磁性金属纳米结构的制备及动态磁性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于磁性金属纳米材料有很多独特的性质,以及其在诸多领域的广泛应用前景,磁性金属纳米材料成为近年来的一大研究热点。本文从微磁学模拟和实验两个方面,对多种金属纳米结构如纳米线、纳米管和纳米点的动态磁性能做了研究。
     首先本文从OOMMF微磁学模拟的角度出发,研究了单根纳米线,纳米管和纳米点的动态磁化率。模拟结果显示,这些纳米结构的动态磁谱随着各种参数如直径、长度、饱和磁化强度,磁晶各向异性常数的变化而变化。另外,对纳米线阵列和纳米点阵的动态磁谱的研究表明静磁耦合作用的影响不可忽略。在此基础上,我们对纳米线进行了各种组合并模拟了其磁谱。
     我们利用电化学方法在氧化铝模板中制备了各种磁性纳米线,包括Co纳米线, Ni纳米线, Ni/Co多层纳米线和CoNiCu合金纳米,对其形貌、晶体结构、静磁性能、动态电磁性能做了表征和讨论。总的来讲,所制备的各种磁性纳米线的磁滞回线都显示出了较弱的各向异性。实验结果还表明,磁性纳米线可以作为质量轻,吸收强的高频微波吸收材料,有望应用于GHz频段。
     然后,我们利用无电化学沉积法制备了磁性NiP纳米管,利用电化学沉积在氧化铝模板和聚碳酸酯模板中制备了CoNiCu/Cu多层纳米管。和纳米线相比,磁性纳米管具有很多不同的特征,比如其吸波性能出现了多峰和宽频带吸收的特点。
Due to their unique properties and promising applications, magnetic metal nanostructures have attracted a lot of research interests in recent years. Based on micromagnetics and experiments, this work intends to investigate the dynamic properties of various metal nanostructures such as nanowire, nanotube and nanodot.
     To begin with, the dynamic magnetic spectra of single isolated nanowire, nanotube and nanodot are studied by means of OOMMF. Simulation results indicate that their magnetic spectra are a function of parameters such as diameter, length, saturation magnetization and magnetocrystalline anisotropy constant. In addition, it is revealed that magnetostatic interaction plays an important role in the dynamic properties of nanowire and nanodot arrays. Furthermore, nanowires with different aspect ratio or different saturation magnetization are combined for micromagnetic simulation.
     Then, various nanowires including Co, Ni, Ni/Co multilayered and CoNiCu alloy nanowires have been prepared within anodized alumina template by electrodeposition, and their morphology, crystal structure, static and dynamic magnetic properties are discussed. The hysterisis loops of all the nanowire arrays manifest little anisotropy. Nevertheless, experimental results suggest these magnetic nanowires as potential microwave absorbers in the GHz range, with light weight and strong absorption.
     Furthermore, NiP nanotubes were fabricated through electroless chemical deposition and CoNiCu/Cu multilayered nanotube were synthesized within alumina and polycarbonate template through electrodeposition. In comparison with nanowires, nanotubes show many different properties, such as multiple absorbing peaks and wide band absorption peaks in their reflection loss spectra.
