SsNHXI和PDH45基因在苜蓿中的表达及耐盐性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
紫花苜蓿是世界上非常重要的牧草之一。由于近年来土壤盐渍化程度的加重,使苜蓿大幅减产,培育高耐盐性苜蓿新品种就显得至关重要。目前利用转基因技术能够快速有效的获得抗盐苜蓿新品种。
     SsNHXI基因是来源于盐地碱蓬的一个编码Na+/H+逆向转运蛋白的基因,其可将Na+区隔到液泡中,从而提高植物的耐盐性。近几年研究还发现,解旋酶在植物抗逆性方面也起着至关重要的作用。PDH45是来源于豌豆的一种DNA解旋酶,该基因转化烟草后可大幅提高其抗盐能力。
     本论文对实验室已构建的质粒pBISsNHXI和pBIDH45进行重组,构建了同时含有SsNHXI和PDH45基因的植物双元表达载体,利用根癌农杆菌介导法将其双元载体转入紫花苜蓿中,以期获得耐盐性好的苜蓿材料。通过卡那霉素初步筛选得到80株抗性植株,PCR技术显示目的基因已经整合到紫花苜蓿基因组中。选择其中20株转基因材料进行耐盐生理功能检测,用250mM NaCl同时处理非转基因型和转基因型植株5周,结果表明,尽管盐胁迫下转基因植株与非转基因植株的生长均受抑制,但转基因植株的生长状况明显好于非转基因型植株。与此同时,转基因植株的脯氨酸含量约是非转基因型植株的20倍,其叶绿素含量约高于非转基因型植株40%,且其细胞膜损伤程度低于非转基因型植株90%。这些实验结果表明过量表达SsNHXI与PDH45基因确实显著提高了紫花苜蓿的耐盐性。
     本研究为通过转基因技术培育紫花苜蓿耐盐新品种提供了新的材料基础。
Alfalfa is one of the most important forage. As more and more saline-sodic soil grately reduced the yeild of Alfalfa, it is much more important to culture new varieties of Alfalfa with higher salt tolerance, while the transgenetic technique provides a quick and effective method to culture the new variety of Alfalfa.
     SsNHXI, a gene from suaeda salsa, encodes a Na+/H+ antiporter in vacuole membrane,it can pump Na+ into the vacuole to improve the salt tolerance of plants. Recent studies have shown that helicase also has key effects on stress tolerance. PDH45 is a DNA helicase from pea, which has been proved to be able to largely enhance the salt tolerance of transgenic tobacoo.
     In this study, the pBISsNHXI and pBIDH45 had been recombined to construct a bivalence expression vector with SsNHXI and PDH45 two genes.We transfered the two genes, SsNHXI and PDH45, into Alfalfa by Agrobacterium tumefaciems induced method to obtain a new variety of Alfalfa with higher salt tolerance. 80 kanymycin-resistant transgenic plants were obtained and PCR results proved that the interested gene had been integrated into the genome of Afalfa and then 20 transgenetic plants were selected to do further physiology test. After treated with 250mmol NaCl for 5 weeks, the growth of both nontransgenic and transgenic plants were suppressed, but the latter grew much better than nontransgenic wild type plants. Meanwhile, the experiment of measuring the percentage of the proline and chlorophyll and cell membrane permeability was carried out between the transgenic and nontransgenic wild type plants, and the results showed that the proline content of the transgenic alfalfa was 20 fold of the wild-type plants, the chlorophyll content was 40% higher than the wild plants and the degree of membrane permeability of transgenic Afalfa was 90% lower than the wild plants. Taken togather, these results indicated that over expression of SsNHXI and PDH45 indeed greatly improve the salt tolerance of Alfalfa。
     This study provided some basis for culturing new salt-resistant varieties of Alfalfa by transgenetic techinique.
引文
[1]李彬,王志春,孙志高,等.中国盐碱地资源与可持续利用研李彬究[J].干旱地区农业研究,2005,23(2):154-158.
    [2]INZE D,MONTAGA M V.Oxidative Stress in Plants[J].Current Opinion in Biotechnology,1995(6):153-158.
    [3]章文华.植物的抗盐生理和盐害的防治[J].植物生理学通讯,1997,33(6):479-479.
    [4]Mansour M M F,Salama K H A.Cellular basis of salinity tolerance inplants[J]. Environmental and exdexperimental botanty,2004,52:113-122.
