金属橡胶液体过滤特性及试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由不锈钢丝编织压制成型制作的金属橡胶(Metal Rubber,简称MR)多孔材料兼有金属和橡胶的双重特性,在高低温、腐蚀等恶劣环境均保持阻尼、过滤、抗噪、隔热、密封等一系列优异特性,在航空、航天和空间技术领域有较大的潜在应用价值。金属橡胶多孔材料液体过滤特性及试验研究是金属橡胶技术研究领域的一个重要组成部分,由于金属橡胶过滤元件具有制备工艺简单独特、承载能力高、耐高低温和大温差性能强、对于流体流速及压力波动具有自动吸收及调节能力、孔隙度分布范围广且具有可设计性等特点,因此,金属橡胶过滤材料及过滤装置等在航空航天、国防及民品特殊工况具有广泛用途。金属橡胶在特种环境下所具有的优良过滤性能是其它相关产品无法比拟的,俄罗斯对此有成功的应用及研究经验。资料表明,我国对金属橡胶技术的研究尚处于专项研究阶段,主要集中于金属橡胶材料在阻尼减振、密封及吸声降噪等领域的应用。为了填补国内目前对此类新型材料在过滤方面的有关技术空白,本论文对金属橡胶多孔材料的内部孔隙组织结构特性及其过滤相关技术进行开创性研究,为金属橡胶多孔材料过滤技术的广泛应用奠定理论及试验基础。
     本文详细地综述了课题研究的背景及国内外研究现状,阐述了金属橡胶多孔材料用于过滤领域的可行性及鲜明特点。深入研究了表征金属橡胶多孔材料孔隙特征的几个重要因素:孔隙度、当量直径、最大孔隙直径和孔径分布规律等。推导出金属橡胶滤材平均孔隙度、最小孔隙度计算式和孔隙度计算的动态模型;借助于毛细管模型,获得了金属橡胶滤材的当量直径(水力直径)的表达式;对金属橡胶滤材内部孔隙结构适当简化基础上,采用统计学方法推导出金属橡胶滤材最大孔径的理论公式,并利用气泡试验孔径测定法加以验证。结果表明,该公式准确地反映出金属橡胶滤材最大孔径的影响因素及其相互关系;基于平面随机分割理论(Poisson Polyhedron Theory),推导出金属橡胶滤材的理论孔径分布。并采用压汞法对金属橡胶滤材孔径分布进行试验测定,结果表明试验结果与理论公式符合较好。
     以流体的流量连续性方程为基础,推导出圆柱形金属橡胶过滤材料雷诺数的计算公式。并利用金属橡胶过滤材料雷诺数,采用理论与试验相结合的方法,建立了金属橡胶过滤材料的压力损失精确计算公式。基于达西定律和流体介质渗流速度的理论公式,推导出金属橡胶过滤材料渗透系数的计算公式。
     对不同结构参数的圆柱形金属橡胶过滤元件进行了大量的多次通过试验,获得了孔隙度、金属丝直径和试件成型厚度对过滤效率和过滤压降的关系曲线。对环形与圆柱形金属橡胶滤材的过滤性能进行了对比试验研究,结果表明在较低孔隙度时,金属橡胶滤材过滤性能不受其结构形式的影响,而在较高孔隙度时,环形金属橡胶滤材远高于圆柱形金属橡胶滤材的过滤效率。开展了组合金属橡胶滤材过滤性能的试验研究,结果表明,组合金属橡胶滤材具有更加优异的过滤性能,在过滤效率相同的情况下,组合金属橡胶滤材过滤压降较低,流体的通过性能更好,在达到极限压降前能够容纳更多的污染物,滤材使用寿命大为延长,过滤性能得到了充分的发挥。通过理论推导与试验研究,建立了金属橡胶滤材过滤精度的理论公式,确定了孔隙度、金属丝直径与过滤精度的函数关系。同时,成型厚度对金属橡胶滤材过滤精度有着重要的影响,增加金属橡胶滤材厚度有利于获得稳定的过滤精度值。
     分析了悬浮颗粒及液体的物理性质对金属橡胶滤材过滤性能的影响。运用经典过滤机理,从微观上分析了金属橡胶多孔过滤材料捕获颗粒的机制。
The Metal Rubber(MR) porous material compacted by stainless steel thread is possessed of dual properties of metals and rubber. It can keep a series of excellent performances such as damping, filter, noise reduction, heat insulation and sealing even under rugged environment of high and low temperature and erosion, so it boasts the great potentiality in the field of aviation, aerospace and interspace. Liquid filtration properties and experimental study of the MR porous material become an important component of MR technology. Because of the simple and unique fabrication process, the high carrying capability, the strong capability of resisting large temperature difference as well as the devisable characteristics of automatic absorption and good adjustment when fluid velocity and pressure were fluctuant and of the large distribution range of porosity, the MR filtering materials and filtering device are widely utilized in the domain of aviation, national defense and the special condition of civilian products. The MR porous material is in the possession of excellent filtering capability which other interrelated material are unmatched to, and Russian made it successful utilized and researched. Data shows that Chinese study on the MR technology is still in special research where attention is mainly focused on the application field of damping and vibration reduction, sealing and noise absorption. In order to make up the lack technology of new material about its filtration, the pioneering study was made about inner pore structure and filtering technology of the MR porous material, which provided theoretical and experimental foundation for its large use.