引文
[1] Michael Rieth, Wolfram Schommers. Computational Atomic Nanodesign. Encyclopedia of Nanoscience and Nanotechnology, 2004, 2: 51-103
    [2] J. M. Montejano-Carrizales,J. L. Rodríguez-López,et al. Crystallography and Shape of Nanoparticles and Clusters. Encyclopedia of Nanoscience and Nanotechnology,2004, 2: 237–282
    [3] M. Vazquez, K. Pirota, et al. Magnetic properties of densely packed arrays of Ni nanowires as a function of their diameter and lattice parameter, J. Appl. Phys., 2004, 95(11): 6642-6644
    [4] P. R. Evans, G. Yi, and W. Schwarzacher. Current perpendicular to plane giant magnetoresistance of multilayered nanowires electrodeposited in anodic aluminum oxide membranes. Appl. Phys. Lett. 2000, 76: 481-483
    [5] D. Elefant, R. Sch?fer, J. Thomas, et al. Competition of spin-flip and spin-flop dominated processes in magnetic multilayers: Magnetization reversal, magnetotransport, and domain structure in the NiFe/Cu system. Phys. Rev. B, 2008, 77: 014426(1)- 014426(11)
    [6] Masamitsu Hayashi, Luc Thomas,Rai Moriya, et al. Current-controlled magnetic domain-wall nanowire shift register. Science, 2008, 320: 209-211
    [7] W.Y. Li, L.N. Xu, J. Chen. Co3O4 nanomaterials in lithium-ion batteries and gas sensors. Adv. Funct. Mater., 2005, 15: 851-857
    [8] J. Chen, L.N. Xu, W.Y. Li, et al.α-Fe2O3 nanotubes in gas sensor and lithium-ion battery applications. Adv. Mater., 2005, 17: 582-586
    [9] H. Lin, H. Zhu, H. Guo, et al. Investigation of the microwave-absorbing properties of Fe-filled carbon nanotubes. Mater. Lett., 2007, 61: 3547-3550
    [10] L. Zhang, H. Zhu, Y. Song, et al. The electromagnetic characteristics and absorbing properties of multi-walled carbon nanotubes filled with Er2O3 nanoparticles as microwave absorbers. Mater. Sci. Eng. B, 2008, 153: 78-82
    [11] B. Hillebrands, S. O. Demokritov. Dynamic Processes in Magnetic Nanostructures. Encyclopedia of Nanoscience and Nanotechnology,2004, 2: 695-716
    [12] L. D. Landau and E. M. Lifshitz. Electrodynamics of continuous media. Oxford : Pergamon Press, 1960, 52-55
    [13] A. M. Nicolson, G. F. Ross. Measurement of the intrinsic properties of materials by time domain techniques. IEEE Trans. Instrum. Meas. 1970, 9: 377-382
    [14] N Dao, M Donahue, et al. Dynamic susceptibility of nanopillars. Nanotechnology,2004, 15:S634-S639
    [15] R. E. Camley, B. V. McGrath, Y. Khivintsev, et al. Effect of cell size in calculating frequencies of magnetic modes using micromagnetics: Special role of the uniform mode. Phys. Rev. B, 2008, 78: 024425.1- 024425.9
    [16] N. Vukadinovic, F. Boust. Three-dimensional micromagnetic simulations of magnetic excitations in cylindrical nanodots with perpendicular anisotropy. Phys. Rev. B, 2007, 75: 014420.1- 014420.8
    [17] P. S. Keatley, V. V. Kruglyak, A. Neudert, et al. Time-resolved investigation of magnetization dynamics of arrays of nonellipsoidal nanomagnets with nonuniform ground states. Phys. Rev. B, 2008, 78: 214412.1- 214412.18
    [18] Huixin He,Nongjian J. Tao. Electrochemical Fabrication of Metal Nanowires. Encyclopedia of Nanoscience and Nanotechnology, 2004, 2: 755–772
    [19] P. R. Kraus, S. Y. Chou. Fabrication of Planar Quantum Magnetic Disk Structure Using Electron Beam Lithography, Reactive Ion Etching, and Chemical Mechanical Polishing. J. Vac. Sci. Technol. B, 1995, 13: 2850-2852