    [5]Hoekstra F A,Golovina E A,Buitink J.Mechanisms of plant desiccation tolerance [J].Trends Plant Sci,2001,(6):431-443.
    [6]姜卫兵,马凯,朱建华.多效唑提高草莓耐盐性的效应[J].江苏农业学报,1992,8(4):13-17.
    [7]郭北海.甜菜碱醛脱氢酶基因转化小麦及其表达[J].植物学报,2000,42(3):279-283.
    [8]赵自国,陆静梅.植物耐盐性研究进展[J].长春师范学院学报,2002,21(1):51-53.
    [9]Yoshbia Y,Kiyosue T,Nakashima K,et al. Regulation of levels of praline saan osmolyyte in plants under water stress [J].Plant Cell Physical,1997,38:1095-1102.
    [10]Delauney A J,Verma D.A soybean gene encoding AL Pyrroline scarboxylate reducatese was isolated by functional complementaion in Ecoli and is found to be osmoregulated[J].Mol Gen Gend,1990,221:299-305.
    [11]苏金,Targolli,吴乃虎,等.在转基因植物中实现外源基因苏金最佳表达的途径[J].生物工程学报,1999,15(4):3-6.
    [12]Sawahel W A,Hassan A H.Generation of Transgenic Wheat Plants Producing High Levels of the Osmoprotectant Proline[J].Biotechnology Letters,2002,24(9):721-725.
    [13]支立峰,陈明清,余涛,等.p5cs转化水稻细胞系的研究[J].湖北师范学院学报(自然科学版),2005,25(4):39-43,51.
    [14]Hong Z.Removal of feedback inhibition of pyrroline scarboxylate synt hase results in increased praline accum ulation and protection of plants from osmotic stress[J].Plant Physiology,2000,122:747-756.
    [15]刘凤华,郭岩,谷冬梅,等.转甜菜碱醛脱氢酶基因植物的耐盐性研究[J].遗传学报,1997,24(1):54-58.
    [16]高志民,彭镇华.甜菜碱合成调控基因共表达载体的构建与抗盐初步研究[J].林业科学研究,2005,18(3):231-235.
    [17]Kumar S,Dhingra A , Daniell H. Plastid expressed betaine aldehyde dehydrogenase gene in carrot cultured cells,roots and leaves confers enhanced salt tolerance[J]. Plant Physiol, 2004, 136(1):2843-2854.
    [18]Shirasawa K,Takabe T,Takabe T,et al.Accumulation of glycinebetaine in rice plants that overexpress choline monooxygenase from spinach and evaluation of their tolerance to abiotic stress[J].Annals of Botany,2006,98(3):565-571.
    [19]刘桂丰,程贵兰,姜静,等.以胆碱脱氢酶基因对小黑杨花粉植株的遗传转化[J].植物生理与分子生物学学报,2006,32(2):163-168.
    [20]Jia Z P,McCullough N,Martel R,et al.Gene amplification at a locus encoding a puative Na+/H+ antiporter confers sodium plithium tolerance in fission yeast[J].EMBO J,1992, 11: 1631-1640.
    [21]Watanabe Y,Miwa S,Tamai Y.Characterization of Na+/H+ antiporter gene closely related to the salt-tolerance of yeast Zygosaccharomyces rouxii[J].Yeast,1995,11:829-838.
    [22]Iwaki T,Higashida Y,Tsuji H ,et al.Characterization of a second gene(ZSOD22) of Na+/H+ antiporter from salt-tolerant yeast Zygosaccharomyces rouxi iand functional expression of ZSOD2 and ZSOD22 in S accharomyces cerevisiae[J].Yeast,1998,14:1167-1174.
    [23]吕慧颖,李银心,孔凡江,等.植物Na+/H+逆向转运蛋白研究进展[J].植物学通报,2003,20(3):363-369.
    [24]Karpel R,Y Olami,D Taglicht,et al.Sequencing of the gene ant which affects the Na+/H+ antiporter activity in Escherichia coli[J].J Biol Chem,1988,263:10408-10414.
    [25]Pinner E, E Padan, and S Schuldiner. Cloning, sequencing, and expression of the nhaB gene,encoding a Na+/H+ antiporter in Escherichiacoli[J]. J Biol Chem, 1992, 267: 11064- 11068.
    [26]Ivey D M,A A Guffanti,J Zemsky,et al.Cloning and characterization of a Na+/H+ antiporter of S. AUREUS 6647 putative Ca2+/H+ antiporter gene from Escherichia coli upon functional complementation of Na+/H+ antiporter-deficient strains by the overexpressed gene[J].J Biol Chem,1993,268:11296-11303.