     The background of the issue and the research situation home and abroad was detailed introduced in this paper where the feasibility and distinct characteristic of the using of the MR porous material in the filtering domain was also stated. Several important factors affecting the pore character of the MR porous material was deeply studied such as the porosity, equivalent diameter, the pore maximum diameter and the distribution range of pore diameter. The main results are as followings: the calculating formula of average and minimum porosity and the dynamic formula of porosity were deduced. By means of the capillary model, the equivalent diameter(hydraulic diameter) formula of the MR porous material was obtained. On the basis of reasonable simplification of inner pore structure, the theoretical formula describing maximum pore size of MR filtering material is derived by statistical method and was proved by bubble test pore size. The results show that the formula precisely illustrates the influencing factors on maximum pore size of MR and their interrelation. With the help of Poisson Polyhedron Theory, theoretical pore size distribution of MR was worked out and was verified by mercury porosimetry method. The experimental results are well matched to the theoretical formulas.
     Based on the flow continuity equation of fluid, the Reynolds Equation of cylindrical MR filtering material was done. Precise formula of pressure loss was deduced using Reynolds Equation of MR filtering material in terms of combining the theory and the experiment. On account of Darcy law and the formula of fluid seepage velocity, theoretical formula of permeability coefficient was figured out.
     Relation curves of the porosity, thread diameter and the thickness of formed specimen to the filtering effectiveness and the filtering pressure-drop were obtained from a large number of successful experiments on elements of cylindrical MR filtering material with different structural parameters. There was a compared study on filtering capacity of annular and cylindrical MR filtering material, the results of which show that filtering capacity of the MR is not affected by its structural form at low porosity and while on high porosity filtering effectiveness of annular MR filtering material is higher than that of cylindrical MR filtering material. Combined MR was researched through doing experiments and the result indicates its filtering capacity is better than the others. At the same filtering capacity, combined MR filtering material is in the nature of lower filtering pressure-drop, better fluid traffic ability, containing more contamination before reaching its ultimate pressure-drop and of longer working life so that it was capable of giving full play of its filtering capability. The theoretical formula describing filtering precision of MR was obtained from theoretical deducing and experimental study so that function of porosity, thread diameter and filtering precision was determined. Meanwhile, the formed thickness had great effect on filtering precision of MR filtering material and the thickness addition helped filtering effectiveness tend to a stabilized value.
     The filtration mechanism of the MR porous filtering material was analyzed, which will provide the reference for the understanding of the performance of the MR filtering. The mechanics balance equations were established considering the suspended particle deposition, the dispersion and the migration during the filtration process. The decision condition of the particle disperses and the migration were given, and the force and the moment that carries in the particle are analyzed one by one. The decision condition of the motive particle deposition, the dispersion and the migration were given in the paper.
