离子注入GaN的光学和电学特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
宽带隙半导体材料——GaN,由于其优良的物理和化学性质,使其在短波区发光器件、极端条件(譬如辐射环境)器件等领域有着重要和广泛的应用潜力和良好的市场前景。故而,对于GaN材料掺杂研究成为目前半导体材料研究领域的热点之一。作为常用的器件处理工艺,离子注入是一种有效的掺杂方式。由于离子注入对GaN材料的光学和电学特性有着较大的影响,同时对于GaN的不同发光带的发光机理还没有明确统一的认识,所以本工作重点对离子注入GaN材料光学特性的影响进行了研究,并对离子注入GaN材料的电学特性的影响以及不同离子注入绝缘的应用前景进行了探讨。值得一提的是实验同时对离子共注GaN技术进行了初步的探讨。
     实验过程中采用的注入方法为单离子注入(Be、Mg、Al、Si)和双离子混合注入(Mg+Be、Mg+Si)。其中单离子的剂量分别为:10~(13)、10~(14)、10~(15)、10~(16)/cm~2;双离子的注入剂量为:10~(13)、10~(14)、10~(15)/cm~2(Mg+Be)和10~(13)、10~(14)、10~(15)、10~(16)/cm~2(Mg+Si),注入是在室温的条件下进行的。注入后的样品在950℃的流动氮气的环境下进行热退火,退火时间为30分钟。对退火前后的样品分别进行室温光致发光、拉曼散射光谱及霍尔效应的测量,通过对测量结果的分析得到了以下主要结论:
     1)通过对GaN光致发光特性的分析确定GaN材料的黄光发射起因于带隙间杂质能级间的跃迁,是典型的D_sA_dP跃迁,即浅施主向深受主的跃迁。Be离子注入GaN增强黄光发射是缺陷复合体V_(Ga)Be_i贡献的结果,该复合体在GaN带隙中引入了深受主能级。
     2)根据实验是在n型GaN中实现的注入以及黄光带是D_sA_dP跃迁的前提下,分别得到了关于施主和受主注入产生黄光发射的缺陷的浓度随不同掺杂离子浓度的两个变化关系式4.6和4.10。
     3)Mg/Si离子共注的实验结果表明与注入Mg的GaN蓝光带相关的深能级仍然是深受主能级,蓝光发射也是浅施主向深受主的跃迁,浅施主是Mg间位Mgi,而深受主有两种可能,或者是能级位于价带之上0.43eV的某一未知的缺陷;或者就是空间上与其分离的紧邻氮空位V_N的替位Mg_(Ga),即复合体Mg_(Ga)V_N。共注实验结果表明施主Si与受主Mg共注GaN材料确实能够增加受主Mg的溶解性。
     4)对未注入GaN黄光发射负责的点缺陷(镓空位及缺陷复合体)也同样对红光发射负责,只是由于其被不同种类的扩展缺陷所影响从而对发光带的峰位产生了变化或者说能级发生了变化。
     5)离子注入GaN的拉曼光谱中的298cm~(-1)(R1)的散射峰是来自声学声子贡献的无序激活拉曼散射(DARS),667 cm~(-1)(R3)散射峰则是来自光学声子贡献的结果。360 cm~(-1)(R2)散射峰强度随注入离子的种类、剂量以及退火温度的变化而变化,它是简单缺陷譬如空位和间隙原子等贡献的结果而不是复杂缺陷,并且极有可能是氮空位相关的缺陷引起的。
     6)不同种类离子注入都会使GaN薄膜产生压应力,压应力的大小与注入离子的剂量的依赖并不明显;离子注入产生的缺陷譬如空位和间位等以及注入离子与要取代的GaN主晶格位置的Ga或N原子所具有的原子尺寸的差别都会影响应力的大小,实验结果显示前者在离子注入GaN的实验中起着决定性的作用。
     7)由于在注入过程中产生大量的点缺陷或简单的缺陷络合物,形成电子和空穴的深层陷阱,阻止电子和空穴的流动,从而造成电阻值随离子注入剂量的增加而升高。高剂量的受主注入能够产生高的阻抗,其在高温退火后依然存在,具有一定的实用价值。
     8)Be离子在低剂量(10~(13)cm~(-2))注入GaN后主要还是以间位施主Be_i的形式存在而不是替位。当注入剂量为10~(14)cm~(-2)时,Si离子的注入存在严重的自补偿,形成的受主补偿了原来以及Si离子注入所增加的载流子,使得电阻值升高;更高剂量的Si离子的注入则会使得GaN的电阻值显著降低。
Gallium Nitride (GaN) is promising wide bandgap material for fabricating high-efficiency light emitting devices in the short-wavelength regions and extremely using devices. It is expected to perform in the radiation environment of military and astronautic domains. In modern device technology, ion implantation is usually employed. In present dessertation, the influence of ion implantation on GaN optical and elctrical properties were investigated; implanted properties of different ions about GaN were also studied; meanwhile, the research on co-implantation effect of GaN in our experiments was started.
     In this article, Be、Mg、Al、Si ions are used to implant into GaN at room temperature and the fluence range from 10~(13)-10~(16)/cm~2, Mg+Be and Mg+Si are co-implanted into GaN at room temperature with respective fluence in the range of 10~(13)-10~(15)/cm~2 and 10~(13)-10~(16)/cm~2. All the implanted GaN samples were anneald at 950℃for 30 min in a flowing nitrogen environment. Photoluminescence, Raman and electrical properties of different ions implanted GaN were investigated and draw the conclusion as follows:
     1) The broad yellow luminescence (YL) band ranging from 480 to 700nm was produced by the transition between the energy levels of impurities or defects which was called a shallow donor to deep accepter pair (D_sA_dP) transition. In Be-implanted GaN sample, a different YL mechanism is involved that Be might be expected to form interstitial donors Be_i which is more effective than O_N to stabilize V_(Ga) and then form complexes V_(Ga)Be_i. The V_(Ga)Be_i can form deep acceptor energy level which is responsible for the YL.
     2) The theoretical model is developed to deduce the concentration of the defect causing the YL as a function of implanting concentration, are expressed by equation 4.6 and 4.10.
     3) Co-implantation of Mg and Si results show that for Mg-implanted GaN the blue luminescence (BL) is also a DAP transition, the shallow donor is produced by Mg_i, and the deep acceptor energy level is produced by the complex Mg_(Ga)V_N or an unknown defect which generate deep acceptor state at about 0.43eV above the VB. Meanwhile, the results of co-implantation of Mg and Si support the practice of co-implantation enhance Mg implant activation.
     4) The experimental results also show that the defect complex such as V_(Ga) and/or V_(Ga)-complex is also responsible for the red luminescence (RL); the influence of ion implantation on RL is larger than YL, it means the acceptor energy level responsible for RL is not easy affected by ion implantation.
     5) Additional Raman peak at 298cm~(-1)(R1) is attribute to disorder-activated Raman Scattering (DARS), the 667 cm~(-1)(R3) probably arises from the optical-phonon branch at the zone boundary. The intensity of 360cm~(-1) (R2) is dependent on species of implanted ions, fluence and annealing temperature, which is assigned to local vibration of simple defects such as vacancy and interstitial defects, most probable is V_N-related defects.
     6) The implantation of different ions result in compressive stress of GaN films, compressive stress is almost not dependent on ion fluence; hydrostatic strain is caused by the unit cell expansion/contraction due to: the implantation induced defects such as vacancies and interstitials, and the substitution of host atoms by the implants which have different size than the host lattice atoms, furthermore, the former plays a most crucial role.
     7) Ion implantation can induce a lots of point defects and simple defect complexes, then form deep traps which capture the electron and/or hole, and result in the increase of resistivity. Acceptor implantation with high fluence will increase resistivity that has practical value.
     8) When Be ion fluence is 10~(13)cm~(-2), Be is expected to form interstitial donors Be_i rather than any shallow acceptors.. When Si ion fluence is 10~(14)cm~(-2), self-compensation effects limit the electron density in Si-implanted GaN and induce the increasing resistivity, more fluence could decrease the resistivity.
引文
1.郝跃,彭军和杨银堂编著,《碳化硅宽带隙半导体技术》,科学出版社(微电子学丛书) (2000年版);S.J.Pearton,J.C.Zolper,R.J.Shul and F.Ren.GaN:Processing,defects. and devices.J.Appl.Phys.86(1999),1-78;王广厚著,《粒子同固体相互作用物理学》, 科学出版社(1991.2);张通和,吴瑜光著,《离子束材料改性科学和应用》,科学出版 社(1999.2)。
    
