纳米薄膜晶粒生长的厚度效应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米材料的热稳定性关系到纳米材料能否在较高温度下保持纳米级的晶粒尺寸,而晶粒尺寸的稳定性关系到纳米材料能否在较高温度下保持优异的机械性能和理化性能。因此,纳米材料的热稳定性研究一直是纳米材料研究的一个热点。目前,国内外学者在对纳米材料的热稳定性研究中已经发现了多种抑制晶粒生长的机制,包括:溶质颗粒拖曳,第二相颗粒拖曳,气孔,空位,三叉晶界拖曳,厚度效应等。关于厚度效应抑制晶粒生长,虽然从上世纪40年代末就已被提出来,但国内外对厚度效应对纳米材料晶粒生长抑制作用的研究却鲜有报道,尤其是退火过程中厚度效应抑制晶粒生长的动力学研究,至今仍未有详细的研究。
     本论文采用各向异性蒙特卡罗方法模拟不同厚度的纳米薄膜退火过程中的晶粒尺寸演化,并采用磁控溅射方法制备纳米多晶薄膜,从理论模拟和实验两方面对纳米薄膜中的厚度效应进行研究。将Read-Shockley各向异性晶界能模型引入蒙特卡罗模拟,并对经典的蒙特卡罗模型进行了改进处理:
     1.改进通常3D模拟中周期性边界条件的设定,将薄膜厚度方向设置为自由边界,其他两个方向为周期性边界;
     2.统计晶粒尺寸时只考虑最近邻单元,而不再考虑次近邻和第三近邻;
     3.减小系统最大取向数为64,在确保取向值不影响晶粒生长的情况下尽可能使取向值的设定满足晶界的一般定义;
     4.采用加速法,认为选定单元只能从邻近单元中选择取向值,而不再是任意的取向值。
     模拟结果显示:厚效应并不是在晶粒生长初期便呈现出来,而是当晶粒尺寸达到厚度的0.8-1.2倍的时候才变得明显。通过引入厚度因子来修正Burke提出的动力学模型,可以得到描述纳米薄膜中厚度效应抑制晶粒生长的动力学方程。该方程较前人提出的方程物理含义更为清晰,且与模拟结果更为符合。
     为从实验上研究纳米薄膜中晶粒生长的厚度效应并检验模拟结果和修正方程的合理性,薄膜体系的设计需要满足研究厚度效应的标准,并尽可能与模拟条件相符,为此本文设计了厚度为纳米尺寸的Co/SiO_2以及Ni/SiO_2多层膜结构,以此研究该薄膜退火时的晶粒尺寸演化过程。该多层膜体系由于每个金属单层均被SiO_2非晶层隔开,可以认为每一个金属单层是一个独立的纳米薄膜结构,并且金属单层满足模拟的边界条件,即薄膜的上下表面处于同一状态。此外,多层膜结构具有很好的统计性,相比单层膜数据可靠性高。薄膜的制备方法采用磁控溅射法,该方法可以沉积表面平整,膜内晶粒尺寸小至10nm左右的金属薄膜,并且通过控制溅射功率和沉积时间以制备不同调制层厚度的纳米级多层膜结构。将多层膜结构在特定温度下退火不同时间。通过XRD,SEM,TEM表征其微观组织,并采用Voigt函数计算平均晶粒尺寸。
     实验结果显示:
     1. Co/SiO_2多层膜结构XRD数据显示,金属Co层以大量fcc-β相和少量hcp-α相存在。将晶粒的生长过程用修正后的Burke方程进行拟合,其拟合结果明显好于修正前的Burke方程。两种厚度的Co薄膜中晶粒生长的极限尺寸均小于厚度,与早期单相的晶粒生长研究不完全相符,可能是因为少量hcp-α相的存在,抑制了fcc-β相晶粒生长;
     2. Ni/SiO_2多层膜结构XRD数据显示,金属Ni层均以fcc-γ相存在。将晶粒的生长过程用修正后的方程拟合可以得到很好的拟合结果,而用Burke方程拟合,结果相对较差。
     以上的理论模拟和实验结果均表明,Burke方程不能准确描述纳米材料的厚度抑制效应,而本文将厚度因子引入后,建立了新的修正方程,该方程从理论解释和实验数据拟合上均优于Burke方程。
The grain size stability of nanocrystalline materials determines whether they can keep their unique mechanic properties and the properties of physics and chemistry in high temperature, while whether the nano-grains can keep their size within nano-scale depends on their thermal stability. Therefore, nanocrystalline materials’thermal stability has extensively attracted researchers through out the world. So far, investigators domestic and overseas have found out several stagnation effects on grain growth, including solute drag, Zener drag, pore, vacancy, triple junction, and thickness effect. Although thickness effect was firstly reported in 1940s, the studies of thickness effect on grain growth in nanocrystalline materials have seldom been done till now, especially on kinetics of thickness effect on grain growth in nanocrystalline materials during annealing process.
