掺杂二甲亚砜的PEDOT:PSS薄膜的制备及在有机太阳能电池的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,有机太阳能电池取得了很大的进展。聚(3,4-乙撑二氧噻吩):聚苯乙烯磺酸盐(PEDOT:PSS)作为一种新型的导电聚合物,因其在空气中结构稳定和电导率高,引起了研究人员的广泛关注。近期更有很多报道,通过加引入高沸点极性有机溶剂,如:二甲亚砜、山梨醇、丙三醇等,能够进一步改善PEDOT:PSS薄膜的导电特性。这种经过改良的导电聚合物材料,因具有相当高的电导率,已经被广泛应用于有机电致发光、有机太阳能电池等有机半导体器件的各个领域。
     大量的研究表明加入高沸点极性有机溶剂能提高PEDOT:PSS的电导率,但其物理本质、改性机理目前还缺乏系统的论述。本论文主要针对PEDOT:PSS的掺杂改性进行了一些工作:
     首先,通过引入二甲亚砜,采用控制变量法制备掺杂二甲亚砜的PEDOT:PSS薄膜并研究掺杂二甲亚砜对PEDOT:PSS导电性的影响及其本质。实验结果表明,当掺杂二甲亚砜为4%(体积分数)时,PEDOT:PSS薄膜的电导率最高,从8.84×10-2S/cm增加到89.69S/cm。同时通过研究紫外-可见吸收光谱、红外光谱分析、原子力显微镜(AFM)图表明二甲亚砜的加入未改变PEDOT:PSS的分子结构。
     接下来分别研究了未改性和改性后的PEDOT:PSS作为阳极缓冲层对有机太阳能电池器件性能的影响。结果表明:用未改性的PEDOT:PSS作阳极缓冲层所制备的电池器件短路电流和开路电压比没有阳极缓冲层的器件都有很大提高,短路电流密度(ISC)从1.04 mA/cm2提高到9.77 mA/cm2,开路电压(Voc)从0.03V提高到0.59V,填充因子(FF)由24.7%提高到48.01%,导致能量转换效率(PCE)从0.0079%提高到2.77%,提高了3个数量级。而改性后的PEDOT:PSS作为阳极缓冲层与未改性的PEDOT:PSS作阳极缓冲层的器件相比,器件的性能又有明显的提高。当掺杂4%二甲亚砜的PEDOT:PSS作阳极缓冲层时,器件的短路电流密度(Isc)从9.94 mA/cm2提高到14.56 mA/cm2。能量转换效率(PCE)从2.73%提高到3.34%。
     最后尝试用掺杂的PEDOT:PSS作有机太阳能电池的阳极。用PEDOT:PSS作有机太阳能电池的电极有望实现全溶液法制备有机太阳能电池,其制作成本低,制备方法简单。实验所制备的电池是反转有机太阳能电池,器件结构为ITO/Cs2CO3/P3HT:PCBM/PEDOT:PSS。主要研究了不同温度的退火对反转有机太阳能电池器件的影响。得出退火温度为120℃的电池器件性能好,器件的能量转换效率(PCE)为0.65%。虽然器件的能量转换效率只达到0.65%,但可以通过对器件不同方面的改进,如加入阳极缓冲层,改变整个器件的退火温度等方式进一步提高器件性能。
In recent years, organic solar cells have made great progress. Poly (3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) as a new type of conductive polymer, have caused widespread concern of researchers. Because it has the advantages:structure stability and high conductivity in the air. It is reported that adding high boiling point polar organic solvents can further improve the conductivity of PEDOT:PSS films, such as:dimethyl sulfoxide, sorbitol, glycerol, etc. The improved PEDOT:PSS as a conductive polymer material with high conductivity, has been widely used in various fields such as:electroluminescence, organic solar cells and other organic semiconductor devices, etc.
     Numerous studies show that adding high boiling point polar organic solvents can increase the conductivity of PEDOT:PSS,but there is a lack of systematic exposition in its physical nature and modification mechanism. The main works of this paper are listed as following:
     Firstly, high conductivity PEDOT:PSS films have been fabricated using controlling variables by adding dimethyl sulfoxide(DMSO). We make research of the effect of DMSO content on conductivity of PEDOT:PSS films and its modification mechanism. The experimental results show that the conductivity of PEDOT:PSS film mixed with 4% DMSO (volume ratio) is the highest, with the increase of conductivity from 8.84×10-2S/cm to 89.69S/cm. At the same time the absorption spectrum, the FTIR spectra and AFM images show that the addition of DMSO does not change PEDOT: PSS molecular structure.