    2. H. Morko9, S. Strite, G. B. Gao, M. E. Lin, B. Sverdlov, and M. Burns, Large-band-gap SiC, Ⅲ-Ⅴ nitride, and Ⅱ-Ⅵ ZnSe-based semiconductor device technologies. J. Appl. Phys. 76 (1994), 1363-1398
    
    3. Eric Porter Carlson, Ion Implantation in Gallium Nitride. Doctor dissertation, Department of materials science and engineering, North Carolina State University, USA
    
    4. James A. Fellows, Electrical Activation Studies of Ion Implanted Gallium Nitride. Department of Air Force, Air University, Wright-Patterson Air Force Base, Ohio, USA
    
    5. B. Daudin, J. L. Rouviere, and M. Arlery. Polarity determination of GaN films by ion channeling and convergent beam electron diffraction. Appl.Phys.Lett. 69 (1996), 2480
    
    6. M. Leszczynski, T. Suski, P. Perlin, H. Teisseyre, I.Frzegory, M. Bockowski, J. Jun, S. Porowski, and J. Major. Lattice constants, thermal expansion and compressibility of gallium nitride. J.Phys.D 28 (1995), A149
    
    7. H.Amano, N.Sawaki, I.Akasaki and Y. Toyoda. Metalorganic vapor phase epitaxial growth of a high quality GaN film using an AlN buffer layer. Appl.Phys.Lett. 48 (1996), 353.
    
    8. Shuji Nakamura, Yasuhiro Harada, and Masayuki Seno, Novel metalorganic chemical vapor deposition system for GaN growth, Appl.Phys.Lett. 58 (1991), 2021-2023
    
    9. H. Tokunaga,Performance of multiwafer reactor GaN MOCVD system. J.Cryst.Growth. 221 (2000), 616.
    
    10. E.Woelk, Ⅲ-NItride multiwafer MOCVD systems for blue-green LED materials. Materials Science and Engineering: B 44 (1997), 419.
    
    11. T. Lei, M. Fanciulli, R. J. Molnar, T. D. Moustakas, R. J. Graham and J. Scanlon. Epitaxial growth of zinc blende andwurtzitic gallium nitride thin films on (001) silicon. Appl.Phys.Lett. 59 (1991), 944-946.
    
    12. H. P. Maruska and J. J. Tietjen. The preparation and properties of vapor-deposited single-crystal-line GaN. Appl.Phys.Lett. 15 (1969), 327-329.
    
    13. S. Yoshida, S. Misawa, and S. Gonda. Improvements on the electrical and luminescent properties of reactive molecular beam epitaxially grown GaN films by using AlN-coated sapphire substrates, Appl.Phys.Lett. 42 (1983), 427-429.
    
    14. P. Sanguino, M. Niehus, L. V. Melo, R. Schwarz, S. Koynov, T. Monteiro, J. Soares, H. Alves and B. K. Meyer. Characterisation of GaN films grown on sapphire by low-temperature cyclic pulsed laser deposition/nitrogen rf plasma. Solid-State Electron. 47 (2003), 559-563.
    
    15. A. Tanaka, Y. Funayama, T. Murakami and H. Katsuno. GaN crystal growth on an SiC substrate from Ga wetting solution reacting with NH_3. J Cryst Growth. 249 (2003), 59.
    
    16. L. J. Schowalter, J. C. Rojo, G A. Slack, Y. Shusterman, R. Wang, I. Bhat and G Arunmozhi.Epitaxial growth of AlN and Al_(0.5)Ga_(0.5)N layers on aluminum nitride substrates. J Cryst Growth. 211 (2000), 78.
    
    17. Xu Ke, Xu Jun, Deng Peizhen, Zhou Yongzong, Zhou Guoqing, Qiu Rongsheng and Fang Zujie. γ-LiAlO_2 single crystal: a novel substrate for GaN epitaxy. J Cryst Growth. 193 (1998), 127.
    