引文
1 T. M. Hunt. Particle Contamination and Filtration of Hydraulic Fluids, Lubricants and Fuels. International Colloquim Tribology. 1988, 21(5): 297~298
    2王炉平,贾瑞清.液压油过滤技术及应用.液压气动与密封. 2004, (3):35~41
    3吕伯平,陈名华.航空油液监测技术.航空工业出版社, 2006: 107~113
    4 Ken Sutherland. Filters and Filtration Handbook. 5th Edition. Elsevier Science Publishing Company, 2008: 295~310
    5Д.Е.Чегодаев,О.П.Мулюкин,Е.В.Колтыгин.金属橡胶构件设计.李中郢,等译.国防工业出版社, 2000: 7~13
    6Е.А.Изжеуров.Формированиеэлементовконструкцийгидродинами-ческоготрактаэнергетическихустановокизупругогопористогоматериалаМР.Москва:Машиностроение, 2003: 228~234
    7О.Г.Цыплоков,ЦянХунюань,СяЮйхун.Исследованиеамортизационно-демпфирующиххарактеристикупругихкольцевыхэлементовизкомпози-ционныхматериалов.Актуальныевопросыракетостроения. 2003, (1): 152~154
    8А.М.Жижкин.УпругийпористыйматериалМРвтепловыхтрубах.Вибрационнаяпрочностьинадёжностьдвигателейисистемлетательныхаппаратов. 1986, (2): 45~50
    9Д.Е.Чегодаев,О.П.Мулюкин,Ю.К.Пономорев.Основныенаправленияиперсперктивыпромышленногоиспользованияматериаловкапилярныйструктуры.Технологияавиационногоприборагиагрегатосроениф. 1990, (4): 46~53
    10敖宏瑞,姜洪源,王树国,等.支承发动机管路的金属橡胶阻尼器隔振性能研究.机械设计. 2003, 20(2): 14~18
    11姜洪源,敖宏瑞,夏宇宏.金属橡胶成型工艺研究及其应用.机械设计与制造. 2001, (2): 85~86
    12李茂淞.浅谈当今航空液压油滤.航空精密制造技术. 1992, (5): 20~22
    13任文儒,王远达.浅谈使用中水对飞机液压油的污染与防护.液压气动与密封. 1996, (2): 21~22
    14路甬祥.液压气动技术手册.机械工业出版社, 2002: 261~263
    15 R. H. Frith, W. Scott. Control of Solids Contamination in Hydraulic Systems—an Overview. Wear. 1993, 165(1): 69~74
    16 Chao Liu, P. Dransfleld, J. S. Stecki. Intelligent Control of Contamination Level in Hydraulic Control Systems. Control Engineering Practice. 1995, 3(1): 863~866
    17 Cherng-Yuan Lin. Reduction of Particulate Matter and Gaseous Emission from Marine Diesel Engines Using a Catalyzed Particulate Filter. Ocean Engineering. 2009, 29(11): 1327~1341
    18 H. L. MacLean, L.B. Lave. Evaluating Automobile Fuel/Propulsion System Technologies. Progress in Energy and Combustion Science. 2003, 29(1): 1~8
    19航天部第三〇一研究所.飞机液压、燃油系统污染控制—美国专家讲座资料专辑. 1990: 1~8
    20 E. C. Fitch, R. K. Tessmann. Controlling Contaminant Wear through Filtration. Wear. 1975, 34(3): 319~330
    21 J. C. Lee, H. M. Shin, R.K. Tessmann. An Investigation of Roll-Off Cleanliness for Hydraulic Systems and its Application to a Tractor. Biosystems Engineering. 2007, 96(1): 19~27
    22 L. Broussous, J. C. Ruiz, A. Larbot. Stamped Ceramic Porous Tubes for Tangential Filtration. Separation and Purification Technology. 1998, 14(1-3): 53~57
    23 K. Darcovich, D. Roussel, F. N. Toll. Sintering Effects Related to Filtration Properties of Porous Continuously Gradient Ceramic Ttructures. Journal of Membrane Science. 2001, 183(2): 293~303
