032-1038.
    [110]Huang C Z, Lu W, Li Y F, et al. On the factorsaffecting the enhanced resonance light scattering signals of the interactions between proteins and multiply negatively charged chromophores using water blue as an example. Anal Chim Acta,2006,556(2):469-475.
    [111]Yakovleva J, Davidsson R, Bengtsson M, et al. Microfluidic enzyme immunosensors with immobilised protein A and.G using chemiluminescence detection. Biosens Bioelectron,2003, 19(3):21-34.
    [112]Fan H H, Kashi R S, Middaugh C R. Conformational labilityof two molecular chaperones Hsc70 and gp96:Effects of pH and temperature. Arch Biochem Biophys,2006,447(2):34-45.
    [113]Meersman F, Smeller L, Heremans K. A comparative FTIRstudy of cold-, pressure-and heat-induced unfolding and aggregation of myoglobin. Biophys J,2002,82(3):2635-2644.
    [114]Fitzsimons S M, Mulvihill D M, Morris E R. Denaturationand aggregation processes in thermal gelation of whey proteins resolved by differential scanning calorimetry. Food Hydrocoll,2007, 21(1):638-644.
    [115]Kamat P V, Meisel (Eds) D. Semiconductor Nanoclusters-Physical. Chemical and Catalytic Aspects.Elsevier:Amsterdam,1997,45 (3):420-424.
    [116]Schmid (Eds) G. Nanoparticles-From Theory to Application; Wiley-VCH:Weinheim, Germany,2004,56 (1):201-205.
    [117]Murphy C J. Optical Sensing with Quantum Dots. Anal Chem,2002,74 (3):520A-526A.
    [118]Marcel B J, Mario M, Peter G, et al. Semiconductor Nanocrystals as Fluorescent Biological Labels. Science,1998,281 (3):2013-2016.
    [119]Chan W C W, Maxwell D J, Gao X H, et al. Luminescent quantum dots for multiplexed biological detection and imaging. Curr Opin iotechnol,2002,13(2):40-46.
    [120]Chen F Q, Gerion D. Fluorescent CdSe/ZnS nanocrystal-peptide conjugates for long-term, nontoxic imaging and nuclear targeting in living cells. Nano Lett,2004,4(1):1827-1832.
    [121]Voura E B, Jaiswal J K, Mattoussi H, et al. Tracking metastatic tumor cell extravasation with quantum dot nanocrystals and fluorescence emission-scanning microscopy. Nat Med,2004,10(2):993-998.
    [122]Long X F, Liu S P, Kong L, et al. A study on the interaction of proteins with some heteropoly compounds and their analytical application by resonance Rayleigh scattering method.Talanta, 2004,63(3):279-286.
    [123]Luo H Q, Liu S P, Li N B, et al. Resonance Rayleigh scattering, frequency doubling scattering and second-order scattering spectra of the heparin-crystal violet system and their analytical application.Anal Chim Acta,2002,468(9):275-286.
    [124]Wang (Ed) E K. Advance in Analytical Chemistry, Science Press of China, Beijing,2002, pp. 280-288.
    [125]Pasternack R F, Bustamante C, Colling P J, et al. Porphyrin assemblies on DNA as studied by a resonance light-scattering technique.J Am Chem Soc,1993,115(3):5393-5399.
    [126]Huang C Z, Li K A, Tong S Y. Determination of Nanograms of Nucleic Acids by Their Enhancement Effect on the Resonance Light Scattering of the Cobalt(II)/4-[(5-Chloro-2-pyridyl)azo]-1,3-diaminobenzene Complex.Anal.Chem,1997,69(1): 514-520.
    [127]Lu X., Luo Z H, Liu C W, et al. Resonance Rayleigh scattering for detection of proteins In HPLC.J Sep Sci,2008,31(3):2988-2993.
    [128]Liu S P, Chen S, Liu Z F, et al. Resonance Rayleigh scattering spectra of interaction of sodium carboxymethylcellulose with cationic acridine dyes and their analytical applications Anal Chim Acta,2005,535(5):169-175.
    [129]Yang Q L, Lu Q M, Liu Z F, et al. Resonance Rayleigh scattering spectra of ion-association nanoparticles of [Co(4-[(5-Chloro-2-pyridyl) azo]-1,3-diaminobenzene)2]2+-sodium dodecyl benzene sulfonate system and its analytical application. Anal Chim Acta,2009,632(2):115-121.
    [130]Jiang Z L, Liu Q Y, Liu S P. Catalytic resonance scattering spectral method for the determination of trace amounts of Se.Talanta,2002,58 (3):635-640.
    [131]Fu S H, Liu Z F, Liu S P, et al. Study on the resonance Rayleigh scattering, second-order-scattering and frequency doubling scattering spectra of the interactions of palladium(Ⅱ)-ceftriaxone chelate with anionic surfactants and their analytical applications. Talanta,2008,75(7):528-535
    [132]Qin M Y, Liu S P, Liu Z F, et al. Spectrochim. Resonance Rayleigh scattering spectra, non-linear scattering spectra of tetracaine hydrochloride-erythrosin system and its analytical application.Acta Part A,2009,71(3):2063-2068.
    [133]Wei X.Q, Liu Z F, Liu S P. Resonance Rayleigh scattering method for the determination of tetracycline antibiotics with uranyl acetate and water blue.Anal Biochem,2005,346(6):330-332.
    [134]Tian H Y, He R, Gao F, et al. Fluoroimmunoassay for Antigen Based on Fluorescence Quenching Signal of Gold Nanoparticles.Xiang tan Univ. Nat Sc,2005,27(8):84-89.
    [135]Isarov A V, Chrysochoos J. Optical and Photochemical Properties of Nonstoichiometric Cadmium Sulfide Nanoparticles:Surface Modification with Copper(II) Ions. Langmuir, 1997,13(3):3142-3149.
    [136]Dong C Q, Qian H F, Fang N H, et al. Study of Fluorescence Quenching and Dialysis Process of CdTe Quantum Dots, Using Ensemble Techniques and Fluorescence Correlation Spectroscopy. J Phys Chem B,2006,110(7):11069-11075.
    [137]Pan B F, Gao F, Ao L M, et al. Investigation of interactions between dendrimer-coated magnetite nanoparticles and bovine serum albumin. Mater,2005,293(3):252-258.
    [138]Wang Q, Kuo Y C, Wang Y W, et al. Luminescent Properties of Water-Soluble Denatured Bovine Serum Albumin-Coated CdTe Quantum Dots.J Phys Chem B,2006,110(1):16860-16866.
    [139]Xia Y S, Cao C, Zhu C Q. Two distinct photoluminescence responses of CdTe quantum dots to Ag (Ⅰ). J Luminescence,2008,128(3):166-172.
    [140]Li J, Zhao K, Hong X, et al. Prototype of immunochromatographic assay strips using colloidal CdTe nanocrystals as biological luminescent label.Colloids Surf B,2005,40(5):179-182.
    [141]Lakowicz J R.. Principles of fluorescence spectroscopy. Plenum Press, New York,1983, pp. 266-267.
    [142]Shaikh S M T, Seetharamappa J, Ashoka S, et al. A study of the interaction between bromopyrogallol red and bovine serum albumin by spectroscopic methods. Dyes Pigm,2007,73(3):211-216.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700