    18. A. Georgakilas, K. Amimer, P. Tzanetakis, Z. Hatzopoulos, M. Cengher, B. Pecz, Zs. Czigany, L. Toth, M. V. Baidakova, A. V. Sakharov and V. Yu. Davydov. Correlation of the structural and optical properties of GaN grown on vicinal (001) GaAs substrates with the plasma-assisted MBE growth conditions. J Cryst Growth. 227-228 (2001), 410.
    
    19. Satoru Tanaka, Sohachi Iwai and Yoshinobu Aoyagi. Reduction of the defect density in GaN films using ultra-thin AlN buffer layers on 6H-SiC. J Cryst Growth. 170 (1997), 329.
    
    20. Lee C H, Chi G C, Lin C F and M. S. Feng. X-ray crystallographic study of GaN epitaxial films on Al_2O_3 (0001) substrates with GaN buffer layers. Appl Phys Lett. 68 (1996), 3440.
    
    21.张通和,吴瑜光著,《离子注入表面优化技术》冶金工业出版社。1993.12。
    
    22. Pankove J.I, Hutchby J.A. Photoluminescence of Zn-implanted GaN. Appl Phys Lett. 24 (1974), 281.
    
    23. Pankove J.I, Hutchby J.A. Photoluminescence of ion-implanted GaN. J. Appl. Phys. 47 (1976), 5387.
    
    24. D. M. Hansen, R. Zhang, N. R. Perkins, S. Safvi, L. Zhang, K. L. Bray, and T. F. Kuech, Photoluminescence of erbium-implanted GaN and in situ-doped GaN.Er. Appl Phys Lett. 72??(1998), 1244-1246.
    
    25. Wilson R G, R. N. Schwartz, C. R. Abernathy, S. J. PeartonN, Newman, M. Rubin and T. Fu. 1.54-μm photoluminescence from Er-implanted GaN and AIN. Appl Phys Lett. 65 (1994), 992.
    
    26. C. Ronning, E.P. Carlson, R.F.Davis. Ion implantation into gallium nitride. Physics Reports 351 (2001), 349-385.
    
    27. S. O. Kucheyev, J. S. Williams, S.J. Pemton. Ion implantation into GaN. Msterials Science and Engineering: R: Reports. 33 (2001), 51-108.
    
    28. Michael A. Reshchikov and Hadis Morkoc. Luminescence properties of defects in GaN. J. Appl. Phys. 97 (2005), 061301.
    
    29.赖天树,范海华,柳振东和林位株。GaN的宽带黄光发射研究。物理学报,卷52第10 期,2003年,2638。
    
    30.彭长涛,陈诺夫,林兰英和柯俊。非掺杂n型氮化镓外延层的光致发光。半导体学报, 第22卷第4期,2001年4月。
    
    31. S. O. Kucheyev, M. Toth, M. R. Phillips, J. S. Williams, C. Jagadish, and G Li. Chemical origin of the yellow luminescence in GaN. J. Appl. Phys. 91 (2002), 5867-5874
    
    32. E. Calleja, F. J. Sanchez, D. Basak, M. A. Sanchez-Garcia, E. Munoz, I. Izpura, F. Calle, J. M. G. Tijero, J. L. Sanchez-Rojas ,B. Beaumont, P. Lorenzini, and P. Gibart, Yellow luminescence and related deep states in undoped GaN. Phys. Rev. B 55 (1997), 4689-4694
    
    33.李欣,彭林峰,黄绮雯,赖天树和林位株。n型GaN的监光发射研究。中山大学学报(自 然科学版),第41卷,第1期,2002年1月,105。
    
    34. Hess, R. A. Taylor, J. F. Ryan, N. J. Cain, V. Roberts, and J. Roberts. Photoluminescence Studies of Mg-Doped and Si-Doped Gallium Nitride Epilayers. Phys. Status Solidi B 210 (1998), 465-470.
    
    35. L. Eckey, U. von Gfug, J. Hoist, A. Hoffmann, A. Kaschner, H. Siegle, and C. Thomsen, B. Schineller, K. Heime, M. Heuken, O. Schon, and R. Beccard. Photoluminescence and Raman study of compensation effects in Mg-doped GaN epilayers. J. Appl. Phys. 84 (1998), 5828.
    
    36. BZ Qu, QS Zhu, XH Sun, SK Wan, ZG Wang, H. Nagai, Y. Kawaguchi, K. Hiramatsu and N. Sawaki. Photoluminescence of Mg-doped GaN grown by metalorganic chemical vapor deposition. J. Vac. Sci. Technol. A 21 (2003), 838-841.
    
    37. M. A. Reshchikov, M. Zafar Iqbal, H. Morkoc, S. S. Park, and K. Y. Lee. Long-lasting photoluminescence in freestanding GaN templates. Appl. Phys. Lett. 83 (2003), 266.
    
    38. C. Diaz-Guerra, J.Piqueras, and A. Cavallini. Time-resolved cathodoluminescence assessment of deep-level transitions in hydride-vapor-phase-epitaxy GaN. Appl. Phys. Lett. 82 (2003), 2050.
    
    39. W. Gotz, L. T. Romano, B. S. Krusor, N. M. Johnson, and R. J. Molnar. Electronic and structural properties of GaN grown by hydride vapor phase epitaxy. Appl. Phys. Lett. 69 (1996), 242.
    
    40. E. M. Goldys, M. Godlewski, T. Paskova, G. Pozina, and B. Monemar, Characterization of Red Emission in Nominally Undoped Hydride Vapor Phase Epitaxy GaN. MRS Internet J. Nitride Semicond. Res. 6 (2001), 1.
    
    41. Zhang R and Kuech TF. Photoluminescence of carbon in situ doped GaN grown by halide vapor phase epitaxy. Apply. Phys. Lett. 72 (1998), 1611.
    