     To investigate grain growth in nanocrystalline materials during annealing process, both 3D anisotropic Monte Carlo simulation and magnetic sputtering experiments were used.
     Read-Shockley grain boundary energy model together with some modifications were introduced in our Monte Carlo simulation. These modifications were:
     1. Thin films’thickness direction is set as free boundary condition while the other two directions are periodic boundary conditions;
     2. Only the nearest units with the same orientation number (Q) are considered as one grain;
     3. Qmax is set to 64;
     4. Monte Carlo acceleration is used to the reorientation of each unit available within the nearest neighbors.
     The simulation results indicate that thickness effect is not exhibited through the whole process of grain growth, but appears only when the average grain size reached 0.8 to 1.2 times of the thickness of the films. By inducing thickness factor, we modified Burke’s grain growth kinetic equation and obtained a new one not only reflecting the mechanism of thickness effect but also according with the experimental data better.
     In order to verify our Monte Carlo simulation and the modified kinetic equation, experiments of thickness effect on grain growth in nanocrystalline thin films are designed to meet the requirements of thickness effect and satisfy the simulation conditions. We designed two kinds of Co/SiO_2 and Ni/SiO_2 multilayer systems. Each metal layer was separated by its two amorphous SiO_2 neighbors with the two interfaces, which is the same condition as described in our simulation. Additionally, the multilayer system has better statistical estimation than single layer system, which leads to a better reliability of experimental data. The nanocrystalline multilayer films were deposited by means of magnetic sputtering method for its advantages in fabricating films with flat surfaces or/and interfaces and nanoscale grain size. By controlling the sputtering power and deposition time, two group samples with different thicknesses were deposited for each kind of multilayer system, and then were annealed at a certain temperature with different time. Their microstructures were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM), and the average grain size was calculated by using Voigt function.
     The research results were concluded as follows:
     1. The XRD data of Co/SiO_2 multilayer films show that the Co metal layer consists of majority of fcc-βphase and minority of hcp-αphase. The fitted curve of grain growth with our modified equation is better consistent with the experimental data than Burke’s one. However, the maximum average grain size in each group of Co/SiO_2 multilayer film is smaller than the film’s thicknesses. This result disagrees with the early experimental results in grain growth in metal films of single phase, and may be explained as the result of Zener drag, namely the hcp-αgrains as particles inhibits grain growth of fcc-βphase.
     2. The XRD data of Ni/SiO_2 multilayer films shows that every Ni layer consists of single fcc-γphase. The fitted curve of grain growth experimental data with our modified equation is in better accordance with the data than Burke’s one.
     The results of simulation and experiments demonstrate that Burke’s equation could not precisely describe thickness effect on grain growth in nanocrystalline thin films. However, by introducing thickness factor into Burke’s equation, we deduced a new modified equation which could better describe thickness effect both in simulation and in experiments.
引文
[1] Gleiter H, Hansen N, Proceedings of the second rise international symposium on metallurgy and materials science. Nanostructured Mater,1981:15-29
    [2] Birringer R, Gleiter H, Klein HP, et al, Synthesis of n-metals. Phys.Lett., 1984, 102A (8):365-369.