    24 Yingchao Dong, Xingqin Liu, Qianli Ma, et al. Preparation of Cordierite-Based Porous Ceramic Micro-Filtration Membranes Using Waste Fly Ash as the Main Raw Materials. Journal of Membrane Science. 2006, 285(1-2): 173~181
    25 Masayoshi Fuji, Takeaki Kato, Fa-Zhi Zhang, et al. Effects of Surfactants on the Microstructure and Some Intrinsic Properties of Porous Building Ceramics Fabricated by Gelcasting. Ceramics International. 2006, 32(7): 797~802
    26 D. A. Streitwieser, N. Popovska, H. Gerhard, et al. Application of the Chemical Vapor Infiltration and Reaction (CVI-R) Technique for the Preparation of Highly Porous Biomorphic SiC Ceramics Derived from Paper. Journal of the European Ceramic Society. 2005, 25(6): 817~828
    27 J. M. Qian, J. P. Wang, G. J. Qiao, et al. Preparation of Porous SiC Ceramicwith a Woodlike Microstructure by Sol-Gel and Carbothermal Reduction Processing. Journal of the European Ceramic Society. 2004, 24(10-11): 3251~3259
    28 Tatsuya Okubo, Keitoshi Haruta, Katsuki Kusakabe, et al. Preparation of a Sol-Gel Derived thin Membrane on a Porous Ceramic Hollow Fiber by the Filtration Technique. Journal of Membrane Science. 1991, 59(1): 73~80
    29 N. Laitinen, D. Michaud, C. Piquet,et al. Effect of Filtration Conditions and Backflushing on Ceramic Membrane Ultrafiltration of Board Industry Wastewaters. Separation and Purification Technology. 2001, 24(1-2): 319~328
    30 J. Seville, T. G. Chuah, V. Sibanda, et al. Gas Cleaning at High Temperatures Using Rigid Ceramic Filters. Advanced Powder Technology. 2003, 14(6): 657~672
    31苏鹏,郭学益,冀树军.凝胶注模工艺制备莫来石泡沫陶瓷.天津大学学报. 2008, 41(12): 1492~1497
    32尚俊玲,陈维平,刘城,等.助烧剂和造孔剂对真空烧结SiC多孔陶瓷性能的影响.耐火材料. 2006, 40(6): 450~452
    33 Lei Yang, Xiaoshan Ning, Kexin Chenand, et al. Preparation and Properties of Hydroxyapatite Filters for Microbial Filtration. Ceramics International. 2007, 33(3): 483~489
    34 Zhi Zhang, Takeaki Kato, Masayoshi Fuji, et al. Gelcasting Fabrication of Porous Ceramics Using a Continuous Process. Journal of the European Ceramic Society. 2006, 26(4-5): 667~671
    35时利民,赵宏生,闫迎辉,等.开孔多孔陶瓷的制备技术.材料工程. 2005, (12):57~61
    36 K. Darcovich, D. Roussel, F. N. Toll. Sintering Effects Related to Filtration Properties of Porous Continuously Gradient Ceramic Structures. Journal of Membrane Science. 2001, 183(2): 293~303
    37 R. J. Bruyne. Properties and Applications of Highly Porous Sintered Metal Fibre Materials. Metal Powder Report. 1998, 53(1): 40~48
    38孙涛,奚正平,汤慧萍,等.过滤用粉末烧结梯度多孔材料.稀有金属材料与工程. 2008, 37(S4): 509~512
    39邸小波,奚正平,汤慧萍,等.不锈钢纤维烧结多孔材料孔结构分形分析.稀有金属材料与工程. 2007, 36(S3): 571~573
    40丁启圣,王维一.新型实用过滤技术.第2版.冶金工业出版社, 2005: 52
    41 F. Laurencelle, J. Goyette. Simulation of Heat Transfer in a Metal Hydride Reactor with Aluminium Foam. International Journal of Hydrogen Energy. 2007, 32(14): 2957~2964