    42. D. M. Hofmann, D. Kovalev, G Steude, B. K. Meyer, A. Hoffmann, L. Eckey, R. Heitz, T. Detchprom, H. Amano and I. Akasaki. Properties of the yellow luminescence in undoped GaN epitaxial layers. Phys. Rev. B 52 (1995), 16702-16706
    
    43. E. R. Glaser, T. A. Kennedy, K. Doverspike, L. B. Rowland, D. K. Gaskill,J. A. Freitas, M. Asif Khan, D. T. Olson, and J. N. Kuznia, and D. K. Wickenden, Optically detected magnetic resonance of GaN films grown by organometallic chemical-vapor deposition, Phys. Rev. B 51(1995), 13326-13336
    
    44. D. G. Chtchekine, L. P. Fu, G. D. Gilliland, Y. Chen, S. E. Ralph, K. K. Bajaj, Y. Bu, M. C. Lin, F. T. Bacalzo, and S. R. Stock. Properties of low-pressure chemical vapor epitaxial GaN films grown using hydrazoic acid (HN_3). J. Appl. Phys. 81 (1997), 2197-2207.
    
    45. C. H. Seager, A. F. Wright, J. Yu and W. Gotz. Role of carbon in GaN. J. Appl. Phys. 92 (2002), 6553-6560.
    
    46. G. C. Yi and B. W. Wessels. Compensation of n-type GaN. Appl. Phys. Lett. 69 (1996), 3028.
    
    47. E. R. Glaser, T. A. Kennedy, K. Doverspike, L. B. Rowland, D.K. Gaskill, J. A. Freitas, M. Asifkhan, D. T. Olson, J. N. Kuznia, and D. K. Wickenden. Optically detected magnetic resonance of GaN films grown by organometallic chemical-vapor deposition. Phys. Rev. B 51 (1995), 13326.
    
    48. D. M. Hofmann, D. Kovalev, G. Steude, B. K. Meyer, A. Hoffmann, L. Eckey, R. Heitz, T. Detchprom, H. Amano, and I.Akasaki, Properties of the yellow luminescence in undoped GaN epitaxial layers. Phys. Rev. B 52 (1995) 16702
    
    49. L. DAI, G Z. RAN, J. C. ZHANG, X.F.DUAN, W. C. LIAN and G G QIN. C and Si ion implantation and the origins of yellow luminescence in GaN. Appl.Phys.A 79 (2004), 139-142
    
    50. R.Zhang and T.F.Kuech. Photoluminescence of carbon in situ doped GaN grown by halide vapor phase epitaxy. Appl. Phys. Lett. 72 (1998), 1611.
    
    51. S. Nakamura, N. Iwasa, M. Senoh, and T. Mukai. Hole Compensation Mechanism ofP-Type GaN Films. Jpn. J. Appl. Phys. 31 (1992), 1258.
    
    52. T. Ogino and M. Aoki. Mechanism of Yellow Luminescence in GaN. Jpn. J. Appl. Phys. 19 (1980), 2395.
    
    53. S. Nakamura, T. Mukai, and M. Senoh. Si- and Ge-Doped GaN Films Grown with GaN Buffer Layers. Jpn. J. Appl. Phys. 31 (1992) 2883.
    
    54. X.Zhang, P.Kung, A.Saxler, D.Walker, TC Wang, and M.Razeghi. Growth of Al_xGa_(1-x)N: Ge on sapphire and silicon substrates. Appl. Phys. Lett. 67 (1995), 1745.
    
    55. In-Hwan Lee, In-Hoon Choi, C. R. Lee and S. K. Noh. Evolution of stress relaxation and yellow luminescence in GaN/sapphire by Si incorporation. Appl. Phys. Lett. 71 (1997), 1359-1361.
    
    56. L. Dai, J. C. Zhang, Y. Chen, G Z. Ran and G. G Qin. Effects of Si ion implantation and post-annealing on yellow luminescence from GaN. Physica B: Condensed Matter 322 (2002), 51-56.
    
    57. E. F. Schubert, I. D. Goepfert, and J. M. Redwing. Evidence of compensating centers as origin of yellow luminescence in GaN. Appl. Phys. Lett. 71 (1997), 3224-3226
    
    58. R. Seitz, C. Gaspar, T. Monteiro, E. Pereira, M. Leroux, B. Beaumont and P. Gibart. Time resolved spectroscopy of mid-band-gap emissions in Si-doped GaN. Journal of Crystal Growth 189-190 (1998), 546-550.
    
    59. H. C. Yang, T. Y. Lin, M. Y. Huang, and Y. F. Chen. Optical properties of Si-doped GaN films. J. Appl. Phys. 86 (1999), 6124-6127.
    
    60. R. Y. Korotkov, M. A. Reshchikov and B. W. Wessels. Acceptors in undoped GaN studied by transient photoluminescence. Physica B: Condensed Matter 325 (2003), 1-7.
    
    61. R. Armitage, William Hong, Qing Yang, H. Feick, J. Gebauer, E. R. Weber, S. Hautakangas and K. Saarinen. Contributions from gallium vacancies and carbon-related defects to the "yellow luminescence" in GaN. Appl. Phys. Lett. 82 (2003), 3457-3459.
    
    62. L.Chen and B. J. Skromme. Spectroscopic Characterization of Ion-Implanted GaN Mat. Res. Soc. Symp. Proc. 743 (2003), LI 1.35.1.
    
    63. M. Rummukainen, J. Oila, A. Laakso, K. Saarinen, A. J. Ptak and T. H. Myers. Vacancy defects in O-doped GaN grown by molecular-beam epitaxy: The role of growth polarity and stoichiometry. Appl. Phys. Lett. 84 (2004), 4887-4889.
    
    64. Jorg Neugebauer and Chris G. Van de Walle. Gallium vacancies and the yellow luminescence in GaN. Appl. Phys. Lett. 69 (1996), 503-505.
    
    65. P. Boguslawski and J. Bernholc. Doping properties of C, Si, and Ge impurities in GaN and AlN. Phys. Rev. B 56 (1997), 9496; P. boguslawski, E. L. Briggs, and J. Bernholc. Amphoteric properties of substitutional carbon impurity in GaN and AlN. Appl. Phys. Lett. 69 (1996), 233.
    