    [3]张立德,牟季美,纳米材料和纳米结构,北京:科学出版社,2001
    [4] A. S .Edelstein, R. C. Cammarata, Nanomaterials: Synthesis, Properties and Applications. Institute of Physics Publishing, Bristol and Philadelphia, 1996
    [5] Siegel R. W. Nanostructured materials-mind over materials. Nanostuctured Materials, 1993, 3: 1-18
    [6]文玉华,周富信,刘曰武,纳米材料的研究进展,力学进展,2001,31,47-61
    [7]徐国财,纳米科技导论,高等教育出版社,2005:43-44
    [8]张代东,王钦清.金属纳米材料的发展动态研究.科技情报开发与经济,2002:12 (5):89-92
    [9]王苏心,张玉珍,纳米材料的特征与应用.江苏陶瓷,2001, 34 (2), 5-6
    [10]陈云霞,刘维民.Au/Al2O3伪纳米复合薄膜的制备和表征.无机化学学报,2002,18 (3): 233-237 [l1]张兆艳,林财和. Sol-Gel法制备含银二氧化硅纳米薄膜.功能材料,2003,31 (增刊): 69-71
    [12]翟继卫,杨合情,张良莹等.溶胶-凝胶法制备Ge/SiO2微晶复合薄膜.材料科学与工程,1999,17 (4): 14-16 [l3]翟继卫,杨涛,杨合情等.溶胶-凝胶法制备TiO2-SiO2复合薄膜的波导特性研究.硅酸盐学报,1998,26 (5): 674-678
    [14]翟继卫,张良莹,姚熹.溶胶-凝胶法制备TiO2-SiO2复合薄膜的研究.功能材料,1998,29 (3): 184-186
    [15]田民波,刘德令,薄膜科学与技术手册(上册),机械工业出版社,1991
    [16] K. B. Blodgett, Films built by depositing successive monomolecular layer on a solid surface. J. Am. Chem. Soc, 1935, 57: 1007-1022
    [17] Dong X, Liu D L, Du G T, Zhang Y T, Zhu H C, Gao Z M, Chemical Research in Chinese University, 2005, 21: 583
    [18] Chen Y F, et al, Materials Science in Semiconductor Progressing, 2005, 8: 491
    [19] El Yadori, Boudrioua A, Sallet C, Triboulet R, Optical Materials, 2005, 27: 1391
    [20] Nishizawa S,Tsurumi T, Hyodo H, et al, Structural changes in ZnO/NiO artificial superlattices Made by Iron Beam Sputtering. Thin Solid Films, 1997, 302: 133-139.
    [21] Hsieh PT, Chen YC, Kao KS, Wang CM, Structural effect on UV emission properties of high-quality ZnO thin films deposited by RF magnetron sputtering, Physica B Condensed Matter, 2007, 392: 332-336
    [22] Wei Lin, Ruixin Ma, Wei Shao and Bin Liu, Structural, electrical and optical properties of Gd doped and undoped ZnO:Al (ZAO) thin films prepared by RF magnetron sputtering, Applied Surface Science, 2007, 253 (11): 5179-5183
    [23] Gulia V, Kumar S, Electro-optic effect in c-axis oriented ZnO thin films prepared by RF magnetron sputtering, Optical Materials, 2007, 29 (7): 778
    [24] Mats Hillert, Solute drag in grain boundary migration and phase transformations. Acta Mater, 2004, 52: 5289-5293
    [25] A. MICHELS, et al, MODELLING THE INFLUENCE OF GRAIN-SIZE-DEPENDENT SOLUTE DRAG ON THE KINETICS OF GRAIN GROWTH IN NANOCRYSTALLINE MATERIALS. Acta mater, 1999, 47, (7): 2143-2152
    [26] E. Rabkin, ON THE GRAIN SIZE DEPENDENT SOLUTE AND PARTICLE DRAG. Scripta Mater, 2000, 42: 1199-1206
    [27] Feng Liu, Reiner Kirchheim, Grain boundary saturation and grain growth. Scripta Materialia, 2004, 51: 521-525
    [28] Reiner Kirchheim, Grain coarsening inhibited by solute segregation. Acta Mater, 2002, 50: 413-419
    [29] Feng Liu, Reiner Kirchheim, Nano-scale grain growth inhibited by reducing grain boundary energy through solute segregation, Journal of Crystal Growth. 2004, 264: 385-391
    [30] R. J. Brook, The impurity-drag effect and grain growth kinetics. Scripta Metall, 1968, 2, (7): 375-378
    [31] J. W. Cahn, The Impurity-Drag Effect in Grain Boundary Motion. Acta Metall, 1962, 10: 789