     Secondly, we study that the effect of unmodified and modified PEDOT:PSS as anode buffer layer on the performance of organic solar cell device. The results show that: the device with PEDOT:PSS as anode buffer layer has the better performance, with the increase of short-circuit current density (Isc) from 1.04 mA/cm2 to 9.77 mA/cm2, the increase of open circuit voltage (Voc) from 0.03V to 0.59V, the increase of fill factor (FF) from 24.7% to 48.01% and the increase of photovoltaic energy conversion efficiency (PCE) from 0.0079% to 2.77%. When the wt% of DMSO is 4%, the performance of modified PEDOT:PSS as anode buffer layer achieved the best one:the short-circuit current density is 14.56 mA/cm2, the Open circuit voltage is 0.57V, the energy conversion efficiency is 3.34%.
     Finally, we try to fabricate organic solar cells using full-solution method with doped PEDOT:PSS as a transparent anode. It has the advantages of low cost and having simple preparation method. The structure of the organic solar cell device is ITO/Cs2CO3/P3HT:PCBM/PEDOT:PSS. It is studied that the effect of annealing on the performance of the organic solar cell devices at different temperatures. We find that when the annealing temperature is 120℃, the performance of the device shows a better one. The photoelectric conversion efficiency of the device is 0.65%. Although the energy conversion efficiency (PCE) of the device only reached 0.65%, we can improve the performance of devices by different aspects such as joining the anode buffer layer or changing the annealing temperature.
引文
[1]Lin Hui, YU Jun heng, Huang Jiang, et al. Film thickness effect on the performance of small molecular solar cell[J].Optoelectronics Letters,2008,4(5):321.
    [2]Chapin.D.M, Fuller.C.S, Pearson.G.I. A new silicon p-n junction photocell for converting solar radiation into electrical power[J]. Applied Physics Letters,1954,25(5):676.
    [3]Martin Deussen, Michael Scheidler and Heinz Bassler. Electric field-induced photoluminescence quenching in thin-film light-emitting diodes based on poly(phenyl-p-phenylene vinylene)[J].Synthetic Metals,1995,73(2):123.
    [4]U.Rauscher, H.Bassler, D.D.C.Bradley, et al. Exciton versus band description of the absorption and luminescence spectra in poly(p-phenylenevinylene)[J].Physical Review B,1990,42(16):9830.
    [5]N.S.Sariciftci, L.Smilowitz, A.J.Heeger, et al. Photoinduced electron transfer from a conducting polymer to buckminsterfullerene[J].Science,1992,258(5087):1474.
    [6]G.Yu,J.Gao, J.C.Hummelen, et al. Polymer photovoltaic cells:enhanced efficiencies via a network of internal donor-acceptor heterojunctions[J].Science,1995,270(5243):1789.
    [7]林鹏,张志峰,熊德平,等.有机太阳能电池研究进展[J].光电子技术,2004,24(1):56.
    [8]Sean E.Shaheen, Christoph J.Brabec, N.Serdar Sariciftci, et al.2.5%efficient organic plastic solar cells[J].Applied Physics Letters,2001,78(6):841-843.
    [9]Hsiang-Yu Chen, Jian hui Hou, Shao qing Zhang, et al. Polymer solar cells with enhanced open-circuit voltage and efficiency[J].nature photonics,2009,3:649-653.
    [10]Prof. Dieter Wohrle, Dr. Dieter Meissner. Organic solar cells[J].Advanced Materials,1991, 3(3):129.
    [11]C.W.Tang. Two-layer organic photovoltaic cell[J].Applied Physics Letters,1986,48(2):183-185.
    [12]Masahiro Hiramoto, Minoru Suezaki, and Masaaki Yokoyama. Effect of thin gold interstitial-layer on the photovoltaic properties of tandem organic solar cell[J].Chemistry Letters,1990,19(3):327.
    [13]R N Marks, J J M Halls, D D C Bradley, et al. The photovoltaic response in poly(p-phenylene vinylene) thin-film devices[J]. Journal of Physics:Condensed Matter,1994,6(7):1379.
    [14]L.Smilowitz, N.S.Sariciftci, R.Wu, et al. Photo excitation spectroscopy of conducting-polymer-C60 composites:Photo induced electron transfer[J]. Physical Review B,1993,47(20):13835.