    66. A. F. Wright. Substitutional and interstitial carbon in wurtzite GaN. J. Appl. Phys. 92 (2001),2575.
    
    67. H. C. Yang, T. Y. Lin, and Y. F. Chen. Nature of the 2.8-eV photoluminescence band in Si-doped GaN. Phys. Rev. B 62 (2000), 12593-12596.
    
    68. U. Kaufmann, M. Kunzer, H. Obloh, M. Maier, Ch. Manz, A. Ramakrishnan, and B. Santic. Origin of defect-related photoluminescence bands in doped and nominally undoped GaN. Phys. Rev. B 59 (1999), 5561-5567
    
    69. M. A. Reshchikov and R. Y. Korotkov. Analysis of the temperature and excitation intensity dependencies of photoluminescence in undoped GaN films. Phys. Rev. B 64 (2001), 115205.
    
    70. M. Toth, K. Fleischer, and M. R. Phillips. Direct experimental evidence for the role of oxygen in the luminescent properties of GaN. Phys. Rev. B 59 (1999), 1575-1578.
    
    71. E. F. Schubert, I. D. Goepfert, and J. M. Redwing. Evidence of compensating centers as origin of yellow luminescence in GaN. Appl. Phys. Lett. 71 (1997), 3224.
    
    72.谢世勇,郑有蚪,陈鹏,张荣和周玉刚。氮化镓注镁(Mg:GaN)的光致发光。半导 体学报,第23卷(2002),149。
    
    73. Sun-Ghil Lee and K J Chang. Atomic model for blue luminescences in Mg-doped GaN. Semicond. Sci. Technol. 14(1999), 138-142.
    
    74. F. A. Reboredo and S. T. Pantelides. Novel Defect Complexes and Their Role in the p-Type Doping of GaN. Phys. Rev. Lett. 82 (1999), 1887-1890.
    
    75. M. A. Reshchikov, R. J. Molnar, and H. Morko9. Photoluminescence and Excitation Spectra of Deep Defects in GaN. Mater. Res. Soc. Symp. Proc. 680 (2001), E5.6.
    
    76. C.Diaz-Guerra, J. Piqueras, and A. Cavallini. Time-resolved cathodoluminescence assessment of deep-level transitions in hydride-vapor-phase-epitaxy GaN. Appl. Phys. Lett. 82 (2003), 2050.
    
    77. C. Bozdog, H. Przybylinska, G. D. Watkins, V. Harle, F. Scholz, M. Mayer, M. Kamp, R. J. Molnar, A. E. Wickenden, D. D. Koleske, and R. L. Henry. Optical detection of electron paramagnetic resonance in electron-irradiated GaN. Phys. Rev. B 59 (1999), 12479.
    
    78. M. A. Reshchikov, H. Morko9, S. S. Park, and K. Y. Lee. Photoluminescence study of deep-level defects in undoped GaN. Mater. Res. Soc. Symp. Proc. 693 (2002), 16.19.
    
    79. E. R. Glaser, W. E. Carlos, G. C. B. Braga, J. A. Freitas, Jr., W. J. Moore, B. V. Shanabrook, R. L. Henry, A. E. Wickenden, D. D. Koleske H., Obloh P. Kozodoy, S. P. DenBaars, and U. K. Mishra. Magnetic resonance studies of Mg-doped GaN epitaxial layers grown by organometallic chemical vapor deposition. Phys. Rev. B 65 (2002), 085312.
    
    80. M. W. Bayerl, M. S. Brandt, O. Ambacher, M. Stutzmann, E. R. Glaser, R. L. Henry, A. E. Wickenden, D. D. Koleske, T. Suski, I. Grzegory, and S. Porowski. Optically detected magnetic resonance of the red and near-infrared luminescence in Mg-doped GaN. Phys. Rev. B 63 (2001), 125203.
    
    81. E.E.Reuter, R.Zhang, T.F.Kuech, S.G.Bishop. Photoluminescence Excitation Spectroscopy of Carbon-Doped Gallium Nitride. MRS Internet J. Nitride Semicond, Res. 4S1 (1999), G.67.
    
    82. U. Kaufmann, M. Kunzer, H. Obloh, M. Maier, Ch. Manz, A. Ramakrishnan, and B. Santic. Origin of defect-related photoluminescence bands in doped and nominally undoped GaN. Phys. Rev. B 59 (1999), 5561.
    
    83.Zhu K G,Shi J Z and Shao Q Y.RAMAN SCATTERING FROM InAs NANOCRYSTALS EMBEDDED IN SiO_2 THINFILMS.Acta.Phys.Sin.49(2000),2304.[朱开贵,石建中,邵 庆益。镶嵌在SiO_2薄膜中InAs纳米颗粒的Raman散射。物理学报,49(2000),2304。]
    
    84. Ponce F.A, Steeds J.W, Dyer C.D and Piff F.D. Direct imaging of impurity-induced Raman scattering in GaN. Appl.Phys.Lett. 69 (1996), 2650.
    
    85. J. Wanger, R.C.Newman, B.R.Davidson, S.P.Westwater, T.J.BulIough, T.B.Joyce,??C.D.Latham, R.Jones, and S.Oberg, Di-Carbon Defects in Annealed Highly Carbon Doped GaAs. Phys.Rev.Lett. 78 (1997), 74.
    
    86. W. Limmer, W. Ritter, R. Sauer, B. Mensching, C. Liu, and B. Rauschenbach. Raman scattering in ion-implanted GaN. Appl. Phys. Lett. 72 (1998), 2589.
    
    87.张纪才,戴伦,秦国刚,应丽贞,赵新生。离子注入GaN的拉曼散射研究。物理学报, 51(2002),629。
    
    88. M. Katsikini, K. Papagelis, E. C. Paloura and S.Ves. Raman study of Mg, Si, O, and N implanted GaN. J.Appl. Phys. 94 (2003), 4389.
    
    89. LIANSHAN WANG, SOOJINCHUA and WENHONG SUN. Raman Scatterng and Photoluminescence of Mg-Implanted GaN films. Phys. Stat. Sol. (b) 228 (2001), 449-452.
    
    90. L.S.Wang, W. H.Sun and S.J. Chua. Raman Scattering Spectra in Be-Implanted GaN Epilayers. Mat.Res.Soc.Symp.Proc. 719 (2002), F8.28.1.
    