    [32] Smith C S. GRAINS, PHASES, AND INTERFACES: AS INTERPRETATION OF MICROSTRUCTURE, Tran Metal Soc AIME, 1948, 175(2): 15
    [33]正常晶粒长大的计算机模拟(Ⅱ)-第二相粒子形状及取向的影响.中国有色金属学报, 2004, 14 (1): 122-126
    [34] Jinhua Gao, Raymond G, Thompson, Burton R. Patterson, Computer Simulation of Grain Growth with Second Phase Particle Pinning. Acta Mater, 1997, 45 (9): 3653-3658
    [35] N. Moelans, B. Blanpain, P. Wollants, Pinning effect of second-phase particles on grain growth in polycrystalline films studied by 3-D phase field simulations. Acta Mater, 2007, 55: 2173–2182
    [36] Christopher Roberts, thesis for PhD, Grain Growth and Zener Pinning Phenomena: A Computational and Experimental Investigation, Carnegie Mellon University, 2007
    [37] Doherty R D, Srolovitz D J, Rollett A D et al, On the Volume Fraction Dependence of Particle-Inhibited Grain Growth, Scr Metall,1987, 21(5): 675-679
    [38] M.P.Anderson, G.S.Grest, R.D.Doherty, Kang Li, D.J. Srolovitz, Inhibition of Grain Growth by Second Phase Particles: Three Dimensional Monte Carlo Computer Simulation, 1989, 23, 753-758
    [39] Gao J H, Thompson R G, Patterson B R, Computer simulation of grain. growth with second phase particle. Acta Mater, 1997, 45(9): 3653-3658
    [40] Gránásy L, Pusztai T, Warren J A et al. Growth of‘dizzy dendrites’in a random field of foreign particles. Nature Mater, 2003, 2(2): 92-96
    [41] Suwa Y, Saito Y, Onodera H. Phase field simulation of grain growth in three dimensional system containing finely dispersed second-phase particles. Scripta Mater, 2006, 55(4): 407-410
    [42] Krill C E, Chen L Q. Computer simulation of 3-D grain growth using a phase-field model, Acta Mater, 2002, 50(2): 3059-3075
    [43]李俊杰,王锦程,杨根仓,含第二相颗粒的晶粒长大过程相场法,稀有金属材料与工程,2008,37 (10): 1747-1750
    [44] N. Moelans, B. Blanpain, P. Wollants, Pinning effect of second-phase particles on grain growth in polycrystalline films studied by 3-D phase field simulations, Acta Mater., 2007, 55: 2173-2182
    [45] H. J. H?fler, R. S. Averback, Grain growth in nanocrystalline TiO2 and its relation to vickers hardness and fracture toughness, Scripta Metallurgica et Materialia, 1990, 24, 2401-2406
    [46] Averback R. S., Hahn H., Hofler H. J., Logas J.L. and Chen T. C., in Interfaces Between Polymers, Metals and Ceramics, ed. B.M. DeKoven, et al., Mater. Res. Soc. Symp. Proc., 1989, 153, 3
    [47] V. Y. Gertsman, R. Birringer, On the room-temperature grain growth in nanocrystalline copper, Scripta Metallurgica et Materialia, 1994, 30, 577-581
    [48]李世晨,郑子樵,刘祖耀,李剑,杨培勇,殷顺高, Al-Cu-Li-xMg合金时效初期微结构演变的Monte Carlo模拟.中国有色金属学报, 2005, 15 (9): 1376-1383
    [49] Y. Estrin, G. Gottstein, E. Rabkin, L.S. Shvindlerman, On the kinetics of grain growth inhibited by vacancy generation, Scripta Mater, 2000, 43: 141-147
    [50] M. Upmanyu, D.J. Srolovitz, L.S. Shvindlerman, and G. Gottstein, Vacancy Generation During Grain Boundary Migration, Interface Science, 1998, 6, 287-298
    [51] C. E. Krill, L. Helfen, D.Michels, H. Natter, A. Fitch, Size-Dependent Grain-Growth Kinetics Observed in Nanocrystalline Fe, Phys. Rev. lett., 2001, 86, 842-845