    [15]J.J.M.Halls, C.A.Walsh, N.C.Greenham, et al. Efficient photodiodes from interpenetrating polymer networks[J].Nature,1995,376:498.
    [16]K. Tada, K. Hosoda, M. Hirohata, et al. Donor polymer (PAT6)-acceptor polymer (CNPPV) fractal network photocells[J]. Synthetic Metals,1997,85(1-3):1305.
    [17]T. Fromherz, F. Padinger, D. Gebeyehu, et al. Comparison of photovoltaic devices containing various blends of polymer and fullerene derivatives[J].Solar Energy Materials & Solar Cells,2000,63(1):61.
    [18]Taima Tetsuya, Chikamatsu Masayuki, Yoshida Yuji, et al. Effects of intrinsic layer thickness on solar cell parameters of organic p-i-n heterojunction photovoltaic cells[J].Applied Physics Letters,2004,85(26):6412.
    [19]T.Aernouts, W.Geens, J.Poortmans, et al. Extraction of bulk and contact components of the series resistance in organic bulk donor-acceptor-heterojunctions[J].Thin Solid Films,2002,403-404:297-301.
    [20]W.Geens, T.Aernouts, J.Poortmans, et al. Organic co-evaporated films of a PPV-pentamer and C60:model systems for donor/acceptor polymer blends[J].Thin Solid Films,2002,403-404:438.
    [21]Harald Hoppe, Niyazi Serdar Sariciftci. Organic solar cells:An overview[J]. Journal of Materials Research,2004,19(7):1930.
    [22]刘新福,孙以材,刘东升.四探针测量薄层电阻的原理及应用[J].半导体技术,2004,29(7):51.
    [23]黎兵.现代材料分析技术[M].北京:国防工业出版社,2008:71-72.
    [24]王晓春,张希艳,卢利平,等.材料现代分析与测试技术[M].北京:国防工业出版社,2009:166-168.
    [25]F Jonasa, L Schrader. Conductive modifications of polymers with polypyrroles and polythiophenes[J]. Synthetic Metals,1991,41(3):831.
    [26]Wang Zhong qiang, Wu Xiao ming, Jing Na, et al. Influence of PEDOT:PSS buffer layer on the performance of organic photocoupler[J].Optoelectronics Letters,2009,5(3):0173-0176.
    [27]Jun Yan, Cheng hua Sun, Fu rui Tan, et al. Electropolymerized poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) film on ITO glass and its application in photovoltaic device[J]. Solar Energy Materials & Solar Cells,2010,94(2):390-394.
    [28]Jung Ah Lim, Jeong Ho Cho, Yeong Don Park, et al. Solvent effect of inkjet printed source/drain electrodes on electrical properties of polymer thin-film transistors[J]. Applied Physics Letters,2006,88(8):082102.
    [29]Denghui Xu, Chihaya Adachi. Organic light-emitting diode with liquid emitting layer[J].Applied Physics Letters,2009,95(5):053304.
    [30]A.M.Nardes, M.Kemerink, M.M.de Kok, et al. Conductivity, work function, and environmental stability of PEDOT:PSS thin films treated with sorbitol[J].Organic Electronics,2008,9(5):728.
    [31]Ahmed Dkhissi, David Beljonne, Roberto Lazzaroni. Atomic scale modeling of interfacial structure of PEDOT/PSS[J]. Synthetic Metals,2009,159(5-6):546-549.
    [32]F.Louwet, L.Groenendaal, J.Dhaen, et al. PEDOT/PSS:synthesis, characterization, properties and applications[J]. Synthetic Metals,2003,135-136:115-117.
    [33]Hidenori Okuzaki, Yuko Harashina, Hu Yan. Highly conductive PEDOT/PSS microfibers fabricated by wet-spinning and dip-treatment in ethylene glycol[J]. European Polymer Journal,2009,45(l):256-261.
    [34]S.Timpanaro, M.Kemerink, F.J.Touwslager, et al. Morphology and conductivity of PEDOT/PSS films studied by scanning-tunneling microscopy[J]. Chemical Physics Letters,2004,394(4-6):339-343.
    [35]S.K.M. Jonsson, J. Birgerson, X. Crispin, et al. The effects of solvents on the morphology and sheet resistance in poly(3,4-ethylenedioxythiophene)-polystyrenesulfonic acid (PEDOT-PSS)films[J]. Synthetic Metals,2003,139(1):1-10.
