La_2NiO_(4+δ)多孔电极的显微结构与电化学性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
La2NiO4+δ体系层状化合物具有电子-离子混合导电性能,是中温固体氧化物燃料电池(SOFC)阴极材料新的研究热点。本论文采用氨基多羧酸配合物法合成La2NiO4+6超细微粉体,采用丝网印刷工艺在致密的Ce0.8Sm0.2O1.9电解质基体上制备La2NiO4+δ多孔电极,研究La2NiO4+δ多孔电极的制备工艺条件对多孔电极显微结构和电化学性能的影响,探索La2NiO4+δ多孔电极合适的制备工艺条件,研制具有高电化学催化活性的La2NiO4+δ多孔电极。
     制备了La2NiO4+δ/Ce0.8Sm0.2O1.9/Pt三电极结构的电化学电池,采用电化学阻抗谱、计时电压法、塔菲尔曲线分析等手段研究了各个电极过程和总的电极电化学反应的极化电阻、不同电流密度下的过电势、交换电流密度等电化学性能。研究结果表明,电极的阻抗响应来自电极/电解质界面的电荷传递过程和电极表面的氧交换过程。其中,电极表面的氧交换过程是产生电极极化的主要原因。
     研究了电极浆料组成和烧结温度对La2NiO4+δ多孔电极显微结构的影响。研究结果表明,通过调整制备工艺条件,可以调控多孔电极与电解质之间的接触状态、孔隙率、多孔电极的晶粒粒径、晶粒之间的连接程度等显微结构特征。本论文还研究了多孔电极的显微结构对电化学性能的影响。研究结果表明,多孔电极与电解质基体之间的接触状态主要影响电极/电解质之间的电荷传递过程,多孔电极的晶粒粒径和晶粒之间的连接程度主要影响电极表面的氧交换过程,采用超微细粉体制备La2NiO4+δ多孔电极有利于优化多孔电极的显微结构和提高其电化学催化活性。
     确定合适的多孔电极制备工艺条件是:采用超微细La2NiO4+δ粉体(平均粒度-90nm)为起始粉体、浆料固含量为70%、烧结温度为950℃,在该条件下制备的La2NiO4+δ多孔电极具有理想的显微结构和优良的电化学性能。在800℃下该多孔电极的极化电阻为0.38Ω·cm2,在200mA·cm2的电流密度下的过电势为103mV,在平衡状态下其交换电流密度为102mA·cm-2。
La2NiO4+δ-based layer-structured compounds have attracted increasing attention as a novel candidate material for the cathode of intermediate temperature solid oxide fuel cells (SOFCs) because of their electronic-ionic mixed conducting characteristics. Superfine La2NiO4+δpowder has been derived from a ployaminocarboxylate complex precursor with diethylenetriaminepentaacetic acid (H5DTPA) as ligand. Electrochemical cells with a three-electrode configuration of La2Ni04+δ/Ce0.8Sm0.2O1.9/Pt have been fabricated by the screen-printing technique using the superfine La2NiO4+δpowder as the starting powder of the slurry. The electrochemical properties of porous La2NiO4+δelectrodes on dense substrates of the electrolyte have been investigated based on the electrochemical cells with respect to preparation conditions and the resulting microstructures.
     Electrochemical impedance spectroscopy, Chronopotentiometry and Tafel plot analysis were employed to investigate the electrochemical properties of La2Ni04+δelectrodes. The electrochemical parameters, such as polarization resistance, cathodic overpotential and exchange current density, were analyzed with respect to the composition of the slurry and sintering temperature of the electrodes. It was found that the electrode polarization mainly originated from the charge transfer process at the electrode/electrolyte interface and the oxygen exchange process on the surface of the porous electrodes, with the latter process dominating the overall electrode reaction.
     The electrocatalytic activity of the porous La2NiO4+δelectrodes has been evaluated in relation to their microstructural features, including the grain size, connection between the grains, the porosity of the electrode and the adhesion of the electrode to the electrolyte. A close dependence of the electrocatalytic activity on the microstructure was confirmed. It was found that a tight adhesion between the electrode and the electrolyte favored the interfacial charge transfer process, while fine grain size together with reasonable connectivity between the grains benefited the surface oxygen exchange process. From a microstructural viewpoint, the grain size and connectivity between the grains acted as the key contributing factors to the electrocatalytic activity of the porous electrodes. Adopting the superfine powder to fabricate the electrode was suggested to be favorable to modifying the microstructure and improving the electrocatalytic activity.