    [52] G. Gottstein, A. H. King, L. S. Shvindlerman, The effect of triple-junction drag on grain growth, Acta Materialia, 2000, 48, 397-403
    [53] D. Mattissen, D.A. Molodov, L.S. Shvindlerman, G. Gottstein, Drag effect of triple junctions on grain boundary and grain growth kinetics in aluminium. Acta Mater, 2005, 53: 2049-2057
    [54] Ying Chen and Christopher A. Schuh, Geometric considerations for diffusion in polycrystalline solids, J. Appl. Phys., 2007, 101, 063524
    [55] Vladimir Yu Novikov, On the influence of triple junctions on grain growth kinetics and microstructure evolution in 2D polycrystals, Scripta Materialia, 2005, 52, 857-861
    [56] U. Czubayko, V. G. Sursaeva, G. Gottstein, L. S. Shvindlerman, Influence of triple junctions on grain boundary motion, Acta Materialia, 1998, 46, 5863-5871
    [57] M. Upmanyu, D. J. Srolovitz, L. S. Shvindlerman, G. Gottstein, Molecular dynamics simulation of triple junction migration, Acta Materialia, 2002, 50, 1405-1420
    [58] P. A. Beck, J. C. Kremer, L. J. Demer, Grain Growth in High Purity Aluminum, Phys. Rev. Lett, 1947, 71 (8): 555
    [59] P. A. Beck, J. C. Kremer, L. J. Demer, M. L. Holzworth, Grain growth in high purity aluminum and aluminum-magnesium alloy. AIME Tech. TP 2280, Sept. 1947
    [60] Carl V. Thompson, Grain Growth in Thin Films, Annu. Rev. Mater. Sci., 1990, 20: 245-268
    [61] J.E. Burke, Some Factors Affecting the Rate of Grain Growth in Metals. AIME TRANS, 1949, 180: 73-91
    [62] W.W.Mullins, The effect of thermal grooving on grain boundary motion. Acta Metall, 1958, 6: 414-427
    [63] R.A. Vandermeer, Hsun Hu, On the grain growth exponent of pure iron. Acta Metall, 1994, 42 (9): 3071-3075
    [64] R.M.S. Martins, et al, In-situ study of Ni–Ti thin film growth on a TiN intermediate layer by X-ray diffraction, Sensors and Actuators B, 2007, 126: 332–337
    [65] Andrew J. Francis, et al, Monte Carlo simulations and experimental observations of templated grain growth in thin platinum films. Acta Mater, 2007, 55: 6159-6169
    [66] M. Bouderbala, et al, Thickness dependence of structural, electrical and opticalbehaviour of undoped ZnO thin films. Physica B, 2008, 403 (18): 3326-3330
    [67] Sha Zhao, Fei Ma, Zhongxiao Song, Kewei Xu, The growth behavior and stress evolution of sputtering-deposited LaNiO3 thin films. Materials Science and Engineering A, 2008, 474: 134-139
    [68] X.H. Zhu, et al, Effects of growth temperature and film thickness on the electrical properties of Ba0.7Sr0.3TiO3 thin films grown on platinized silicon substrates by pulsed laser deposition. Thin Solid Films, 2006, 496: 376-382
    [69] D.罗伯,计算材料学.北京:化学化工出版社,2002
    [70] Hesselbarth HW, Gobel IR. Simulation of recrystallization by cellular automata. Acta Metall, 1991, 39: 2135-2144
    [71]周成虎,地理元包自动机研究,科学出版社,2002
    [72] Y. Liu, T. Bandin, R. Penelle, Simulation of normal grain growth by cellular automata. Scripta Mater, 1996, 34 (11): 1679-1683