    [20] F. Rousseaux, D. Decanini, F. Carcenac, et al. Study of large area high density magnetic dot arrays fabricated using synchrotron radiation based x-ray lithography. J. Vac. Sci.Technol. B, 1995, 13: 2787-2791
    [21] P. E. Possion. A method for forming very small diameter wires. Rev. Sci. Instrum., 1970, 41:772-774
    [22] W. D. Williams, N. Giordano. Fabrication of 80 ? metal wires. Rev. Sci. Instrum. 1984, 55: 410-412
    [23] C. R. Martin, L. S. Van Dyke, et al. Template Synthesis of Organic Microtubulest. J. Am. Chem. Soc., 1990, 112: 8976-8977
    [24] C. R. Martin. Nanomaterials: A Membrane-Based Synthetic Approach. Science, 1994, 266: 1961-1966
    [25] S. Shingubara, O. Okino, Y. Sayama, et al. Oredered Two-dimensional nanowire array formation using self-organized nanoholes of anodically oxidized aluminum. Jpn. J. Appl. Phys. 1997, 36: 7791-7795
    [26] C. Sch?nenberger, B. M. I. van der Zande, et al. Template synthesis of nanowires in porous polycarbonate membranes: Electrochemistry and morphology. J. Phys. Chem. B, 1997, 101: 5497-5505
    [27] S. Fullam, D. Cottell, H. Rensmo, et al. Carbon nanotube templated self-assembly and thermal processing on gold nanowires. Adv. Mater., 2000, 12: 1430-1432
    [28] J. Richter, R. Seidel, R. Kirsch, et al. Nanoscale palladium metallization of DNA. Adv. Mater., 2000, 12: 507-510
    [29] D. Djalali, S. Y. Li, M. Schmidt. Amphipolar Core?Shell Cylindrical Brushes as Templates for the Formation of Gold Clusters and Nanowires. Macromolecules, 2002, 35: 4282-4288
    [30] M. P. Zach, K. H. Ng, R. M. Penner. Molybdenum Nanowires by Electrodeposition. Science, 2000, 290: 2120-2122
    [31] H. Liu, R. M. Penner. Size-Selective Electrodeposition of Mesoscale Metal Particles in the Uncoupled Limit. J. Phys. Chem. B, 2000, 104: 9131-9139
    [32] W.F. Brown. Micromagnetics. Gouda: Interscience Publishers, 1963, 5-23
    [33] http://math.nist.gov/oommf
    [34]宛德福,马兴隆.磁性物理学.北京:电子工业出版社,1999,225-280
    [35] M. Hwang, M. C. Abraham, T. A. Savas, et al. Magnetic force microscopy study of interactions in 100 nm period nanomagnet arrays. J. Appl. Phys. 2000, 87: 5108-5110
    [36] K. Nielsch, R. B. Wehrspohn, J. Barthel, et al. Hexagonally ordered 100 nm period nickel nanowire arrays. Appl. Phys. Lett. 2001, 79:1360-1362
    [37] C. A. Ross, M. Hwang, M. Shima, et al. Micromagnetic behavior of electrodeposited cylinder arrays. Phys. Rev. B, 2002, 65: 144417.1- 144417.8
    [38] M. Shima, M. Hwang, C. A. Ross. Magnetic behavior of amorphous CoP cylinder arrays. J. Appl. Phys. 2003, 93: 3440-3444
    [39] G. Kartopu, O. Yalc?n, M. Es-Souni, et al. Magnetization behavior of ordered and high density Co nanowire arrays with varying aspect ratio. J. Appl. Phys. 2008, 103: 093915(1)- 093915(6)
    [40] C. Kittel. On the theory of ferromagnetic resonance absorption. Phys. Rev. 1948, 73: 155 -161
    [41] R.C.澳汉德利.现代磁性材料原理和应用(周永洽等译).北京:化学工业出版社,2002,156-368
    [42] A. Encinas-Oropesa, M. Demand, L. Piraux, et al. Dipolar interactions in arrays of nickel nanowires studied by ferromagnetic resonance. Phys. Rev. B, 2001, 63: 104415.1- 104415.6
    [43] J. Velázquez, C. García, M. Vázquez, et al. Interacting amorphous ferromagnetic wires: A complex system. J. Appl. Phys. 1999, 85: 2768-2774