     Employing the powder clacined at 900℃as the starting powder, adopting the slurry with a solid content of 70% for screen printing and sintering the electrode at 950℃was determined to be the optimum preparation conditions based on comparative research. At 800℃, the electrode prepared under the conditions exhibited satisfactory electrochemical properties compared with literal results, showing a polarization resistance of 0.38Q·cm2, an overpotential of 103mV at a current density of 200mA·cm-2 and an exchange current density of 102mA·cm-2.
引文
[1]K. Choy, W. Bai, S. Charojrochkul, et al. The development of intermediate-temperature solid oxide fuel cells for the next millennium[J]. Journal of Power Sources,1998,71(1-2):361-369.
    [2]S.C. Singhal, K. Kendall, C.S. Subhash, et al. Introduction to SOFCs. High Temperature and Solid Oxide Fuel Cells[M]. Elsevier Science,2003, Amsterdam,1-22.
    [3]D.J.L. Brett, A. Atkinson, N.P. Brandon, et al. Intermediate temperature solid oxide fuel cells[J]. Chemical Society Reviews,2008,37(8):1568-1578.
    [4]T. Kobayashi, S. Wang, M. Dokiya, et al. Oxygen nonstoichiometry of Ce1-ySmyO2-0.5y-x (y=0.1, 0.2)[J]. Solid State Ionics,1999,126(3-4):349-357.
    [5]R. Doshi, V.L. Richards, J.D. Carter, et al. Development of Solid-Oxide Fuel Cells That Operate at 500 ℃[J]. Journal of The Electrochemical Society,1999,146(4):1273-1278.
    [6]T. Matsui, M. Inaba, A. Mineshige, et al. Electrochemical properties of ceria-based oxides for use in intermediate-temperature SOFCs[J]. Solid State Ionics,2005,176(7-8):647-654.
    [7]B.B. Patil, S.H. Pawar. Spray pyrolytic synthesis of samarium doped ceria (Ce0.8Sm0.2O1.9) films for solid oxide fuel cell applications[J]. Applied Surface Science,2007,253(11): 4994-5002.
    [8]S.W. Zha, C.R. Xia, G.Y. Meng. Calculation of the e.m.f. of solid oxide fuel cells[J]. Journal of Applied Electrochemistry,2001,31(1):93-98.
    [9]A. McEvoy, C.S. Subhash, K. Kevin. Anodes. High Temperature and Solid Oxide Fuel Cells[M]. Elsevier Science,2003, Amsterdam.149-171.
    [10]J. Rossmeisl, W.G. Bessler. Trends in catalytic activity for SOFC anode materials[J]. Solid State Ionics,2008,178(31-32):1694-1700.
    [11]W.Z. Zhu, S.C. Deevi. A review on the status of anode materials for solid oxide fuel cells[J]. Materials Science and Engineering A,2003,362(1-2):228-239.
    [12]S.P. Jiang, S.H. Chan. A review of anode materials development in solid oxide fuel cells[J]. Journal of Materials Science,2004,39(14):4405-4439.
    [13]J.B. Goodenough, Y.H. Huang. Alternative anode materials for solid oxide fuel cells[J]. Journal of Power Sources,2007,173(1):1-10.
    [14]J. Weissbart, R. Ruka. A Solid Electrolyte Fuel Cell[J]. Journal of The Electrochemical Society,1962,109(8):723-726.
    [15]K. Joon. Fuel cells-a 21st century power system[J]. Journal of Power Sources,1998,71(1-2): 12-18.
    [16]C. Sun, R. Hui, J. Roller. Cathode materials for solid oxide fuel cells:a review[J]. Journal of Solid State Electrochemistry,2010,14(7):1125-1144.
    [17]E. Tsipis, V. Kharton. Electrode materials and reaction mechanisms in solid oxide fuel cells:a brief review[J]. Journal of Solid State Electrochemistry,2008,12(9):1039-1060.
    [18]E. Tsipis, V. Kharton. Electrode materials and reaction mechanisms in solid oxide fuel cells:a brief review[J]. Journal of Solid State Electrochemistry,2008,12(11):1367-1391.