    91. L.S.Wang, S. Tripathy, W.H.Sun and S.J.Chua. Mocro-Raman spectroscopy of Si-, C-, Mg-and Be-implanted GaN layers. J.Raman Spectroc. 35 (2004), 73-77.
    
    92.孙文红,王孙涛,段家忯 陈开茅,濮玉梅,王敬,秦国刚。注入GaN的拉曼散射谱研 究。光散射学报,11(2000),361。
    
    93. M. Asif Khan, J. N. Kuznia, A. R. Bhattarai, and D. T. Olson. Metal semiconductor field effect transistor based on single crystal GaN. Appl.Phys.Lett. 62 (1993), 1786.
    
    94. Binari, S.C. Rowland, L.B. Kruppa, W. Kelner, G. Doverspike, K. Gaskill, D.K. Microwave performance of GaN MESFETs. Electron. Lett, 30 (1994), 1248.
    
    95. C. Uzan-Saguy, J. Salzman, R. Kalish, V. Richter, U. Tish, S. Zamir, and S. Prawer. Electrical isolation of GaN by ion implantation damage: Experiment and model. Appl.Phys.Lett. 74 (1999), 2441-2443.
    
    96. A. I. Titov and S. O. Kucheyev. Model for electrical isolation of GaN by light-ion bombardment. J.Appl. Phys. 92 (2002), 5740-5744.
    
    97. S. J. Pearton, C. B. Vartuli, J. C. Zolper, C. Yuan and R. A. Stall. Ion implantation doping and isolation of GaN. Appl.Phys.Lett. 67 (1995), 1435-1437.
    
    98. Jian-Ping Zhang, Dian-Zhao Sun, Xiao-Liang Wang, Mei-Ying Kong, Yi-Ping Zeng, Jin-Min Li, Lan-Yin Lin. p-Type co-doping study of GaN by photoluminence. Journal of Crystal Growth. 197 (1999), 368-371.
    
    99. Zolper J. C, R. G. Wilson, S. J. Pearton. Ca and O ion implantation doping of GaN. Appl.Phys.Lett. 68 (1996), 1945.
    
    100. C. H. Seager, D. R. Tallant, J. Yu, W. Gotz. Luminescence in GaN co-doped with carbon and silicon. Journal of Luminescence 106 (2004), 115-124.
    
    101. Lin X. W, M. Behar, R. Maltez, W. Swider, Z. Liliental-Weber and J. Washburn. Synthesis of GaN by N ion implantation in GaAs (001). Appl.Phys.Lett. 67 (1995), 2699.
    
    102. Chris G Van de Walle and Jorg Neugebauer. First-principle calculations for defects and impurities: Applications to Ⅲ-nitrides. J.Appl. Phys. 95 (2004), 3851-3879
    
    103. David W. Jenkins and John D. Dow. Electronic structures and doping of InN, In_xGa_(1-x)N, and In_xAl_(1-x)N. Phys. Rev. B 39 (1989), 3317-3329.
    
    104. Jorg Neugebauer and Chris G Van de Walle. Atomic geometry and electronic structure of native defects in GaN. Phys. Rev. B 50 (1994), 8067-8070.
    
    105. P. Boguslawski, E. L. Briggs and J. Bernholc. Native defects in gallium nitride. Phys. Rev. B 51 (1995), 17255-17258.
    
    106. T. Mattila and R. M. Nieminen. Point-defect complexes and broadband luminescence in GaN and AlN. Phys. Rev. B 55 (1997), 9571-9576.
    
    107. P. Boguslawski and J. Bernholc. Doping properties of C, Si, and Ge impurities in GaN and AlN. Phys. Rev. B 56 (1997), 9496-9505.
    
    108. Sukit Limpijumnong and Chris G. Van de Walle. Diffusivity of native defects in GaN. Phys. Rev. B 69 (2004), 035207
    
    109.H. P. Maruska and J. J. Tietjen. THE PREPARATION AND PROPERTIES OF VAPOR-DEPOSITED ANDGLE-CRYSTAL-LINE GaN. Appl. Phys. Lett. 15 (1969), 327-329.
    
    110. M.llegems and H. C. Montgomery. Electrical properties of n-type vapor-grown gallium nitride. J. Phys. Chen. Solids 34 (1973), 885-891.
    
    111.D. C. Look, D. C. Reynolds, J. W. Hemsky, J. R. Sizelove, R. L. Jones and R. J. Molnar. Defect Donor and Accepor in GaN. Phys. Rev. Lett. 79 (1997), 2273-2276.
    
    112. B.-C. Chuang and M. Gershenzon. The influence of oxygen on the electrical and optical properties of GaN crystals grown by metalorganic vapor phase epitaxy. J. Appl. Phys. 72 (1992), 651-659.
    
    113. Francisco Mireles and Sergio E. Ulloa. Acceptor binding energies in GaN and AlN. Phys. Rev. B 58 (1998), 3879-3887.
    
    114. H. Wang and A.-B. Chen. Calculations of acceptor ionization energies in GaN. Phys. Rev. B 63 (2001), 125212.
    
    115. Jorg Neugebauer and Chris G Van de Walle. Chemical trends for acceptor impurities in GaN. J.Appl. Phys. 85 (1999), 3003.
    
    116. Chris G. Van de Walle, Sukit Limpijumnong and Jorg Neugebauer. First-principles studies of beryllium doping of GaN. Phys. Rev. B 63 (2001), 245205.
    
    117. C. H. Park and D. J. Chadi. Stability of deep donor and acceptor centers in GaN, AlN, and BN. Phys. Rev. B 55 (1997), 12995-13001.
    
    118.I. Gorczyca, A. Svane, and N. E. Christensen. Mg-O and Mg-V_N defect complexes in cubic GaN. Phys. Rev. B 61 (2000), 7494-7498.
    
    119. U. Kaufmann, M. Kunzer, M. Maier, H. Obloh, A. Ramakrishnan, B. Santic, and P. Schlotter. Nature of the 2.8 eV photoluminescence band in Mg doped GaN. Appl. Phys. Lett. 72 (1998), 1326-1328.
    
    120. H. Reiss, C. S. Fuller, and F. J. Morin. Chemical interactions among degects in germanium and silicon. Bell.Syst. Tech. J., 35 (1956), 535-636.
    