    42 T. Uchikoshi, Y. Sakka, K. Ozawa, et al. Pressure Filtration and Sintering of Fine Zirconia Powder. Journal of the European Ceramic Society. 1998, 18(6): 669~674
    43王同庆.金属纤维烧结毡过滤材料过滤性能与科学应用.过滤与分离. 2003, 13(1): 26~28
    44 D. B. Purchas. Handbook of Filter Media. 3th Edition. Elsevire Advanced Technology, 2002: 121~124
    45汤慧萍,张正德.金属多孔材料发展现状.稀有金属材料与工程. 1997, 26(1): 1~6
    46 Tao Li. Dependence of Filtration Properties on Stainless Steel Mmedium Structure. Filtration & Separation. 1997, 34(3): 265~273
    47顾临,况春江,王凡.刚性烧结金属丝网滤材性能描述.第十一届中国国际过滤材料研讨会,上海,2000: 26~28
    48宁智,资新运,张春润,等.柴油机微粒金属丝网过滤体特性及反吹再生的初步研究.机械工程学报. 2003, 39(7): 123~127
    49栾培新,梁新武.烧结金属丝网滤芯过滤性能的试验研究.石油机械. 2003,
    31(7): 3~6
    50 J. Banhart. Manufacture, Characterisation and Application of Cellular Metals and Metal Foams. Progress in Materials Science. 2001, 46(6): 559~632
    51 R. J. Wakeman, E. S. Tarleton.Filtration: Equipment Selection, Modelling and Process Simulation. Elsevier Advanced Technology, 1999: 247~249
    52 T. C. Dickenson. Filters and Filtration Handbook. Elsevier Advanced Technology, 1997: 562~565
    53戴天翼.过滤器—设计、制造和使用.化学工业出版社, 2009: 402
    54 R. Adam, T. Lücke, R. Tittel, et al. Investigation of Structure of Planar Inhomogeneous Filter Media from Glass Fibers. Journal of Aerosol Science. 1992, 23(S1): 737~740
    55康勇.罗茜.液体过滤与过滤介质.化学工业出版社, 2008: 367
    56 E I DuPont de Nemous and Company. Evalusting Filtration Media: A Comparison of Polymeric Membrances and Nonwovens. Filtration & Separation. 1999, 36(12): 912~914
    57 Memtec America Corp. Polymer Filtration: Filter Medium Selection andElement Design. Filtration & Separation. 1997, 34(9): 913~916
    58 D. B. Purchas. State-of-the-art in Filtration. Filtration & Separation. 1991, 28(1): 6
    59 S. R. Harper, F. G. Pohland. Microbial Consortia Selection in Anaerobic Filters Operated in Different Reactor Configurations. Water Science and Technology. 1997, 36(6-7): 33~39
    60 A. Rushton, A. S. Ward, R. G. Holdich.固液两相过滤及分离技术.第2版.朱企新,等译.化学工业出版社, 2005: 75~80
    61 K. Sutherland. Energy Efficiency: Filter Media and Energy Efficiency. Filtration & Separation. 2009, 46(1): 16~19
    62 P. Bedrikovetsky, D. Marchesin, F. Shecaira, et al.Characterisation of Deep Bed Filtration System From Laboratory Pressure Drop Measurements. Journal of Petroleum Science and Engineering. 2001, 32(2-4): 167~177
    63 Renbi Bai, ChiTien. Particle Detachment in Deep Bed Filtration. Journal of Colloid and Interface Science. 1997, 186(2): 307~317
    64 C. Raymond, Wang, Chiu-Sen. Dynamics of Particle Deposition in Model Fiber Filters. Chemical Engineering Science. 1982, 37(11): 1661~1673