    [19]B.C.H. Steele, J.M. Bae. Properties of La0.6Sr0.4Co0.2Fe0.8O3-x (LSCF) double layer cathodes on gadolinium-doped cerium oxide (CGO) electrolytes:Ⅱ. Role of oxygen exchange and diffusion[J]. Solid State Ionics,1998,106(3-4):255-261.
    [20]A. Petric, P. Huang, F. Tietz. Evaluation of La-Sr-Co-Fe-O perovskites for solid oxide fuel cells and gas separation membranes[J]. Solid State Ionics,2000,135(1-4):719-725.
    [21]S.P. Jiang. A comparison of O2 reduction reactions on porous (La,Sr)MnO3 and (La,Sr)(Co,Fe)O3 electrodes[J]. Solid State Ionics,2002,146(1-2):1-22.
    [22]M. Katsuki, S. Wang, M. Dokiya, et al. High temperature properties of La0.6Sr0.4Co0.8Fe0.2O3-δ oxygen nonstoichiometry and chemical diffusion constant[J]. Solid State Ionics,2003,156(3-4):453-461.
    [23]W.G. Wang, M. Mogensen. High-performance lanthanum-ferrite-based cathode for SOFC[J]. Solid State Ionics,2005,176(5-6):457-462.
    [24]F.S. Baumann, J. Fleig, H.U. Habermeier, et al. Impedance spectroscopic study on well-defined (La,Sr)(Co,Fe)03-δ model electrodes[J]. Solid State Ionics,2006,177(11-12): 1071-1081.
    [25]F. Qiang, K. Sun, N. Zhang, et al. Optimization on fabrication and performance of A-site-deficient La0.58Sr0.4Co0.2Fe0.8O3-δ cathode for SOFC[J]. Journal of Solid State Electrochemistry,2009,13(3):455-467.
    [26]K. Zhao, Q. Xu, D.P. Huang, et al. Microstructure dependence of electrode properties for La0.6Sr0.4Co0.2Fe0.8O3-δ spin-coated on Ce0.8Sm0.2O2-δ electrolyte[J]. Ionics,2011,17(3): 247-254.
    [27]M Chen, B.H. Kim, Q. Xu, et al. Fabrication and performance of anode-supported solid oxide fuel cells via slurry spin coating[J]. Journal of Membrane Science,2010,360(1-2): 461-468.
    [28]L.W. Tai, M.M. Nasrallah, H.U. Anderson, et al. Structure and electrical properties of La1-xSrxCo1-yFeyO3. Part 1. The system Lao.8Sro.2Co1-yFeyO3[J]. Solid State Ionics,1995, 76(3-4):259-271.
    [29]L.W. Tai, M.M. Nasrallah, H.U. Anderson, et al. Structure and electrical properties of La1-xSrxCo1-yFeyO3. Part 2. The system La1-xSrxCo0.2Fe0.8O3[J]. Solid State Ionics,1995,76(3-4):273-283.
    [30]H.Y. Tu, Y. Takeda, N. Imanishi, et al. Ln0.4Sr0.6Co0.8Fe0.2O3-δ (Ln=La, Pr, Nd, Sm, Gd) for the electrode in solid oxide fuel cells[J]. Solid State Ionics,1999,117(3-4):277-281.
    [31]H. Ullmann, N. Trofimenko, F. Tietz, et al. Correlation between thermal expansion and oxide ion transport in mixed conducting perovskite-type oxides for SOFC cathodes[J]. Solid State Ionics,2000,138(1-2):79-90.
    [32]V. V. Kharton, A. P. Viskup, E. N. Naumovich, et al. Oxygen ion transport in La2NiO4-based ceramics[J]. Journal of Materials Chemistry,1999,9(10):2623-2629.
    [33]S.J. Skinner, J.A. Kilner. Oxygen diffusion and surface exchange in La2-xSrxNiO4+δ[J]. Solid State Ionics,2000,135(1-4):709-712.
    [34]J.A. Kilner, C.K.M. Shaw. Mass transport in La2Ni1-xCoxO4+δ oxides with the K2NiF4 structure[J]. Solid State Ionics,2002,154-155:523-527.
    [35]M. Al Daroukh, V.V. Vashook, H. Ullmann, et al. Oxides of the AMO3 and A2MO4-type: structural stability, electrical conductivity and thermal expansion[J]. Solid State Ionics,2003, 158(1-2):141-150.