    121. H. Reiss, C. S. Fuller, and A. J. Pietruszkievicz. Solubility of lithium in doped and undoped silicon evidence for compound formation. J. Chem. Phys. 25 (1956), 650-655.
    
    122. Jorg Neugebauer and Chris G. Van de Walle. Role of hydrogen in doping of GaN. Appl. Phys. Lett. 68 (1998), 1829-1831.
    
    123. Heckingbottom R. and T. Ambridge. Ion implantation in compound semiconductors -an approach based on solid state theory. Radiat. Eff. 17 (1973), 31-36.
    
    124. R. Morton, S. S. Lau, D. B. Poker and P. K. Chu. Carbon and group II acceptor coimplantation in GaAs. J Appl Phys, 84 (1998), 4929-4934.
    
    125. Oliver Brandt, Hui Yang, Helmar Kostial, and Klaus H. Ploog. High p-type conductivity in cubic GaN/GaAs (113) A by using Be as the acceptor and O as the codopant. Appl. Phys. Lett, 69 (1996), 2707-2709.
    
    126. Yamamoto T. and H. Katayama-Yoshida. Materials design for the fabrication of low-resistivity p-type GaN using a codoping method. Jpn. J. Appl. Phys. 36, part2 (1997),??L180-L183.
    
    127. Ploog, K. H. and O. Brandt. Doping of group FF3 nitrides. J Vac Sci Technol A, 16 (1998), 1609-1614.
    
    128. B.Clerjaud, F.Gendron, and M.Krause. Electronic level of interstitial hydrogen in GaAs. Phys. Rev.Lett. 65 (1990), 1800.
    
    129. D. D. Manchon, Jr., A. S. Barker, Jr., P. J. Dean, and R. B. Zetterstrom. Optical studies of the phonons and electrons in gallium nitride. Solid State Commun. 8 (1971), 1227-1231.
    
    130. A. S. Barker, Jr. and M. Ilegems. Infrared Lattice Vibrations and Free-Electron Dispersion in GaN. Phys. Rev. B 7 (1973), 743.
    
    131. H. Sobotta, H. Neumann, R. Franzheld, and W. Seifert. Infrared lattice vibrations of GaN. Phys. Status Solidi B 174 (1992), K57-K60.
    
    132. Zhe Chuan Feng, Kun Li b, Yun Tian Hou c,l, Jie Zhao d, W. Lu e, W.E. Collins. A comparative study of high resolution transmission electron microscopy, atomic force microscopy and infrared spectroscopy for GaN thin films grown on sapphire by metalorganic chemical vapor deposition. Surface & Coatings Technology 200 (2006), 3224 - 3229.
    
    133. C. B. Vartuli, S. J. Pearton, C. R. Abernathy, J. D. Mackenzie, E. S. Lamber, J. C. Zolper. High temperature surface degradation of FF3-FF5 nitrides. J. Vac. Sci. Technol.B 14 (1996), 3523.
    
    134. J. F. Muth, J. H. Lee, I. K. Shmagin, R. M. Kolbas, H. C. Casey, Jr., B. P. Keller, U. K. Mishra, and S. P. DenBaars. Absorption coefficient, energy gap, exciton binding energy, and recombination lifetime of GaN obtained from transmission measurements. Appl. Phys. Lett. 71 (1997), 2572.
    
    135. Wook Kim, A. Salvador, A. E. Botchkarev, O. Aktas, S. N. Mohammad, and H. Morcoc. Mg-doped p-type GaN grown by reactive molecular beam epitaxy. Appl. Phys. Lett. 69 (1996), 559.
    
    136. B.J.Pong, C.J.Pan, Y.C.Teng, G.C.Chi, W.H.Li, K. C. Lee and Chih-Hao Lee. Structural defects and microstrain in GaN induced by Mg ion implantation. J. Appl. Phys. 83 (1998), 5992.
    
    137. K. Saarinen, J. Nissila, P. Hautojari, J. Likonen, T. Suski, I. Grzegory, B. Lucznik, and S. Porowski. The influence of Mg doping on the formation of Ga vacancies and negative ions in GaN bulk crystals. Apply. Phys. Lett. 75 (1999), 2441.
    
    138. B. J. Skromme and G. L. Martinez. Optical Activation Behavior of Ion Implanted Acceptor Species in GaN. Mater. Res. Soc. Symp. Proc. 5S1 (2000), W9.8.
    
    139. B. J. Skromme, G. L. Martinez, L. Krasnobaev, and D. B. Poker. Characterization of Ion Implanted GaN. Mater.Res. Soc. Symp. Proc. 639 (2001), G11.39
    
    140. H. Heinke, V. Kirchner, S. Einfeidt, and D. Hommel. X-ray diffraction analysis of the defect structure in epitaxial GaN. Appl. Phys. Lett. 77 (2000), 2145
    
    141. J. W. Orton. Acceptor binding energy in GaN and related alloys. Semicond. Sci. Technol. 10 (1995), 101.
    
    142. B. Podor. Acceptor ionisation energiesin gallium nitride: chemical trends and electronegativities. Semicond. Sci. Technol. 11 (1996), 827.
    
    143. F. Bernardini, V. Fiorentini, and A. Bosin. Theoretical evidence for efficient p-type doping of GaN using beryllium. Appl. Phys. Lett. 70 (1997), 2990.
    
    144. J. Neugebauer and C. G. Van de Walle. Chemical trends for acceptor impurities in GaN. J. Appl. Phys. 85 (1999), 3003.
    
    145. H. Kobayashi and W. M. Gibson. Si dopant site within ion implanted GaN lattice. J. Vac. Sci. Technol. A 17 (1999), 2132-2135.
    
    146. F. Shahedipour and B. W. Wessels. Investigation of the formation of the 2.8 eV luminescence band in p-type GaN: Mg. Appl. Phys. Lett. 76 (2000), 3011.
    
    147. F J Sanchez, F Calle, M A Sanchez-Garcia, E Calleja, E Munoz, C H Molloy, D J Somerford, J J Serrano and J M Blanco. Experimental evidence for a Be shallow acceptor in GaN grown on Si (111) by molecular beam epitaxy. Semicond. Sci. Technol. 13 (1998), 1130.
    