    [73] Marx V Reher, FR Gottstein G, Simulation of primary recrystallization using a modified three-dimensional cellular automaton. Acta Mater, 1984, 47:1219
    [74]谭云亮,周辉.模拟岩体破坏演化的新途径--物理元胞自动机理论.岩石力学与工程学报, 2000, 19(增): 371-373
    [75]张林等,连续冷却过程中低碳钢奥氏体→铁素体相变的元胞自动机模拟.金属学报,2004, 40 (1): 8-13
    [76] Wanhua Yu, E. J. Palmiere, S. P. Banks, et al, Cellualr automata modeling of ausenite grain coarsening during reheating-I normal grain coarsening. Journal of University of Science and Technology(English Edition), 2004, 11 (6): 517
    [77]焦宪友等,基于元胞自动机法的晶粒长大模拟.山东大学学报:工学版, 2005, 35 (6): 24-28
    [78] P.C. Millett, R. P. Selvam, A. Saxena, Stabilizing nanocrystalline materials with dopants. Acta Mater, 2007, 55 (7): 2329-2336
    [79] V. Yamakov, D. Moldovan, K. Rastogi and D. Wolf, Relation between grain growth and grain-boundary diffusion in a pure material by molecular dynamics simulations. Acta Mater, 2006, 54 (15): 4053-4061
    [80] A.J. Haslam, et al, Mechanisms of grain growth in nanocrystalline fcc metals bymolecular-dynamics simulation. Materials Science and Engineering A, 2001, 318 (1-2): 293-312
    [81] A.J. Haslam, et al, Combined atomistic and mesoscale simulation of grain growth in nanocrystalline thin films. Computational Materials Science, 2002, 23 (1-4): 15-32
    [82] A. Karma, W. J. Rapple, Numerical Simulation of Three-Dimensional Dendritic Growth,Phys. Rev. Lett., 1996, 77 (19): 4050-4053
    [83] R.Kobayshi, Modeling and Numerical Simulations of Dendritic Crystal Growth, Physica D, 1993, 63: 410-423
    [84] M. Rapple, A. Karma, Multiscale Finite-Difference-Diffusion-Monte-Carlo Method for Simulating Dendritic Solidification, Journal of Computational Physics, 2000, 165 (2): 592-619
    [85] S. Kim, W. T. Kim, Phase Field Modeling of Rapid Solidification, Mater. Sci. Enging. A,2001: 281-286
    [86] A. Artemev, Y. Wang, A. G. Khachaturyan, Three Dimensional Phase Field Model and Simulation of Martensitic Transformation in Multilayer System Under Applied Stresses, Acta. Mater, 2000, 48 (10): 2503-2518
    [87] D. Fan, L. Q. Chen, Computer Simulation of Grain Growth Using a Continuum Field Model, Acta. Mater, 1997, 45: 611-621
    [88] M. F. Zhu, J. M. Kim, C. P. Hong, Numerical Predictional of the Secondary Dendrite Arm Spacing Using a Phase Field Model, ISIJ Inst, 2001, 41 (4): 345-349
    [89] M.P.Anderson, D.J.Srolovitz, G.S.Grest, P.S.Sahni, Computer Simulation of Grain Growth-I. Kinetics, Acta Metall. 1984, 32 (5):783-791
    [90] D.J.Srolovitz, M.P.Anderson, P.S.Sahni, Computer Simulation of Grain Growth-II. Grain Size Distribution, Topology, and Local Dynamics, 1984, 32 (5): 793-802
    [91] M.P.Anderson, G.S.Grest, D.J.Srolovitz, Grain Growth in Three Dimensions: a Lattice Model, Scripta Matall., 1985, 19, 225-230
    [92] D.J.Srolovitz, G.S.Grest, M.P.Anderson, Computer Simulation ofRecrystallization-I. Homogeneous Nucleation and Growth, 1986, 34 (9): 1833-1845
    [93] D.J.Srolovitz, G.S.Grest, M.P.Anderson, A.D.Rollett, Computer Simulation of Recrystallization-II. Heterogeneous Nucleation and Growth, 1986, 36 (8):2155-2128