    [36]G. Amow, I.J. Davidson, S.J. Skinner. A comparative study of the Ruddlesden-Popper series, Lan+1NinO3n+1 (n=1,2 and 3), for solid-oxide fuel-cell cathode applications[J]. Solid State Ionics,2006,177(13-14):1205-1210.
    [37]H. Zhao, F. Mauvy, C. Lalanne, et al. New cathode materials for ITSOFC:Phase stability, oxygen exchange and cathode properties of La2-xNiO4+δ[J]. Solid State Ionics,2008, 179(35-36):2000-2005.
    [38]A. Demourgues, A. Wattiaux,J.C. Grenier, et al. Electrochemical Preparation and Structural Characterization of La2Ni04+δ Phases (0≤δ≤0.25)[J]. Journal of Solid State Chemistry, 1993,105(2):458-468.
    [39]M. Zinkevich, F. Aldinger. Thermodynamic analysis of the ternary La-Ni-O system[J]. Journal of Alloys and Compounds,2004,375(1-2):147-161.
    [40]D.O. Bannikov, V.A. Cherepanov. Thermodynamic properties of complex oxides in the La-Ni-O system[J]. Journal of Solid State Chemistry,2006,179(8):2721-2727.
    [41]V.V. Kharton, A.A. Yaremchenko, A.L. Shaula, et al. Transport properties and stability of Ni-containing mixed conductors with perovskite and K2NiF4-type structure[J]. Journal of Solid State Chemistry,2004,177(1):26-37.
    [42]V.V. Vashook, S.P. Tolochko, I.I. Yushkevich, et al. Oxygen nonstoichiometry and electrical conductivity of the solid solutions La2-xSrxNiOy (0≤x≤0.5)[J]. Solid State Ionics,1998, 110(3-4):245-253.
    [43]C.N. Munnings, S.J. Skinner, G. Amow, et al. Oxygen transport in the La2Ni1-xCoxO4+δ system[J]. Solid State Ionics,2005,176(23-24):1895-1901.
    [44]F. Mauvy, J.M. Bassat, E. Boehm, et al. Oxygen electrode reaction on Nd2NiO4+δ cathode materials:impedance spectroscopy study[J]. Solid State Ionics,2003,158(1-2):17-28.
    [45]F. Mauvy, C. Lalanne, J.M. Bassat, et al. Oxygen reduction on porous Ln2Ni04+δ electrodes[J]. Journal of the European Ceramic Society,2005,25(12):2669-2672.
    [46]F. Mauvy, C. Lalanne, J.M. Bassat, et al. Electrode properties of Ln2NiO4+δ (Ln=La, Nd, Pr)[J]. Journal of The Electrochemical Society,2006,153(8):A1547-A1553.
    [47]M.J. Escudero, A. Aguadero, J.A. Alonso, et al. A kinetic study of oxygen reduction reaction on La2NiO4 cathodes by means of impedance spectroscopy[J]. Journal of Electroanalytical Chemistry,2007,611(1-2):107-116.
    [48]D. Perez-Coll, A. Aguadero, M.J. Escudero, et al. Optimization of the interface polarization of the La2NiO4-based cathode working with the Ce1-xSmxO2-δ electrolyte system[J]. Journal of Power Sources,2008,178(1):151-162.
    [49]D. Perez-Coll, A. Aguadero, M.J. Escudero, et al. Effect of DC current polarization on the electrochemical behaviour of La2NiO4+δ and La3Ni2O7+δ-based systems[J]. Journal of Power Sources,2009,192(1):2-13.
    [50]S.B. Adler, J.A. Lane, B.C.H. Steele. Electrode Kinetics of Porous Mixed-Conducting Oxygen Electrodes[J]. Journal of The Electrochemical Society,1996,143(11):3554-3564.
    [51]C. Lalanne, F. Mauvy, E. Siebert, et al. Intermediate temperature SOFC single cell test using Nd1.95NiO4+δ as cathode[J]. Journal of the European Ceramic Society,2007,27(13-15): 4195-4198.
    [52]D.P. Huang, Q. Xu, W. Chen, et al. Sintering, microstructure and conductivity of La2NiO4+δ ceramic[J]. Ceramics International,2008,34(3):651-655.
    [53]C. Ferchaud, J.C. Grenier, Y.Z. Steenwinkel, et al. High performance praseodymium nickelate oxide cathode for low temperature solid oxide fuel cell[J]. Journal of Power Sources,2011,196(4):1872-1879.