    [36]O.P.Dimitriev, D.A.Grinko, Yu.V.Noskov, et al. PEDOT:PSS films--Effect of organic solvent additives and annealing on the film conductivity[J].Synthetic Metals,2009,159(21-22):2237-2239.
    [37]Jongwoon Park, Ari Lee, Younchan Yimc, et al. Electrical and thermal properties of PEDOT:PSS films doped with carbon nanotubes[J].Synthetic Metals,2011,161(5-6):523-527.
    [38]王铁军,齐英群,徐景坤,等.聚乙二醇对PEDOT-PSS导电性能的影响[J].科学通报,2003,48(19):2036-2037.
    [39]Erik Ahlswede, Wolfgang Muhleisen, Mohd Wahinuddin bin Moh Wahi, et al. Highly efficient organic solar cells with printable low-cost transparent contacts[J].Applied Physics Letters,2008,92(2008):143307.
    [40]J.Huang, P.F.Miller, J.C.de Mello, et al. Influence of thermal treatment on the conductivity and morphology of PEDOT/PSS films[J].Synthetic Metals,2003,139 (3):569-572.
    [41]Youngkyoo Kim, Amy M. Ballantyne, Jenny Nelson, et al. Effects of thickness and thermal annealing of the PEDOT:PSS layer on the performance of polymer solar cells[J].Organic Electronics,2009,10(1):205-209.
    [42]I.Cruz-Cruz, M.Reyes-Reyes, M.A.Aguilar-Frutis, et al. Study of the effect of DMSO concentration on the thickness of the PSS insulating barrier in PEDOT:PSS thin films[J]. Synthetic Metals,2010,160(13-14):1501-1506.
    [43]黄忠良,杨春明.掺杂功能磺酸的导电聚苯胺的合成及其红外光谱研究[J].光谱实验室,2000,17(2):145.
    [44]C. KvarnstroEma, H. Neugebauer, S. Blomquist, et al. In situ spectroelectrochemical characterization of poly(3,4-ethylenedioxythiophene)[J]. Electrochimica Acta,1999,44(16):2739-2750.
    [45]S. Garreau, G. Louarn, J.P. Buisson, et al.In Situ Spectroelectrochemical Raman Studies of Poly(3,4-ethylenedioxythiophene) (PEDT)[J]. Macromolecules,1999,32(20):6807-6812.
    [46]Brett D. Martin, Nikolay Nikolov, Steven K. Pollack, et al. Hydroxylated secondary dopants for surface resistance enhancement in transparent poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) thin films[J]. Synthetic Metals,2004,142(1-3):187-193.
    [47]X.Crispin, S.Marciniak, W.Osikowicz, et al. Conductivity, morphology, interfacial chemistry, and stability of poly(3,4-ethylene dioxythiophene)-poly(styrene sulfonate):A photoelectron spectroscopy study[J] Journal of Polymer Science Part B:Polymer Physics,2003,41(21):2561-2583.
    [48]C.Gravalidis, A.Laskarakis, S.Logothetidis. Fine tuning of PEDOT electronic properties using solvents[J].European Physical Journal:Applied Physics,2009,46(01):12505.
    [49]张亚萍,张建军,耿新华,等.退火及掺杂对空穴传输层PEDOT:PSS电学特性的影响[J].光电子·激光,2009,20(10):1327.
    [50]Xi Xi, Qinglei Meng, Fangxin Li, et al. The characteristics of the small molecule organic solar cells with PEDOT:PSS/LiF double anode buffer layer system[J]. Solar Energy Materials & Solar Cells,2010,94(3):623-628.
    [51]顾锦华,钟志有,何翔,等.有机太阳能电池内部串并联电阻对器件光伏性能的影响[J].中南民族大学学报(自然科学版),2009,28(1):57-61.
    [52]Qingfeng Dong, Yinhua Zhou, Jianing Pei, et al. All-spin-coating vacuum-free processed semi-transparent inverted polymer solar cells with PEDOT:PSS anode and PAH-D interfacial layer[J]. Organic Electronics,2010,11(7):1327-1331.
    [53]Yee-Fun Lim, Sungsoo Lee, David J. Herman, et al. Spray-deposited poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) top electrode for organic solar cells[J].Applied Physics Letters,2008,93(19):193301-1-193301-3.
    [54]Yi-Ming Chang, Leeyih Wang, Wei-Fang Su. Polymer solar cells with poly(3,4-ethylenedioxythiophene) as transparent anode[J]. Organic Electronics, 2008,9(6):968-972.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700