毛竹木质素单体生物合成相关基因的分离、表达与功能初步鉴定
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
毛竹(Phyllostachys edulis)属于禾本科(Gramineae)竹亚科(Bambusoideae)刚竹属(Phyllostachys),是我国栽培面积最大、经济利用价值最高的竹种。毛竹含有丰富的纤维素,适合作造纸原料。然而,在毛竹制浆造纸工业中,由于原材料富含木质素,必须利用大量的化学品将原料中的木质素与纤维素分离,纤维素用于造纸,而分离的木质素形成造纸废液,造成严重的环境污染,而且脱木质素的化学药品投入及废液的碱回收处理大大增加了造纸成本。通过生物技术手段改变木质素含量或木质素单体组成,定向培育适合工农业生产所需的毛竹新品种,已成为当前毛竹生物技术领域中一项重要的研究课题。
     本项研究构建了毛竹不同器官全长cDNA文库,在大规模测序和数据分析的基础上,从cDNA文库中分离克隆了编码木质素单体合成途径中几个关键酶的基因,即香豆酸-3-羟基化酶(C3H)、肉桂酰辅酶A还原酶(CCR)、肉桂醇脱氢酶(CAD)的编码基因,以及阿魏酸5-羟基化酶类似基因(F5H-like),着重研究了C3H、F5H-like基因的表达模式,并通过转基因的方法初步研究了F5H-like基因的可能功能,得出以下结论。
     (1)从毛竹全长cDNA文库中分离得到了5个CCR基因。5个CCR蛋白具有表异构酶(Epimerase)结构域,属于依赖于NAD的表异构酶/脱水酶(NAD dependent epimerase/dehydratase)家族的氧化还原酶;毛竹5个CCR蛋白中有4个没有明显的信号肽和跨膜螺旋结构,推测定位在细胞质中;PheCCR5的N端具有类似信号肽的结构,亚细胞定位预测表明,它可能定位于线粒体中。采用最大似然法对CCR蛋白构建系统进化树,结果表明,CCR蛋白家族起源于真核生物分化之前,高等植物中CCR蛋白的多样性源自于种属特异的基因扩增和多样化事件。
     (2)从毛竹全长cDNA文库中分离得到了5个CAD基因。毛竹5个CAD蛋白中,有4个具有醇脱氢酶GroES-like(ADH_N)和锌结合脱氢酶(ADH_zinc_N)两个保守功能域,这是大多数CAD蛋白的保守结构域;另外一个具有与CCR蛋白相同的Epimerase结构域,但全蛋白序列与CCR蛋白相似性不高,属于另一类CAD蛋白,即具有Epimerase结构域的CAD蛋白,这类CAD与具有ADH_N和ADH_zinc_N两个保守功能域的CAD蛋白的相似性极低。采用最大似然法对两类CAD蛋白分别构建系统进化树,结果表明,高等植物的具有醇脱氢酶GroES-like和锌结合结构域的CAD蛋白处于2个进化枝上,这种分化可能发生在高等植物产生之前;高等植物产生以后,一些植物的基因组内又发生了基因扩增和多样化事件,产生了多个CAD同源基因。高等植物的具有Epimerase结构域的CAD蛋白,在高等植物产生之后有一个共同的祖先。
     (3)在毛竹全长cDNA文库中找到1个推定的毛竹C3H基因,命名为PheC3H。其编码蛋白PheC3H分子量为58.38kDa,理论等电点为8.77。PheC3H蛋白与小麦的CYP98A相似性最高,PheC3H应属于CYP98家族A亚家族蛋白。PheC3H的前21个氨基酸残基推定为信号肽区域,成熟蛋白很可能定位在内质网上。采用实时定量PCR研究了PheC3H在毛竹幼苗不同营养器官中的表达,结果表明,PheC3H在3年生茎中表达量最高,其次是一年生叶鞘;在一年生毛竹不同营养器官中的表达量顺序为:叶鞘>根>叶片>茎。
     (4)采用同源比对的方法,在毛竹全长cDNA文库中找到10个与高等植物F5H基因序列和相应的编码蛋白质序列相似性较高的基因。对其编码蛋白的序列分析表明,这10个基因的编码蛋白质均属于细胞色素P450家族成员,10个基因初步命名为PheCYP-1,…, PheCYP-10。10个基因及其编码蛋白相互之间的相似性不高;10个P450蛋白与高等植物已经报道的F5H蛋白相似性也不高,因此这10个基因可能具有不同的功能。PheCYP-2属于CYP81A亚家族,PheCYP-4属于CYP81家族,PheCYP-5属于CYP706家族一新的亚家族,PheCYP-9可能是一个类黄酮-3’5’-羟基化酶。10个P450蛋白均含有N端信号肽,很可能定位在内质网膜上。
     (5)采用实时定量PCR研究了10个PheCYP基因在毛竹幼苗不同营养器官中的表达情况,根据相对表达水平,10个PheCYP基因可以分成3组:①高表达基因,有3个:PheCYP-1、PheCYP-2和PheCYP-7,PheCYP-1和PheCYP-2主要在叶片中表达,PheCYP-7主要在笋中表达;②中度表达基因,有4个,包括PheCYP-3、PheCYP-4、PheCYP-6和PheCYP-9,PheCYP-3主要在叶片、茎和根中表达,PheCYP-4主要在叶片中表达,PheCYP-6主要在笋中表达,PheCYP-9主要在叶鞘和茎中表达;③低表达基因,有3个,包括PheCYP-5、PheCYP-8和PheCYP-10,PheCYP-5主要在笋中表达,PheCYP-8主要在笋、根和叶鞘中表达,PheCYP-10主要在叶片中表达。根据已报道的F5H基因及木质素合成相关基因的表达模式推测,这10个基因可能与木质化进程有关。