    [54]S.B. Adler. Factors Governing Oxygen Reduction in Solid Oxide Fuel Cell Cathodes[J]. Chemical Reviews,2004,104(10):4791-4844.
    [55]D.P. Huang, Q. Xu, F. Zhang, et al. Synthesis and electrical conductivity of La2Ni04+s derived from a polyaminocarboxylate complex precursor[J]. Materials Letters,2006,60(15): 1892-1895.
    [56]B. Ismail, M. Abaab, B. Rezig. Structural and electrical properties of ZnO films prepared by screen printing technique[J]. Thin Solid Films,2001,383(1-2):92-94.
    [57]R. Peng, C. Xia, X. Liu, et al. Intermediate-temperature SOFCs with thin Ce0.8Y0.2O1.9 films prepared by screen-printing[J]. Solid State Ionics,2002,152-153:561-565.
    [58]G. Denuault, M. Sosna, K.J. Williams, et al. Classical Experiments. Handbook of Electrochemistry[M]. Elsevier,2007, Amsterdam,431-469.
    [59]J.E. Baur, G.Z. Cynthia. Diffusion Coefficients. Handbook of Electrochemistry[M]. Elsevier, 2007, Amsterdam,829-848.
    [60]M. Ciobanu, J.P. Wilburn, M.L. Krim, et al. Fundamentals. Handbook of Electrochemistry[M]. Elsevier,2007, Amsterdam,3-29.
    [61]K. Murata, T. Fukui, H. Abe, et al. Morphology control of La(Sr)Fe(Co)O3-a cathodes for IT-SOFCs[J]. Journal of Power Sources,2005,145(2):257-261.
    [62]S.P. Yoon, S.W. Nam, J. Han, et al. Effect of electrode microstructure on gas-phase diffusion in solid oxide fuel cells[J]. Solid State Ionics,2004,166(1-2):1-11.
    [63]D. Herbstritt, A. Weber, E. Ivers-Tiffee. Increased cathode performance using a structured electrolyte surface[J]. Electrochemical Society Proceedings,1999,99-19:972-980.
    [64]K.L. Choy, S. Charojrochkul, B.C.H. Steele. Fabrication of cathode for solid oxide fuel cells using flame assisted vapour deposition technique[J]. Solid State Ionics,1997,96(1-2):49-54.
    [65]Q. Li, Y. Fan, H. Zhao, et al. Preparation and electrochemical properties of a Sm2-xSrxNiO4 cathode for an IT-SOFC[J]. Journal of Power Sources,2007,167(1):64-68.
    [66]D. Chen, R. Ran, K. Zhang, et al. Intermediate-temperature electrochemical performance of a polycrystalline PrBaCo2O5+δ cathode on samarium-doped ceria electrolyte[J]. Journal of Power Sources,2009,188(1):96-105.
    [67]X.J. Chen, K.A. Khor, S.H. Chan. Identification of O2 reduction processes at yttria stabilized zirconiadoped lanthanum manganite interface[J]. Journal of Power Sources,2003,123(1): 17-25.
    [68]M. Ferkhi, S. Khelili, L. Zerroual, et al. Synthesis, structural analysis and electrochemical performance of low-copper content La2Ni1-xCuxO4+δ materials as new cathodes for solid oxide fuel cells[J]. Electrochimica Acta,2009,54(26):6341-6346.
    [69]Q. Li, H. Zhao, L. Huo, et al. Electrode properties of Sr doped La2CuO4 as new cathode material for intermediate-temperature SOFCs[J]. Electrochemistry Communications,2007,9(7):1508-1512.
    [70]C. Jin, J. Liu, Y. Zhang, et al. Characterization and electrochemical performances of Ba2-xSixFeO4+δ as a novel cathode material for intermediate-temperature solid oxide fuel cells[J]. Journal of Power Sources,2008,182(2):482-488.
    [71]A. Mai, V.A.C. Haanappel, S. Uhlenbruck, et al. Ferrite-based perovskites as cathode materials for anode-supported solid oxide fuel cells:Part Ⅰ. Variation of composition[J]. Solid State Ionics,2005,176(15-16):1341-1350.
    [72]M. Soorie, S.J. Skinner. Ce substituted Nd2CuO4 as a possible fuel cell cathode material[J]. Solid State Ionics,2006,177(19-25):2081-2086.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700