    [44] J. Escrig, S. Allende, D. Altbir,et al. Magnetostatic interactions between magnetic nanotubes. Appl. Phys. Lett. 2008, 93: 023101.1- 023101.3
    [45] M.Beleggia, S.Tandon, Y.Zhu , et al. On the magnetostatic interactions between nanoparticles of arbitrary shape. J.Magn. Magn. Mater. 2004, 278: 270-284
    [46] N. Vukadinovic, F. Boust. Three-dimensional micromagnetic simulations of multidomain bubble-state excitation spectrum in ferromagnetic cylindrical nanodots. Phys. Rev. B, 2008, 78: 184411.1-184411.10
    [47] A. Ghasemi, A. Hossienpour, A. Morisako, et al. Investigation of the microwave absorptive behavior of doped barium ferrites. Mater. Design, 2008, 29:112-117
    [48] Y. B. Feng, T. Qiu, C.Y. Shen. Absorbing properties and structural design of microwave absorbers. J. Magn. Magn. Mater. , 2007, 318:8-13
    [49] S. Sugimoto, K. Haga, T. Kagotani, et al. Microwave absorption properties of Ba M-type ferrite prepared by a modified coprecipitation method. J. Magn. Magn. Mater. 2005, 290:1188-1191
    [50] J. Wu, L. Kong. High microwave permittivity of multiwalled carbon nanotube composites. Appl. Phys. Lett. 2004, 84: 4956-4958
    [51] J.C. Aphesteguy, Abel Damiani, Dalmas DiGiovanni, et al. Microwave-absorbing characteristics of epoxy resin composites containing nanoparticles of NiZn- and NiCuZn-ferrites. Physica B, 2009, 404:2713-2716
    [52] Haitao Zhao, XudongSun, ChanghuiMao, et al. Preparation and microwave–absorbing properties of NiFe2O4-polystyrene composites. Physica B, 2009, 404:69-72
    [53] Mao-Sheng Cao, Xiao-Ling Shi, Xiao-Yong Fang, et al. Microwave absorption properties and mechanism of cagelike ZnO/SiO2 nanocomposites. Appl. Phys. Lett., 2007, 91: 203110.1-203110.3
    [54] Y. J. Chen, M. S. Cao, T. H. Wang, et al. Microwave absorption properties of the ZnO nanowire-polyester composites. Appl. Phys. Lett., 2004, 84:3367-3369
    [55] Guohong Mu, Na Chen, Xifeng Pan, et al. Microwave absorption properties of hollow microsphere/titania/M-type Ba ferrite nanocomposites. Appl. Phys. Lett., 2007, 91: 043110.1-043110.3
    [56] Longjiang Deng, Mangui Han. Microwave absorbing performances of multiwalled carbon nanotube composites with negative permeability. Appl. Phys. Lett., 2007, 91: 023119.1-023119.3
    [57] YongLi, Changxin Chen , Xiaoyan Pan, et al. Multiband microwave absorption films based on defective multiwalled carbon nanotubes added carbonyl iron/acrylic resin Physica B, 2009, 404: 1343-1346
    [58] G.W. Qin, W.L. Pei, Y.P. Ren, et al. Ni80Fe20 permalloy nanoparticles: Wet chemical preparation, size control and their dynamic permeability characteristics when composited with Fe micronparticles. J.Magn. Magn. Mater. , 2009, 321: 4057-4062
    [59] Jiancheng Tang, Wensheng Liu, Yuehui He, et al. Effect of biasing magnetic field on the complex permeability of nanocrystalline. Fe86Zr7B6Cu1 alloy. Physica B, 2007, 389: 343–346
    [60]马强、江建军、别少伟等。CoFeB/MgO不连续多层纳米软磁薄膜微波电磁特性.物理学报,2008,57:6577-6581
    [61]赵东林、曾宪伟、沈曾民.碳纳米管/聚苯胺纳米复合管的制备及其微波介电特性研究。物理学报,2005,54:3878-3883
    [62] Y. X. Gong, L. Zhen, J. T. Jiang. Synthesis and microwave electromagnetic properties of CoFe alloy nanoflakes prepared with hydrogen-thermal reduction method. J. Appl. Phys., 2009, 106: 064302.1-064302.5
    [63] A. Encinas, L. Vila, M. Darques, et al. Configurable multiband microwave absorption states prepared by field cycling in arrays of magnetic nanowires. Nanotechnology, 2007, 18 :065705