    [94] G.S.Grest, D.J. Srolovitz, M.P.Anderson, Computer Simulation of Grain Growth-IV. Anisotropic Grain Boundary Energies, 1985, 33 (3): 509-520
    [95] A.D. Rollett, D.J.Srolovitz, M.P.Anderson, R.D.Doherty, Computer Simulation of Recrystallization-III. Influence of a Dispersion of Fine Particles, 1992, 40 (12): 3475-3493
    [96] M.P.Anderson, G.S.Grest, R.D.Doherty, Kang Li, D.J. Srolovitz, Inhibition of Grain Growth by Second Phase Particles: Three Dimensional Monte Carlo Computer Simulation, 1989, 23, 753-758
    [97] D.J. Srolovitz, G.S.Grest, M.P.Anderson, Computer Simulation of Grain Growth-V. Abnormal Grain Growth, 1985, 33 (12): 2233-2247
    [98] A.D. Rollett, D.J.Srolovitz, M.P.Anderson,Simulation and Theory of Abnormal Grain Growth-Anisotropic Grain Boundary Energies and Mobilities, 1989, 37 (4): 1227-1240
    [99] G.S.Grest, M.P.Anderson, D.J.Srolovitz, A.D. Rollett, Abnormal Grain Growth in Three Dimensions, 1990, 24, 661-665
    [100] Radhakrishnan B,Zacharia, Simulation of curvature driven grain growth by using a modified Monte Carlo algorithm, Metall Trans, 1995, A26(7): 167-180
    [101] Y. Saito, M. Enomoto, Monte Carlo Simulation of Grain Growth. ISIJ International, 1992, 32 (3):267-274
    [102] Q. Yu, K. Esche, A Monte Carlo algorithm for single phase normal grain growth with improved accuracy and efficiency. Computer Materials Science, 2003, 27: 259-270
    [103] O.M. Ivasishin et al, A 3-D Monte-Carlo (Potts) model for recrystallization and grain growth in polycrystalline materials, Materials Science and Engineering A, 2006, 433: 216-232
    [104] K. Mehnert, P. Klimanek, Monte Carlo simulation of grain growth in textured metals using anisotropic grain boundary mobilities. Computational Materials Science, 1996, 7: 103-108
    [105] J. Gao, R.G. Thompson, Real time-temperature models for Monte Carlo simulations of normal grain growth. Acta Metall, 1996, 44 (11): 4565-4570
    [106] P. Blikstein, A. P. Tschiptshin, Monte Carlo Simulation of Grain Growth. Materials Research, 1999, 3: 133-137
    [107]宋晓艳,刘国权,古南驹,一个新的三维材料晶粒长大的图象仿真算法,计算机辅助设计与图形学学报, 2000, 12 (2): 85-89
    [108] G. Q. Liu, H. B. Yu, X. Y. Song, et al, A new model of three-dimensional grain growth: theory and computer simulation of topology-dependency of individual grain growth rate. Mater Design, 2001, 22: 23
    [109]秦湘阁,刘国权,多晶体晶粒尺度三维组织建模及可视化明.北京科技大学学报,2001, 23 (6): 519
    [110]秦湘阁,刘国权,基于Monte Carlo Potts方法的三维大尺度晶粒组织仿真模型及定量表征.北京科技大学学报,2004, 26 (l): 49
    [111]宋晓艳,刘国权,何宜柱,一种改进的晶粒长大Monte Carlo模拟方法.自然科学进展,1998, 8 (3): 337
    [112] Z. YANQ, S. SISTA, J. W .ELMER, et al .Three dimensional Monte Carlo simulation of grain growth during GTA welding of titanium. ACTA MATER, 2000, 48: 4813
    [113]Y. W. Shi, D. Chen, Y. P. Lei, et al, HAZ microstructure simulation in welding of a ultrafine grain steel. Comp Mater Sci, 2004, 13: 37
    [114]刘祖耀,李世晨,郑子樵等,正常晶粒长大的计算机模拟(I)-晶粒长大动力学跃迁概率的改进.中国有色金属学报,2003, 13 (6): 1357
    [115]刘祖耀,郑子樵,陈大钦等,正常晶粒长大的计算机模拟(II)-第二相粒子形状及取向的影响.中国有色金属学报,2004, 14(1): 1220
    [116]郭靖原,洪泽恺,陈民等,金属凝固于晶体生长过程的蒙特卡罗模拟.工程热热物理学报,2001, 22 (6):725
    [1]徐钟济,蒙特卡罗方法,上海科学与技术出版社,1985