     (6)对PheCYP-5、PheCYP-6和PheCYP-10基因构建植物表达载体,转化拟南芥,目前已经得到了3个基因的T1代转基因植株。对转PheCYP-5和PheCYP-10基因的T1代拟南芥花葶的木质部发育情况进行切片观察,结果表明,过表达PheCYP-5和PheCYP-10基因的转基因拟南芥,次生木质部中导管壁的厚度显著增加,进一步证明PheCYP-5和PheCYP-10与次生壁的形成有关。
Phyllostachys edulis belongs to Bambusoideae subfamily in Gramineae family, and it has the largest cultivation area and highest values of usage in China. Ph. edulis is rich in fiber and suitable for making paper. However, due to the high level of lignin content in Ph. edulis, a large quantity of chemicals must be used to separate fiber from lignin, with lignin left in the waste, resulting in serious environmental pollution. Moreover, the chemicals for separation, and the re-collection of fiber using alkali have greatly increased the cost of paper making process. Hence, altering lignin content and/or monolignol composition by biotechnology and directionally cultivating new varieties have become an important research project in current biotechnological field of Ph. edulis.
     In this research, we constructed four full-length cDNA libraries of different organs of Ph. edulis, and on the basis of mass sequencing and data analysis, several genes encoding the key enzymes in monolignol biosynthetic pathway in Ph. edulis, namely cinnamate 3-hydroxylase (C3H), cinnamoyl CoA reductase (CCR), cinnamyl dehydrogenase (CAD), and ferulate 5-hydroxylase (F5H)-like genes, were isolated from the cDNA libraries. And we made a further research on the expression patterns of C3H and F5H-like genes, and transgene experiments were also carried out with three F5H-like genes, with the purpose of deducing their possible functions. The results are listed as follows.
     (1) Five CCR genes were isolated from full-length cDNA libraries of Ph. edulis. The five deduced CCR proteins have conserved Epimerase domain, and they belong to NAD dependent epimerase/dehydratase family. Four of the five deduced CCR proteins have no obvious signal peptide or trans-membrane structure, and are predicted to be localized in cytoplasm. PheCCR5, however, a signal peptide-like structure is detected on its N-terminal and might be predicted to be localized in mitochondria. Using maximum likelihood method, the phylogenetic tree was constructed. The result shows that the CCRs appeared before the differentiation of eucaryotes and that lineage-specific expansion and divergence events occurred in some angiosperms, after the divergence from lower land plants.