    65 R. Nassar, Chou.Songt. Modeling and Simulation of Deep-Bed Filtration: A Stochastic Compartmental Model. Chemical Engineering Science. 1986, 41(8): 2017~2027
    66 R. B. Aim, S. Vigneswaran, H. Prasanthi, et al. Influence of Particle Size and Size Distribution in Granular Bed Filtration and Dynamic Microfiltration. Water Science and Technology. 1997, 36(4): 207~215
    67 S. Osmak, D. Gosak, A. Glasnovic. Dynamic Mathematical Model of Deep Bed Filtration Process. Computers & Chemical Engineering. 1997, 21(1): 763~768
    68 U. K. Manandhar, S. Vigneswaran. Effect of Media Size Gradation and Varying Influent Concentration in Deep-Bed Filtration: Mathematical Models and Experiments. Separations Technology. 1991, 1(4): 178~183
    69李孟,刘新明.国内外深层过滤理论的最新研究进展.中国水运. 2006, 6(10): 45~46
    70 S. K. Wroski, A. K. Bi, L. K. Laskowski. Anomalous Behaviour during the Initial Stage of Constant Pressure Filtration. The Chemical Engineering Journal. 1976, 12(2): 143~147
    71 B. Morgeli, K. J. Ives. New Media for Effluent Filtration. Water Research. 1979, 13(10): 1001~1007
    72郭瑾珑,孟军,李桂平,等.深床过滤颗粒截留机理研究.环境科学. 2003, 24(3): 40~44
    73冯颖,杨元凤,张昌林,等.恒压操作下深层过滤系数λ的研究.过滤与分离. 2000, 10(4): 19~21
    74 K. J. Ives. Filtration Studied with Endoscopes. Water Research. 1989, 23(7): 861~866
    75张建锋,王晓昌.深层过滤单元滤床的数学模型.西安建筑科技大学学报. 2005, 37(2): 179~183
    76付海明,沈恒根.纤维过滤介质捕集效率数学模型的研究.东华大学学报. 2004, 30(3): 5~9
    77 C. R. Ison, K. J. Ives. Removal Mechanisms in Deep Bed Filtration. Chemical Engineering Science. 1969, 24(4): 717~729
    78 G. G. Guiziou, R. J. Wakeman, G. Daufin. Effect of Deposition in Deep-Bed Filtration: Determination and Search of Rate Parameters. Journal of Colloid and Interface Science. 2002, 85(1): 27~34
    79 R. Bai, R. I. Mackie. Modelling the Transition between Deposition Modes in Deep Bed Filtration. Chemical Engineering Science. 2002, 29(11): 77~91
    80许莉,李文革,鲁淑群,等.过滤理论与滤饼结构的研究.流体机械. 2000,
    28(10): 10~14
    81曲爱平.深层过滤理论基础研究.化学工程. 1997, 27(5): 30~33
    82克莱德.奥尔.过滤理论与实践.邵启祥,等译.国防工业出版社, 1982: 152~168
    83 A. J. Walker, L. Svarovsky. Development of a Computer Model for Predicting the Filtration Characteristics of a Suspension. Filtration & Separation. 1994, 31(1): 57~866
    84 H. B. Dharmappa, H. Prasanthi, M. U. Krishna, et al. Estimation of Empirical Coefficients of a Granular Filtration Model. Water Research. 1997, 31(5): 1083~1091
    85杨德武,冯颖,刘杰,等.粒状层澄清过滤方程及理论解的研究.沈阳化工学院学报. 2000, 14(1): 48~50
    86 V. N. Burganos, C. A. Paraskeva, A. C. Payatakes. Three-Dimensional Trajectory Analysis and Network Simulation of Deep Bed Filtration. Journal of Membrane Science. 1992, 148(1): 167~181
    87 M. M. Kim, A. L. Zydney. Theoretical Analysis of Particle Trajectories andSieving in a Two-Dimensional Cross-Flow Filtration System. Journal of Membrane Science. 2006, 281(1-2): 666~675