    [27]Nakamura T, H Enomoto, and T Unemoto. Cloning and sequencing of the nhaB gene encoding an Na+/H+ antiporter from Vibrio alginolyticus.Biochim[J]. Biophys Acta, 1996, 1275:157-160.
    [28]Ivey D M,A A Guffanti.Molecular cloning and sequencing of a gene from alkaliphilic Bacillus firmus OF that functionally complements an Escherichia coli strain carrying a deletion in the nhaA Na+/H+ antiporter gene[J].J Biol Chem,1991,266:23483-23489.
    [29]Waser M, D Hess-B, K Davies, et al. Cloning and disruption of a putative Na+/H+ antiporter gene of Enterococcus hirae[J]. J Biol Chem,1992,267:5396-5400.
    [30]Utsugi J K,Inaba,T Kuroda,et al.Cloning and sequencing of a novel Na+/H+ antiporter gene from Pseudomonas aeruginosa. Biochim Biophys Acta[J],1998,1398:330-334.
    [31]Cheng J,K Baldwin,A A Guffanti,et al.Na+/H+ antiport activity conferred by Bacillus subtilis tetA(L),a 59 truncation product of tetA(L),and related plasmid genes upon Escherichia coli[J]. Antimicrob Agents Chemother,1996,40:852-857.
    [32]Blumwald E ,Poole R J. Na+/H+ antiport in isolated vesicles from storage tissue of Beta vulgaris[J].Plant Physiol,1985,78:163-167.
    [33]Barkla B J,Zingarelli L,Blumwald E, et al.Tonoplast Na+/H+ antiport activity and its energization by the vacuolar H+-ATPase in the halophytic plant Mesembryanthemum crystallinum L[J].Plant Physiol,1995,109:549-556.
    [34]Apse M P,Aharon G S,Snedden W A, et al.Salt tolerance conferred by overexpression of a vacuolar Na+/H+ antiporter in Arabidopsis[J].Science,1999,285:1256-1258.
    [35]Garciadeblas B,Rubio F,Quintero F J,et al.The Arabidopsis thaliana proton transporters,AtNhx1 and Avp1,can function in cation detoxi fication in yeast[J].Proc Natl Acad Sci USA,1999,96:1480-1485.
    [36]Ma XL,Zhang Q,Xiong L M,et al.Molecular cloning and different expression of a vacuolar Na+/H+ antiporter gene in Suaeda salsa under salt stress[J]. Biologia Plantarum, 2004, 48(2): 219-225.
    [37]余叔文,汤章城.植物生理与分子生物学[M].北京科学出版社,1998:752-769.
    [38]Ohnishi M,Fukada,Tanaka S,et al.Characterization of a novel Na+/H+ antiporter gene InNHX2 and comparison of InNHX2 with InNHX1,which is responsible for blue flower coloration by increasing the vacuolar pH in the Japanese morning glory[J]. Plant Cell Physiol, 2005,46(2):259-267.
    [39]Jung J,Won S Y,Suh S C,et al.The barley ERF type transcription factor HvRAF confers enhanced pathogen resistance and salt tolerance in Arabidopsis[J]. Planta,2007, 225(3):575- 588.
    [40]Dubouzet J G,Sakuma Y,et al.OsDREB genes in rice,Oryzasativa L,encode transcription activators that function in drought,high-salt and cold responsive gene expression[J].Plant Journal,2003,33(4):751-763.
    [41]Tian X H,Li X P,Zhou H L,et al.OsDR EB4 Genes in Rice Encode AP22Containing Proteins that Bind Specifically to the Dehydration Responsive Element[J].Acta Botanica Sinica,2005,47(4):467-476.
    [42]吴关庭,郎春秀,胡张华,等.转CBF1基因增强水稻的耐逆性[J].核农学报,2006,20(3):169-173.
    [43]Dai Xiaoyan,Xu Yunyuan,Ma Qibin,et al.Overexpression of an R1R2R3 MYB gene , OsMYB3R-2,increases tolerance to freezing,drought,and salt stress in transgenic Arabidopsis[J]. Plant Physiol,2007,143(4):1739-1751.
    [44]Winicov I,Bastola D R.Transgenic overexpression of the transcription factor AlfinI enhances expression of the endogenous MsPRP2 gene in alfalfa and improves salinity tolerance of the plants[J].Plant Physiology,1999,120:473-480.