     (2) Five CAD genes were isolated from the cDNA libraries. Four of the five deduced PheCAD proteins contain two functional domains of ADH_N and ADH_zinc_N, which are the conserved domains for most CAD proteins. PheCAD4, however, has a domain of Epimerase similar to that of CCR proteins rather than ADH_N and ADH_zinc_N domains, but it has low similarity with CCR proteins. So it is a CAD protein of another group, namely CADs with Epimerase domain. CAD proteins of this group have very low similarity with CADs containing the ADH_N and ADH_zinc_N domains, so we deduce that the two kinds of CAD proteins might be another group of CAD. Using maximum likelihood method, the phylogenetic tree was constructed. It is shown that the angiosperm CADs containing ADH_N and ADH_zinc_N domains are located at two branches, and that such differentiation took place before the appearance of higher plants; after the divergence of angiosperms, lineage-specific expansion and divergence events occurred, resulting in the multiple CADs in the genome. The angiosperm CADs with Epimerase domain shared a common ancestor.
     (3) We got one putative C3H gene from the cDNA library and named it as PheC3H. The molecular mass of its deduced protein is 58.38 kDa with pI 8.77. PheC3H has very high similarity to TraCYP98A protein and it should belong to the subfamily A of CYP98 family. The sequence of the first 21 amino acid residues at N-terminal is predicted to be the signal peptide, and the mature protein might be located on endoplasmic reticulum. Quantitative real-time PCR was used to detect the organ-specific expression in nutritive organs of Ph. edulis seedlings. The highest expression level of PheC3H is in 3-year-old stems followed by leaf sheaths of one-year old seedlings. The relative expression level of PheC3H in one-year-old seedlings is ranged as: leaf sheaths > roots > leaves > stems.
     (4) Using similarity blast, we found 10 genes having relatively higher similarity to some known F5H genes. Sequence analysis shows that the ten proteins belong to cytochrome P450 superfamily, so we name them as PheCYP-1, PheCYP-2,…, PheCYP-10. The similarities between the ten proteins are not high, and the similarities between the ten proteins and know F5H proteins are not high, either, which indicates that the ten genes might have different functions. According to sequence similarity, PheCYP-2 belongs to CYP81A subfamily, PheCYP-4 belongs to CYP81 family, PheCYP-5 is a new member in CYP706 family, and PheCYP-9 might be a putative flavonoid 3’,5’-hydroxylase. Each of the ten proteins contains a predicted signal peptide sequence at its N-terminal, and they may be located on endoplasmic reticulum.
     (5) Quantitative real-time PCR was carried out to detect the expression patterns of the ten PheCYPs in different organs of Ph. edulis seedlings. According to the relative expression level, the ten genes can be divided into three groups:①High expression genes, including PheCYP-1、PheCYP-2 and PheCYP-7. PheCYP-1 and PheCYP-2 are mainly expressed in leaves and PheCYP-7 mainly in shoots.②Intermediate expression genes, including PheCYP-3, PheCYP-4, PheCYP-6 and PheCYP-9. PheCYP-3 has relatively higher expression in leaves, stems and roots, PheCYP-4 in leaves, PheCYP-6 in shoots and PheCYP-9 in leaf sheaths and stems.③Low expression genes, including PheCYP-5, PheCYP-8 and PheCYP-10. PheCYP-5 has relative higher expression in shoots, PheCYP-8 in shoots, roots and leaf sheaths, and PheCYP-10 in leaves. According to the documents on known F5H genes and lignin biosynthesis-related genes, we can deduce that the ten genes might have some relationship on lignification process in Ph. edulis.
     (6) PheCYP-5, PheCYP-6 and PheCYP-10 were cloned into plant expression vector and transformed into Arabidopsis thaliana. We have got the transgenic Arabidopsis T1 generations. Xylem development of PheCYP-5 and PheCYP-10 transgenic Arabisopsis T1 generation were detected by tissue section. Transgenic Arabidopsis plants overexpressing PheCYP-5 or PheCYP-10 have significant increased width of vessel walls in the secondary xylem, indicating that PheCYP-5 and PheCYP-10 may be involved in secondary cell wall development of vessels in xylem.