    88 R. C. Tsiang, Chiu-Sen Wang, C. Tien. Dynamics of Particle Deposition in Model Fiber Filters. Chemical Engineering Science. 1982, 37(11): 1661~1673
    89 C. Tien, A. C. Payatakes. Advances in Deep Bed Filtration. AIChE Journal. 1979, 25(5): 737 ~759
    90 N. R. Mann, T. A. Todd. Crossflow Filtration Testing of INEEL Radioactive and Non-Radioactive Waste Slurries. Chemical Engineering Journal. 2000, 80(1-3): 237~244
    91 Y. I. Chang, S. C. Chen, H. C. Chan. Network Simulation for Deep Bed Filtration of Brownian Particles. Chemical Engineering Science. 2004, 59(21): 4467~4479
    92 Y. I. Chang, H. C. Chan. Network Simulation for Deep Bed Filtration of Brownian Particles—A Supplement. Chemical Engineering Science. 2005, 60(10): 2827~2831
    93 A. C. Payatakes, H. Y. Park, J. Petrie. A Visual Study of Particle Deposition and Reentrainment during Depth Filtration of Hydrosols with a Polyelectrolyte. Chemical Engineering Science. 1981, 36(8): 1319~1335
    94 D. Houi, R. Lenormand. Particle Accumulation at the Surface of a Filter. Filtration & Separation. 1986, 23(8): 238~241
    95 S. Vigneswaran, H. Prasanthi, H. B. Dharmappa. Implications of Particle Size to Transient Stage of Deep Bed Filtration. Korean Journal of Chemical Engineering. 1996, 13(6): 162~171
    96 V. Jegatheesan, S. Vigneswaran. The Effect of Concentration on the Early Stages of Deep Bed Filtration of Submicron Particles. Water Research. 1997, 31(11): 2910~2913
    97 E. Rodier, J. A. Dodds, D. Leclerc,et al. Changes in Fluid Residence Time Distribution during Deep-Bed Filtration. Chemical Engineering Journal. 1991, 68(2-3): 131~138
    98夏宇宏,姜洪源,魏浩东,等.金属橡胶隔振器抗冲击性能研究.振动与冲击. 2009, 28(1): 72~75
    99李宇明,彭威,白鸿柏,等.金属橡胶材料宏观和细观力学模型.机械工程学报. 2005, 41(9): 38~41
    100闫辉,姜洪源,刘文剑.等.具有迟滞非线性的金属橡胶隔振器参数识别研究.物理学报. 2009, 58(8): 5238~5243
    101姜洪源,张蕊华,赵克定,等.金属橡胶挤压油膜阻尼器阻尼性能分析.推进技术. 2005, 26(2): 174~177
    102王佳民,裴听国.惯性平台新型金属橡胶减振器理论与实验研究.宇航学报, 2003, 24(1): 92~96
    103陈艳秋,朱梓根.用于管路的薄金属橡胶减振器的性能研究.航空动力学报, 2001, 16(2): 175~178
    104姜洪源,夏宇宏,敖宏瑞,等.金属橡胶与弹簧组合型隔振器动静态性能的分析.中国机械工程, 2002, 13(21): 1801~1804
    105夏宇宏,姜洪源,张蕊华,等.毛坯尺寸对金属橡胶微观组织结构特性的影响.哈尔滨工业大学学报. 2006, 38(9): 1461~1464
    106闫辉,夏宇宏,姜洪源.金属橡胶密封构件最小过盈量的研究.润滑与密封, 2005, 5: 14~16
    107姜洪源,武国启,Е.А.Изжеуров.金属橡胶材料声学参数理论计算及实验研究.声学学报, 2007, 32(6): 542~546
    108 P. Tronville. Air Filtration and Efficiency: Air Filters—Energy Rating and Labelling. Filtration & Separation. 2009, 46(4): 26~29
    109 P. Bedrikovetsky, D. Marchesin, F. Shecaira, et al. Characterisation of Deep Bed Filtration System from Laboratory Pressure Drop Measurements. Journal of Petroleum Science and Engineering. 2001, 32(2-4): 167~177
    110 J. A. Williams. Filtration and Contamination Control in Lubrication and Fluid Power Systems. Tribology International. 1993, 26(3): 224