    [45]王玉祥.转rstB基因苜蓿耐盐性鉴定[D]:[硕士学位论文].新疆:新疆农业大学,2008.
    [46]陈晨.农杆菌介导的盐生杜氏藻Dscbr基因转化紫花苜蓿的初步研究[D]:[硕士学位论文].甘肃:甘肃农业大学,2004.
    [47]邓程君.农杆菌介导的NTHK1基因转化苜蓿增大叶片及提高耐盐性的研究[D]:[硕士学位论文].北京:中国农业大学,2006.
    [48]潘竟丽.农杆菌介导灰绿藜NHX1基因转化新疆大叶苜蓿的研究.新疆农业科学.2007 44(4):418-422.
    [49]王强龙.根癌农杆菌介导AtNHX1基因转化紫花苜蓿的研究[D]:[硕士学位论文].兰州:兰州大学,2005.
    [50]隋昕.碱蓬液泡型Na+/H+逆向运输蛋白基因的克隆及其向苜蓿中的转化[D]:[硕士毕业论文].吉林:吉林农业大学,2007.
    [51]包爱科.AVP1基因转化紫花苜蓿的初步研究[D]:[硕士毕业论文].兰州:兰州大学,2006.
    [52]Pham XH,Tuteja N.Potent inhibition of DNA unwinding and ATPase activities of pea DNA helicase 45 by DNA-binding agents.Biochem[J].Biophys Res Comm,2002,294:334-339.
    [53]Tuteja N.Plant DNA helicases:the long unwinding road[J].J Exp Bot,2003,54(391): 2201-2214.
    [54]Luking A,Stahl U,Schmidt U.Protein family of RNA helicases[J]. Crit Rev Biochem Mol Biol,1998,33:259-296.
    [55]Gong Z,Dong C,Lee H, et al.A DEAD box RNA helicase is essential for mRNA export and important for development and stress responses in Arabidopsis[J]. Plant Cell, 2005,17: 256-267.
    [56]Gong Z,Xiong L,Lee H,Jagendorf A, et al.RNA helicase-like protein as an early regulator of transcription factors for plant chilling and freezing tolerance[J].Proc Natl Acad Sci USA,2002,99:11507-11512.
    [57]Seki M,Narusaka M,Abe H,et al.Monitoring the expression pattern of 1300 Arabidopsis genes under drought and cold stresses by using a full-length cDNA microarray[J].Plant Cell,2001,13:61-72.
    [58]Nakamura T,Muramot Y O,Takabe T.Structural and transcriptional characterization of asalt-responsive gene encoding putative ATP-dependent RNA helicase in barley[J].Plant Sci,2004,167:63-70.
    [59]Chamot D,Owttrim GW.Regulation of cold shockinduced RNA helicase gene expression in the cyanobacterium Anabaena sp.strain PCC 7120[J].J Bacteriol,2000,182:1251-1256.
    [60]Chamot D,Magee WC,Yu E,et al.A cold shock-induced cyanobacterial RNA helicase[J].J Bacteriol,1999,181:1728-1732.
    [61]Sanan-Mishra N,Pham XH,Sopory SK,et al. Pea DNA helicase 45 over expression in tobacco confers high salinity tolerance without affecting yield[J] . Proc Natl Acad Sci USA,2005,102:509-514.
    [62]Vashisht AA,Tuteja N.Cold stress—induced peaDNA helicase 47 is homologous to eIF4A and inhibited by DNA—interacting ligands[J].Arch Biochem Siophys,2005,440:79-90.
    [63]Vashisht AA,Pradhan A,Tuteja R,et al.Cold and salinity stress—induced pea bipolar pea DNA helicase 47 is involved in protein synthesis 110 and stimulated by phosphorylation with protein kinase C[J].Plant J,2005,44:76-87.
    [64]Vashisht A,Tuteja N.Stress responsive DEAD-box helicases:A new pathway to engineer plant stress tolerance[J].J Photochem Photobiol B Biol,2006,84:150-160.
    [65]Rausch T,Kirsch M,Low R,et al.Salt stress responses of higher plant: the role of proton pumps and Na+/H+ antiporters[J].J Plant Physiol,1996,148:425-433.
    [66]Niu X,Narasimhan M L,Salzman R A,et al.NaCl regulation of plasma menbrane H+-ATPase gene expression in a glycophyte and halophyte[J].Plant Physiol, 1993,106:713-718.