引文
[1]江泽慧主编.世界竹藤[M].辽宁:辽宁科学技术出版社, 2002.
    [2]甘小洪.毛竹茎秆纤维细胞的发育生物学研究[D].南京林业大学博士学位论文. 2005
    [3]吴君琦,陈绪和发展竹浆造纸,节约木材资源[J]世界竹藤通讯,2003, 1(7):15-18
    [4]陈绪和.中国竹浆造纸向何处去[J]中国林业,2008.10A:22-23
    [5]徐有明,郝培应,刘清平.竹材性质及其资源开发利用的研究进展[J]东北林业大学学报,2003,31(5):71-77
    [6] Marie Baucher, Claire Halpin, et al. Lignin: Genetic Engineering and Impact on Pulping [J]. Critical Reviews in Biochemistry and Molecular Biology, 2003, 38: 305–350
    [7] Sederoff R R, Mackay J J, Ralph J, et al. Unexpected Variation in Lignin[J]. Current Opin Plant Biol, 1999, 2: 145-152
    [8]姜爽CCoAOMT和4CL cDNA的克隆及转基因紫穗槐的研究[D].吉林大学硕士学位论文. 2007
    [9]刘晓娜,刘雪梅等.木质素合成研究进展[J].中国生物工程杂志, 2007, 27(3):120-126
    [10] Weaver , L. M., Herrmann, K. M. Dynamics of the Shikimate Pathway in Plants [J]. Trends Plant Sci., 2, 346-351
    [11] Jeffery, F. d. Dean. Synthesis of Lignin in Transgenic and Mutant Plants [J]. Biochemistry of Biopolymers. 2005, 1-24
    [12]章霄云,郭安平,贺立卡等.木质素生物合成及其基因调控的研究进展[J].分子植物育种,2006, 4(3):431-437
    [13] Jones, J. D., Henstrand, J. M., Handa, A. K., et al. Impaired Wound Induction of 3-deoxy-D-arabino-heptulosonate-7-phosphate (DHAP) Synthase and Altered Stem Development in Transgenic Potato Plants Expressing a DHAP Synthase Antisense Construct [J]. Plant Physiol. 108: 1413-1421
    [14] Stefanie L. Butland, Monica L. Chow et al. A Diverse Family of Phenylalanine Ammonialyase Genes Expressed in Pine Trees and Cell Cultures [J]. Plant Molecular Biology. 1998, 37: 15–24
    [15] Bate N, Orr J, Ni W, et al. Quantitative Relationship Between Phenylalanine Ammonialyase Levels and Phenyl Propanoid Accumulation in Transgenic Tobacco Identifies a Rate Determining Step in Natural Product Synthesis [J]. Proc Nat1 Acad Sci USA, 1994, 91: 7608-7612
    [16] Korth, K. L., Blount, J.W., Chen, F., Rasmussen, et al.. Changes in Phenylpropanoid Metabolites Associated with Homology-dependent Silencing of Phenylalanine Ammonialyase and its Somatic Reversion in Tobacco [J]. Physiol Plant 2001, 111: 137–143
    [17] Howles, P.A., Sewalt,V.J.H., Paiva, N.L., et al. Overexpression of L-Phenylalanine Ammonia-lyase in Transgenic Tobacco Plants Reveals Control Points for Flux into Phenylpropanoid Biosynthesis [J]. Plant Physiol. 1996, 112:1617-1624
    [18] Sewalt, V.J.H., Ni,W., Blount, J.W., et al. Reduced Lignin Content and Altered Lignin Composition inTransgenic Tobacco down-regulated in Expression of L-Phenylalanine Ammonia-lyase or Cinnamate 4-hydroxylase [J]. Plant Physiol 1997, 115: 41-50
    [19] Teutsch, H.G., Hasenfratz, M.-P., Lesot, A., et al. Isolation and Sequence of a cDNA Encoding the Jerusalem Artichoke Cinnamate 4-Hydroxylase, a Major Plant Cytochrome P450 Involved in the General Phenylpropanoid Pathway [J]. Proc. Natl. Acad. Sci. USA 1993, 90: 4102-4107
    [20] Christian Betz, T. Greg Mc Collum and Richard T. Mayer. Differential Expression of two Cinnamate 4-Hydroxylase Genes in‘Valencia’Orange (Citrus sinensis Osbeck) [J]. Plant Molecular Biology. 2001, 46: 741-748