    [64] Qinglei Liu, Di Zhang, Tongxiang Fan. Electromagnetic wave absorption properties of porous carbon/Co nanocomposites. Appl. Phys. Lett., 2008, 93: 013110
    [65] Bo Gao, Liang Qiao, JianboWang. Microwave absorption properties of the Ni nanowires composite. J. Phys. D: Appl. Phys.,2008, 41: 235005
    [66] M. Darques, L. Piraux, A. Encinas, et al. Electrochemical control and selection of the structural and magnetic properties of cobalt nanowires. Appl. Phys. Lett., 2005, 86: 072508
    [67] Xianghua Han, Qingfang Liu, JianboWang, et al. Influence of crystal orientation on magnetic properties of hcp Co nanowire arrays. J. Phys. D: Appl. Phys., 2009, 42 :095005
    [68] Jun Zhang, Grenville A. Jones, Tiehan H. Shen, et al. Monocrystalline hexagonal-close-packed and polycrystalline face-centered-cubic Co nanowire arrays fabricated by pulse dc electrodeposition. J. Appl. Phys., 2007, 101: 054310
    [69] Dongdong Li, Richard S. Thompson, Gerd Bergmann, et al. Template-based Synthesis and Magnetic Properties of cobalt Nanotube Arrays. Adv. Mater. 2008, 20: 4575-4578
    [70] K. Qunadjela, R. Ferré, L. Louail, et al. Magnetization reversal in cobalt and nickel electrodeposited nanowires. J. Appl. Phys. 1997, 81:5455-5457
    [71]李翰如.电介质物理导论.成都:成都科技大学出版社, 1990, 129-161
    [72]廖绍彬.铁磁学(下册).北京:科学出版社,1998, 6-139
    [73] Mingzhong Wu, Y. D. Zhang, S. Hui, et al. Microwave magnetic properties of Co50 /(SiO2)50 nanoparticles. Appl. Phys. Lett. 2002, 80: 4404-4406
    [74] J. Escrig, M. Daub, P. Landeros, et al. Angular dependence of coercivity in magnetic nanotubes. Nanotechnology, 2007, 18: 445706.1-445706.5
    [75] P. Landeros, O. J. Suarez, A. Cuchillo, et al. Equilibrium states and vortex domain wall nucleation in ferromagnetic nanotubes. Phys. Rev. B, 2009, 79: 024404.1-024404.10
    [76] A.P. Chen, N.A. Usov, J.M. Blanco, et al. Equilibrium magnetization states in magnetic nanotubes and their evolution in external magnetic field. J. Magn. Magn. Mater. 2007, 316:e317-e319
    [77] J. F. Rohan, D. P. Casey, B. M. Ahern, et al. Coaxial metal and magnetic alloy nanotubes in polycarbonate templates by electroless deposition. Electrochem. Commun. 2008, 10: 1419 -1421
    [78] Y. C. Sui, R. Skomski, K. D. Sorge, et al. Magnetic nanotubes produced by hydrogen reduction. J. Appl. Phys. 2004, 95: 7151-7153
    [79] K. Nielsch, F. J. Casta?o, C. A. Ross, et al. Magnetic properties of template-synthesized cobalt/polymer composite nanotubes. J. Appl. Phys. 2005, 98: 034318.1-034318.6
    [80] J. Escrig, J. Bachmann, J. Jing, et al. Crossover between two different magnetization reversal modes in arrays of iron oxide nanotubes. Phys. Rev. B, 2008, 77:214421.1- 214421.7
    [81] J. Xie, L. Chen, V. K Varadan, et al. The effects of functional magnetic nanotubes with incorporated nerve growth factor in neuronal differentiation of PC12 cells. Nanotechnology, 2008, 19:105101.1-105101.7
    [82] Xin Ren, Chuan H. Jiang, Xin M. Huang , et al. Fabrication and magnetic behavior of chemical deposited Ni–P nanowire and nanotube arrays. Physica E, 2009, 41:349-352
    [83] K. M. Lebeckia, O. Kazakova, M.W. Gutowski. Micromagnetic simulations of hysteresis in an array of cobalt nanotubes. Physica B, 2008, 403: 360-363

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700