    [67]Zhang HX,Blumward E.Transgenenic salt-tolerant tomato plants accumulate salt in foliage but not in fruit[J].Nature Biotechnology,2001,19:765-768.
    [68]Zhang J Z,Creelman R A,Zhu J K.Using information from Arabidopsis to engineer salt,cold ,and drought tolerance in crops[J].PlantPhysiol,2004,135:615-621.
    [69]Venema K,Quintero F J,Pardo J M,et al.The Arabidopsis Na+/H+ exchanger AtNHX1 catalyzes low affinity Na+and K+ transport in reconstituted liposomes[J].J Biol Chem,2002,277:2413-2418.
    [70]Song CP,Guo Y,Qiu Q,et al.A probable Na+(K+)/H+exchanger on the chloroplast envelope functions in pH homeostasis and chloroplast in Arabidopsis tha iana [J].Proc Natl Acad Sci USA,2004,101(27):10211-10216.
    [71]Katz A,Pick U,Avron M.Modulation of Na+/H+ antiport activity by extreme pH and salt in the halotolerant alga Dunaliellasalina[J].Plant Phusiol,1992,100:1224-1229.
    [72]Katz A,Bental M,Degni H,et al.In viva pH regulation by a Na+/H+ antiport in the halotolerant Alga Dunaliella salina[J].Plant Phusiol,1991,96:110-115.
    [73]Nass R,Rao R.Novel localization of Na+/H+ exchanger in a late endosomal compartment of yeast. Implications for vacuole biogenesis[J].J Biol Chem,1998,273:21054-21060.
    [74]Hamada A,Shono M,Xia T,et al.Isolation and characterization Of a Na+/H+ antiporter gene from the halophyte Atriplex gmetini[J].Plant Mol Biol,2001,46:35-42.
    [75]Zorb C,Noll A,Karl S,et al.Molecular characterization 0f Na+/H+ antiporter (ZmNHX) of maize(Sea mays L)and their expression under salt stress[J].J Plant Physio1,2005,162:55-66.
    [76]Fukuda A,Nakamura A,Tanaka Y.Molecular cloning and expression of the Na+/H+ exchanger gene in Oryza Sativa[J].Biochim Biophys Acia,1999,1446:149-155.
    [77]Hamada A,Hibino T,Nakamura T,et al.Na+/H+antiporter from Synechocystis PCC 6803.Homologous to sos1.Contains an Aspartic Residue and Long C-Terminal Tail Important for the Carrier Activity[J].Plant physiol,2001.125:437-446.
    [78]Jones PG,Mitta M,Klm Y,et al.Cold shock induces a major Ribosomai-associated protein that unwinds double-stranded RNA in Escherichia coli[J],Proc Natl Acad Sci,1996,93:76-80.
    [79]BriolatVand Reysset G.ldentificatlon of the Clostridium Prefingens genes involvde in the adaptive respones to oxidative srtess[J].J Bacteirol,2002,184:2333-2343.
    [80]Kujat SL,Owtrim GW.Redox-regulated RNA helicase expression[J].Plant Physiol,2000, 124:703-713.
    [81]Lim J,Thomas T,Cavicchioli R.Low temperature regulated DEAD-box RNA helicasa from the Antarctic archaeon,Methanococcoides burtonii[J].Mol Biol,2000,297:553-567.
    [82]Morlang S,Weglohner W,Franceschi F.Hera from Thermus thermophilus:the first thermostable DEAD-box helicase with an Rnase P protein motif[J].Mol Biol,1999,294: 795- 805.
    [83]Montero-Lomeli M,Morais BL,Figueiredo DL,et al.The initiation factor eIF4A is involved in the response to lithium stress in Saccharomyces Cereviisiace[J].Biol Chem,2002,277: 21542-21548.
    [84]罗琰.紫花苜蓿解旋酶基因的分离与耐逆性分析[D]:[硕士学位论文].山东:山东农业大学,2007.
    [85]Staal M,Maathuis F J M,Elzenga TM,et al.Na+/H+ antiport activity in tonoplast vesicles from roots of the salt-tolerant Plantago maritima and the salt sensitive Plantago media[J].Physiol Plantrum,1991,82:179-184。
    [86]马秀灵.盐地碱蓬SsNHX1基因的克隆及转基因拟南芥的培育[D]:[博士毕业论文].山东:山东师范大学,2002.