    [21] Bell-Lelong, D.A., Cusumano, J.C., Meyer, et al. Cinnamate-4-Hydroxylase Expression in Arabidopsis. Regulation in Response to Development and the Environment [J]. Plant Physiol. 1997, 113: 729-738
    [22] Blount JW, Korth KL, Masoud SA, et al. Altering Expression of Cinnamic Acid 4-Hydroxylase in Transgenic Plants Provides Evidence for a Feedback Loop at the Entry Point into the Phenylpropanoid Pathway[J]. Plant Physiol, 2000, 122: 107-116
    [23] Dixon, R.A., Chen, F., Guo, D., et al. The Biosynthesis of Monolignols: a“Metabolic Grid,”or Independent Pathways to Guaiacyl and Syringyl Units? [J] Phytochemistry. 2001, 57: 1069–1084
    [24] Schoch, G., Goepfert, S., Morant, M., et al. CYP98A3 from Arabidopsis thaliana is a 3-Hydroxylase of Phenolic Esters, a Missing Link in the Phenylpropanoid Pathway [J]. J. Biol. Chem. 2001, 276: 36566–36574
    [25] Franke, R., Humphreys, J. M., Hemm, M. R., et al. The Arabidopsis REF8 Gene Encodes the 3-Hydroxylase of Phenylpropanoid Metabolism [J]. Plant J. 2002, 30: 33-45
    [26] X. Liu, Z. Deng, S. Gao, et al. A New Gene Coding for p-Coumarate 3-Hydroxylase from Ginkgo biloba [J]. Russian Journal of Plant Physiology. 2008, 55(1): 82–92
    [27] John Ralph, Takuya Akiyama, Hoon Kim, et al. Lignification in Transgenics Deficient in 4-Coumarate 3-Hydroxylase (C3H) or the Associated Hydroxycinnamyil Transferase (HCT). Polyphenols Communications 2006. XXIII International Conference on Polyphenols. Winnipeg, Manitoba, Canada, August 22-25, 2006
    [28] Amrita Kumar, Brian E. Ellis. 4-Coumarate:CoA Ligase Gene Family in Rubus idaeus: cDNA Structures, Evolution, and Expression [J]. Plant Molecular Biology. 2003, 31: 327-340
    [29] Lee, D., Meyer, K., Chapple, C., et al. Antisense Suppression of 4-Coumarate:coenzyme A Ligase Activity in Arabidopsis Leads to Altered Lignin Subunit Composition [J]. Plant Cell, 1997, 9: 1985-1998
    [30] Kajita, S., Hishiyama, S., Tomimura, et al. Structural Characterization of Modified Lignin in Transgenic Tobacco Plants in which the Activity of 4-Coumarate:coenzyme A Ligase is Depressed [J]. Plant Physiol. 1997, 114: 871-879
    [31] Hu, W. J., Harding, S. A., Lung, J., et al. Repression of Lignin Biosynthesis Promotes Cellulose Accumulation and Growth in Transgenic Trees [J]. Nature Biotechnol, 1999, 17: 808-812
    [32] Ragai K. I., Anne B., Brigitte B. Plant O-methyltransferases: Molecular Analysis, Common Signature and Classification [J]. Plant Molecular Biology. 1998, 36: 1-10
    [33]赵华燕,沈庆喜,吕世友等.水稻咖啡酰辅酶A-O-甲基转移酶基因(CCoAOMT)表达特性分析[J].科学通报. 2004, 49(14): 1390-1394
    [34] Ni, W. T., Paiva, N. L., Dixon, R. A. Reduced Lignin in Transfenic Plants Containing a Caffeic Acid O-Methyltransferase Antisense Gene [J]. Trans. Res. 1994, 3: 120-126
    [35] Dwivedi, U. N., Campbell, W. H., Yu, J., et al. Modification of Lignin Biosynthesis in Transgenic Nicotiana through Expression of an Antisence O-Methyltransferase Gene from Poplus [J]. Plant Mol. Biol. 1994, 26: 61-71