    111路红,张津津,郝新友.液体自动颗粒计数器的校准及相关标准的应用.液压与气动. 2004, (8): 38~41
    112郝新友.在线液体颗粒计数器校准方法研究.机床与液压. 2008, 36(10): 85~87
    113 GB/T 21540-2008.液压传动—液体在线自动颗粒计数系统校准和验证方法
    114 GB/T 18854-2002.液压传动—液体自动颗粒计数器的校准
    115刘培生,马晓明.多孔材料检测方法.冶金工业出版社, 2006: 180~185
    116Р.А.Андреевский.Пористыеметаллокерамическиематериалы.Металлу-ргия, 1964: 188
    117С.В.Белов,О.Г.Картуесов.Видыпорпористыхметаллов.Машино-строение, 1973: 8
    118Б.А.Борок,И.И.Голиков.Исследованиекинетикипропиткипористыхметаллокерамическихтел.Физикаихимияобработкиметаллов. 1968, (2):38~41
    119И.П.Ишкин,М.Г.Каганер.Исследованиесвойствкерамическийфильт-ровпоразмерампор.Кислород. 1959, (2): 35~45
    120刘培生.多孔材料孔径及孔径分布的测定方法.钛工业进展. 2006, 23(2): 29~34
    121 G. Rideal. Analysis and Monitoring: How to Improve Precision Pore Size Measurement. Filtration & Separation. 2006, 43(3): 28~29
    122 ISO4003-1997.可渗透性烧结金属材料——气泡试验孔径的测定
    123 P. J. Dees, T. G. Tjan, J. Polderman. Determination of Pore Diameter by Permeability Measurements. 1980, 27(1): 29~36
    124 Y. H. Faure, J. P. Gourc, P. Gendrin. Structural Study of Porometry and Filtration Opening Sizes of Geotextiles. PhiladelPhia, 1990: 102~136
    125汤普森.可压缩流体动力学.田安久,等译.科学出版社, 1986: 20~112
    126 J. Bear.多孔介质流体动力学.李竞生,等译.中国建筑工业出版社, 1983:
    205~210
    127Д.Е.Чегодаев,О.П.Мулюкин,Е.В.Колтыгин.КонструипованиерабочихоргановмашиниоборудованияизупругопористогоматериалаМР.Самара:Самарскийгосударственныйаэрокосмическийуниверситет, 1994: 190
    128林建忠,阮晓东.流体力学.清华大学出版社. 2005: 435~436
    129 F. A. Dullien.多孔介质:流体渗移与孔隙结构.杨富民,等译.石油工业出版社, 1990: 125~127
    130 J. N. Staniforth, J. E. Rees. Shape Classification of Re-entrant Particles I: The Shape Factor. Powder Technology. 1981, 28(1): 3~8
    131张书农.管道水力输送研究的动态.泥沙研究. 1981, (2): 73~83
    132 A. S. Sangani, A. Acrivos. Slow Flow through a Periodic Array of Spheres. International Journal of Multiphase Flow. 1982, 8(4): 343~360
    133谢定国,周红宇.两相流动中流固两相耦合阻力的数值估计.水动力学研究与进展. 1989, 4(2): 65~71
    134 R. C. Chen, Y. N. Lu. The Flow Characteristics of an Interactive Particle at Low Reynolds Numbers. International Journal of Multiphase Flow. 1999, 25(8): 1645~1655
    135 M. Coutanceau. Confined Creeping Flow Around an Axisymmetric body: Increase of the Shape Effect by a Tube Wall. Fluid Dynamics Research. 1987, 2(3): 153~174
    136郑其良,钱志伟.斯托克斯定律在混浊型饮料中的应用. 1998, 1(1): 24~26
    137 A. Zamani, B. Maini. Flow of Dispersed Particles through Porous Media—Deep Bed Filtration. Journal of Petroleum Science and Engineering. 2009, 69(1): 71~88
    138Е.А.Изжеуров,А.Д.Сетин.РасчётэффективностифильтроваизматериалаМР.Вибрационнаяпрочностьинадёжногодвигателейисистемлетательных. 1999, 73(2): 28~32
    139曲爱平.深层过滤理论基础研究.化学工程. 1999, 27(5): 30~33

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700