    148. P.H.Lim, B.Schineller, O.Schon, K.Heime and M.Heuken. Photoluminescence of GaN: Mg grown by metalorganic vapor-phase epitaxy (MOVPE). J. Cryst. Growth 205 (1999), 1-10.
    
    149. Sun-Ghil Lee and K J Chang. Atomic model for blue luminescences in Mg-doped GaN. Semic. ci. and Technol. 14 (1999), 138.
    
    150. S.Hautakangas, J.Oila, M.Alatalo, K.Saarenen, L. Liszkay, D. Seghier and H. P. Gislason. Vacancy Defects as Compensating Centers in Mg-Doped GaN. Phys. Rev. Lett. 90 (2003), 137402-1
    
    151. F. A. Reboredo and S. T. Pantelides. Novel Defect Complexes and Their Role in the p-Type Doping of GaN. Phys. Rev. Lett. 82 (1999), 1887.
    
    152.I. Gorczyca, A. Svane, and N. E. Christensen. Mg-O and Mg-VN defect complexes in cubic GaN. Phys. Rev. B 61 (2000), 7494.
    
    153. H. H. Tan and J. S. Williams, J. Zou and D. J. H. Cockayne, S. J. Pearton, J. C. Zolper, R. A. Stall. Annealing of ion implanted gallium nitride. Appl. Phys. Lett. 72 (1998), 1190-1192.
    
    154. M. W. Bayerl, M. S. Brandt, O. Ambacher, M. Stutzmann, E. R. Glaser, R. L. Henry, A. E. Wickenden, D. D. Koleske, T. Suski, I. Grzegory, and S. Porowski. Optically detected magnetic resonance of the red and near-infrared luminescence in Mg-doped GaN. Phys. Rev. B 63 (2001), 125203
    
    155. Eiting CJ, Grudoski PA, Dupuis RD, Hsia H, Tang Z, Becher D, Kuo H, Stillman GE, Feng M. Activation studies of low-dose Si implants in gallium nitride. Appl. Phys. Lett. 73 (1998), 3875.
    
    156. Kozawa T, Kachi T, Kano H, Taga Y, Hashimato M, Koide N and Mnanbe K. Raman scattering from LO phonon-plasmon coupled modes in gallium nitride. J. Appl. Phys. 75 (1994), 1098.
    
    157. J. M. Zhang, T. Ruf, M. Cardona, O. Ambacher, M. Stutzmann, J.-M. Wagner and F. Bechstedt. Raman spectra of isotopic GaN. Phys. Rev. B 56 (1997), 14399.
    
    158. T. Ruf, J. Serrano, M. Cardona, P. Pankove, M. Pabst, M. Krisch, M.D'Astuto, T. Suski, I. Grzegory, and M. Leszczyski. Phonon Dispersion Curves in Wurtzite-Structure GaN Determined by Inelastic X-Ray Scattering. Phys. Rev. Lett. 86 (2001), 906.
    
    159. Siegle H , Kaczmarczyk G, Filippidis L , Litvinchuk A P , Hoffmann A , Thomsen C. Zone-boundary phonons in hexagonal and cubic GaN.Phys. Rev. B 55 (1997), 7000.
    
    160. Davydov V Yu , Kitaev Yu E , Goncharuk I N , Smirnov A N , Graul J , Semchinova O ,Uffmann D ,Sirnov MB ,Mirgorodsky A P , Evarestov R A. Phonon dispersion and Raman scattering in hexagonal GaN and AlN. Phys. Rev. B 58 (1998), 12899.
    
    161. G. Kaczmarczyk, A. Kaschner, A. Hoffmann, and C. Thomsen. Impurity-induced modes of Mg, As, Si, and C in hexagonal and cubic GaN. Phys. Rev. B 61 (2000), 5353
    
    162. Berg R S, Yu P Y, Weber E R. Raman spectroscopy of intrinsic defects in electron and neutron irradiated GaAs. Appl. Phys. Lett. 47 (1985), 515.
    
    163. N. Wieser, O. Ambacher, H. Angener, R. Dimitrov, M. Stutzmann, B. Stritzker, and J. K. N. Lindner. Disorder-Activated Scattering and Two-Mode Behavior in Raman Spectra of Isotopic GaN and AlGaN. Phys. Status Solidi B 216 (1999), 807
    
    164. H. W. Choi, S. J. Chua, and S. Tripathy. Morphological and structural analyses of plasma-induced damage to n-type GaN. J. Appl. Phys. 92 (2002), 4381.
    
    165. S. Tripathy, S. J. Chua, A. Ramam, E. K. Sia, J. S. Pan, R. Lim, G. Yu, and Z. X. Shen. Electronic and vibronic properties of Mg-doped GaN: The influence of etching and annealing. J. Appl. Phys. 91 (2002), 3398.
    
    166. H. Harina, T. Inoue, S. Nakashima, M Ishida, and M. Taneya. Local vibrational modes as a probe of activation process in p-type GaN. Appl. Phys.Lett. 75 (1999), 1383.
    
    167. S. O. Kucheyev, J. S. Williams, and C. Jagadish, G. Li and S. J. Pearton. Strong surface disorder and loss of N produced by ion bombardment of GaN. Appl. Phys.Lett. 76 (2000), 3899.
    
    168.李志锋,陆卫,叶红娟,袁先璋,沈学础。GaN载流子浓度和迁移率的光谱研究。物 理学报,第49卷第8期,1614-1619。
    
    169. C. Kisielowski, J. Kruger, S. Ruvimov, T. Suski, J. W. Ager, FF3, E. Jones, Z.Liliental-Weber, M. Rubin, and E. R. Weber M. D. Bremser and R. F. Davis. Strain-related phenomena in GaN thin films. Phys. Rev. B 54 (1996), 17745 -17753
    
    170. A. Tabata, R. Enderlein, J. R. Leite, S. W. da Silva, J. C. Galzerani, D. Schikora, M. Kloidt, and K. Lischka. Comparative Raman studies of cubic and hexagonal GaN epitaxial layers. J. Appl. Phys. 79 (1996), 4137

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700