    [36] Atanassova, R., Favet, N., Martz, F., et al. Altered Lignin Composition in Transgenic Tobacco Expressing O-Methyltransferase Sequences in Sense and Antisense Orientation [J]. Plant J. 1995, 8: 465-477
    [37] Tsai, C. J., Popko, J. L., Mielke, M. R., et al. Supression of O-Methyltransferase Gene by Homologous Sense Transgene in Quaking Aspen Causes Red-browh Wood Phenotypes [J]. Plant Physiol. 1998, 117: 101-112
    [38] Ye Z, Zhong R, Morrison WH, Himmelsbach DS. Caffeoyl Coenzyme A O-Methyltransferase and Lignin Biosynthesis[J]. Phytochemistry. 2001, 57: 1177-1185
    [39] Meyermans, H., Morreel, L., Lapierre, C., et al. Modification in Lignin and Accumulation of Phenolic Glucosides in Poplar Xylem upon down-Regulation of Caffeoyl-Coenzyme A O-Methyltanferase, an Enzyme Involved in Lignin Biosynthesis [J]. J. Biol. Chem. 2000, 275(47): 36899-36909
    [40] Lacombe, E., Hawkins, S., Doorsselaere, J. V., et al. Cinnamoyl CoA Reductase, the first Committed Enzyme of the Lignin Branch Biosynthetic Pathway: Cloning, Expression and Phylogenetic Relationships [J]. Plant J. 1997, 11: 429-441
    [41] Laigeng Li, Shanfa Lu, Vincent Chiang. A Genomic and Molecular View of Wood Formation. Critical Reviews in Plant Sciences, 2006, 25: 215-233
    [42] Goffner, D., Campbell, M. M., Campargue, C., et al. Purification and Characterization of Cinnamoyl-CoA:NADP Oxidoreductase in Eucalyptus gunnii [J]. Plant Physiol. 1994, 106: 625-632
    [43] Li, L., Cheng, X., Lu, S., et al.. Clarification of Cinnamoyl Co-enzyme A Reductase Catalysis in Monolignol Biosynthesis of Aspen [J]. Plant Cell Physiol. 2005, 46: 1073-1082
    [44] Alain-M. Boudet Lignins and lignification: Selected Issues [J]. Plant Physiol. Biochem., 2000, 38 (1/2): 81-96
    [45] Piquemal, J., Lapierre, C., Myton, K., et al. Down-Regulation of Cinnamoyl-CoA Reductase Induces Significant Changes of Lignin Profiles in Transgenic Tobacco Plants[J]. Plant J. 1998, 13: 71-83
    [46] Goujon, T., Ferret, V., Mila, I., et al. Down-regulation of the AtCCR1 Gene in Arabidopsis thaliana: Effects on Phenotype, Lignins and Cell Wall Degradability[J]. Planta, 2003, 217: 218-228
    [47] Jones, L., Ennos, A.R., and Turner, S.R. Cloning and Characterization of Irregular Xylem4 (irx4): a Severely Lignin-Deficient Mutant of Arabidopsis [J]. Plant J., 2001, 26: 205-216
    [48] Osakabe, K., Tsao, C. C., Li, L., et al. Coniferyl Aldehyde 5-Hydroxylation and Methylation Direct Syringyl Lignin Biosynthesis in Angiosperms [J]. Proc. Natl Acad. Sci. USA 1999, 96: 8955-8960
    [49] Humphreys, J. M., Hemm, M. R., and Chapple, C. New Routes for Lignin Biosynthesis Defined by Biochemical Characterization of Recombinant Ferulate 5-Hydroxylase, a Multifunctional Cytochrome P450-dependent Monooxygenase [J]. Proc. Natl. Acad. Sci. USA ,1999, 96: 10045–10050