    [2] D.罗伯,计算材料学,北京:化学工业出版社,2002
    [3] M. P. Anderson, D. J. Srolovitz, G. S. Grest, P. S. Sahni, Computer simulation of grain growth-I. Kinetics, Acta. Metall., 1984, 32 (5), 783-791
    [4] B. Radhakrishnan and T. Zacharia, Simulation of Curvature-Driven Grain Growth by Using a Modified Monte Carlo Algorithm, Metall. and Mater. Trans. A, 1995, 26: 167-180
    [5] Qiang Yu, Sven K. Esche, A Monte Carlo algorithm for single phase normal grain growth with improved accuracy and efficiency, computational materials Science, 2003, 27: 259-270
    [6] Yonghua Rong, Qingping Meng, Yulong Zhang, T.Y. Hsu (Xu Zuyao), Phase stability and its intrinsic conditions in nanocrystalline materials, Materials Science and Engineering A, 2006, 438-440: 414-419
    [7] R. A. Ristau, K. Barmak, K. R. Coffey, J. K. Howard, Grain growth in ultrathin films of CoPt and FePt, Journal of Materials Research, 1999, 14 (8): 3263-3270
    [8] Nikolay Zotov, Jürgen Feydt, Alfred Ludwig, Dependence of grain sizes and microstrains on annealing temperature in Fe/Pt multilayers and L10 FePt thin films, Thin Solid Films, 2008, 517 (2): 531-537
    [9] Carl V. Thompson, Grain Growth in Thin Films, Annu. Rev. Mater. Sci., 1990, 20: 245-268
    [10] W. W. Mullins, The Effect of Thermal Grooving on Grain Boundary Motion, Acta Metall., 1958, 6: 414-427
    [11] A. Michels, C. E. Krill, H. Ehrhardt, R. Birringer, D. T. Wu, Acta Mater. 1999, 47 (7): 2143-2152
    [1]杨于兴,漆王睿,X射线衍射分析,上海交通大学出版社,1989.
    [2] Th.H. De Keijser, J.I Langford, E.J.Mittemeijer, A.B.P. Vogles, Use of the Voigt function in a single-line method for the analysis of X-ray diffraction line broadening, 1982,15,308-314
    [3]廖乾初,蓝芬兰,扫面电镜原理及应用技术,冶金工业出版社,1990
    [4]戎咏华,分析电子显微学导论,高等教育出版社,2006
    [1]田民波,刘德令,薄膜科学与技术手册(上),机械工业出版社,1991
    [2] HolgerBorchert, et al, Determination of Nanocrystal Sizes: A Comparison of TEM, SAXS, and XRD Studies of Highly Monodisperse CoPt3 Particles, Langmuir, 2005, 21 (5): 1931–1936
    [3] O. Kitakami, H. Sato, Y. Shimada, Size effect on the crystal phase of cobalt fine particles. Phys. Rev. B, 1997, 56: 13849-13854
    [4] MENG Qingping, RONG Yonghua HSU T. Y. (XU Zuyao), The structural stability in nanosized crystals of metals. Science in China, Ser. E, 2002, 45 (5): 485-494
    [5] Yonghua Rong, Qingping Meng, Yulong Zhang, T.Y. Hsu (Xu Zuyao), Phase stability and its intrinsic conditions in nanocrystalline materials, Materials Science and Engineering A. 2006, 438-440: 414-419
    [6] P. A. Beck, J. C. Kremer, L. J. Demer, Grain Growth in High Purity Aluminum, Phys. Rev. Lett, 1947, 71 (8): 555
    [7] J.E. Burke, Some Factors Affecting the Rate of Grain Growth in Metals. AIME TRANS, 1949, 180: 73-91
    [8] W.W.Mullins, The effect of thermal grooving on grain boundary motion. Acta Metall, 1958, 6: 414-427
    [9] M. Thuvander, M. Abraham, A. Cerezo, G. D. W. Smith, Thermal stability of electrodeposited nanocrystalline nickel and iron-nickel alloys. Materials Science and Technology, 2001, 17: 961-970

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700