    [87]Sebastiano Delfine,Arturo Alvino,Maria Concetta Villani,et al.Restrictions to Carbon Dioxide Conductance and photosynthesis in Spinash Leaves Recovering from Salt Stress[J].Plant physiol,1999,119:1101-1106.
    [88]李维焕.盐地碱蓬SsNHX1基因及拟南芥AtNHX1、AtNHX5基因的功能分析能分析[D]:[硕士毕业论文].山东:山东师范大学,2005.
    [89]马秀灵.盐地碱蓬SsNHX1基因的克隆及转基因拟南芥的培育[D]:[博士毕业论文].山东:山东师范大学,2002.
    [90]张学杰.过量表达盐地碱蓬DNA文库及SsNHX1-AVP对拟南芥耐盐性的影响和盐地碱蓬FAD7基因cDNA的克隆与表达分析[D]:[博士毕业论文].山东:山东师范大学,2004.
    [91]李平华.盐胁迫下盐地碱蓬液泡膜质子泵表达分析及过量表达SsNHXI-AVP1对拟南芥耐盐性的影响[D]:[博士毕业论文].山东:山东师范大学,2003.
    [92]Jinyao Li,Gangqiang Jiang,Ping Huang,et al.Overexpression of the Na+/H+ antiporter gene from Suaeda salsa confers cold and salt tolerance to transgenic Arabidopsis[J].Plant Cell,2007,90(1):41-48.
    [93]赵淑青.盐地碱蓬SsNHXI基因导入番茄的研究[D]:[硕士毕业论文].山东:山东师范大学,2004.
    [94]陈娟等.盐地碱蓬SsNHX1基因导入杨树的研究[D]:[硕士毕业论文].陕西:西北农林科技大学,2005.
    [95]Zhao FY,Wang ZL,Zhang Q,et al.Analysis of the physiological mechanism of salt-tolerant transgenic rice carrying a vacuolar Na+/H+ antiporter gene from Suaeda salsa[J].Journal of Plant Research,2006,119(2):95-104.
    [96]SERRANO R,GAXIOLA R.Microbial models and salt stress tolerance in plants[J].Cri Rev Plant Sci,1994,13:121-138.
    [97]Bohnert H J,G011dack D,Ishitani M,et a1.Salt tolerance engineering requires multiPle genetransfers[J].Ann NY Acad Sci,1996,792:115-125.
    [98]Bolmberg N,Bulow L.Improving stress tolerance in plantsby gene transfer[J].Trends P1ant Sci,1998,3(2):6l-66.
    [99]Fa?cal Brini,Moez Hanin,Imed Mezghani,et al.Berkowitzand Khaled Masmoudi. Overexpression of wheat Na+/H+ antiporter TNHX1 and H+-pyrophosphatase TVP1 improve salt-and drought-stress tolerance in Arabidopsis thaliana plants[J].Journal of Experimental Botany,2007,58:301-308.
    [100]安家璐.PEAMT和CMO基因提高植物耐盐性的研究[D]:[硕士毕业论文].大连:辽宁师范大学,2007.
    [101]Demir Y,Kocacaliskan I.Effect of NaCI and proline on bean seedlings cultured in vitro[J].Biologia Plantarum,2002,45(4):597-599.
    [102]Chaleff R S.Further characterization of picloram tolerant mutance of Nicotinana tabacum Theor APPL[J].Genet,1980,58:91-95.
    [103]梁慧敏,夏阳,杜峰,等.盐胁迫对两种草坪草抗性生理生化指标影响的研究[J].中国草地,2001,23(5):27-30.
    [104]熊正英,张志勤,王致远,等.水分胁迫对全生育期水、旱稻SOD活性的影响及其与抗旱性的关系[J].陕西师范大学学报(自然科学版),1996,24(3):71-74.
    [105]翁森红.牧草耐盐性鉴定指标和方法的初步研究[D].[硕士毕业论文].北京:中国农科院硕士研究生论文,1990.
    [106]杨晓英,杨劲松.盐胁迫对黑麦草幼苗生长的影响及磷肥的缓解作用[J].土壤通报, 2005,36(6):899-902.
    [107]张云起,刘世琦,杨凤娟,等.耐盐西瓜砧木筛选及其耐盐机理的研究[J].西北农业学报,2003,12(4):105-108.
    [108]赵可夫,王韶唐.作物抗性生理[M].北京:中国农业出版社,1990:249-313.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700