    [50] Parvathi, K., Chen, F., Guo, D., et al. Substrate Preferences of O-Methyltransferases in Alfalfa Suggest New Pathways for 3-O-Methylation of Monolignols [J]. Plant J. 2001, 25:193–202
    [51] Marita, J.M., Ralph, J., Hatfield, R.D., et al. NMR Characterization of Lignins in Arabidopsis Altered in the Activity of Ferulate 5-Hydroxylase [J]. Proc Natl Acad Sci USA, 1999, 96:12328–12332
    [52] Franke, R., McMichael, C.M., Meyer, K., et al.. Modified Lignin in Tobacco and Poplar Plants Overexpressing the Arabidopsis Gene Encoding Ferulate 5-Hydroxylase [J]. Plant J 2000, 22: 223–234
    [53] Li, L., Cheng, X. F., Leshkevich, J., et al. The Last Step of Syringyl Monolignol Biosynthesis in Angiosperms is Regulated by a Novel Gene Encoding Sinapyl Alcohol Dehydrogenase [J]. Plant Cell, 2001, 13: 1567–1586
    [54] John M. Humphreys, Matthew R. Clint Chapple. New Routes for Lignin Biosynthesis Defined by Biochemical Characterization of Recombinant Ferulate 5-Hydroxylase, a Multifunctional Cytochrome P450-dependent Monooxygenase [J]. Proc. Natl. Acad. Sci. USA 1999, 96: 10045–10050
    [55] Roland Schubert, Christoph Sperisen, Gerhard Müller-Starck, et al. The Cinnamyl Alcohol Dehydrogenase Gene Structure in Picea abies (L.) Karst.: Genomic Sequences, Southern Hybridization, Genetic Analysis and Phylogenetic Relationships [J]. Trees. 1998, 12: 453–463
    [56] Lapierre C., Pollet B., Petit-Conil M., et al. Structural Alteration of Lignin in Transgenic Poplars with depressed Cinnamyl Alcohol Dehydrogenase or Caffeic Acid O-Methyltransferase Activity have an Opposite Impact on the Efficiency of Industrial kraft Pulping[J]. Plant Physiol., 1999, 119(1): 153-164
    [57] Sibout, R., Eudes, A., Mouille, G., et al. Cinnamyl Alcohol Dehydrogenase-C and -D are the Primary Genes Involved in Lignin Biosynthesis in the Floral Stem of Arabidopsis[J]. Plant Cell. 2005, 17: 2059–2076
    [58] Halpin C., Knight M.E., Foxon G.A., et al., Manipulation of Lignin Quality by Downregulation of Cinnamyl Alcohol Dehydrogenase[J]. Plant J., 1994, 6(3): 339-350
    [59] MacKay, J. J., O’Malley, D. M., Presnell, et al. Inheritance, Gene Expression, and Lignin Characterization in a Mutant Pine Deficient in Cinnamyl Alcohol Dehydrogenase[J]. Proc. Natl. Acad. Sci. USA 1997, 94: 8255–8260
    [60] Hibino, T., K. Takabe, et al. Increase of Cinnamaldehyde Groups in Lignin of Transgenic Tobacco Plants Carrying an Antisense Gene for Cinnamyl Alcohol Dehydrogenase[J]. Bioscience Biotechnology and Biochemistry. 1995, 59(5): 929-931
    [61] Stewart, D., Yahiaoui, N., McDougall, G. J., et al. Fourier-transform Infrared and Raman Spectroscopic Evidence for the Incorporation of Cinnamaldehydes into the Lignin of Transgenic Tobacco (Nicotiana tabacum L.) Plants with Reduced Expression of Cinnamyl Alcohol Dehydrogenase [J]. Planta, 1997, 201: 311-318
    [62] Christensen J.H., Bauw G., Welinder K.G., et al. Purification and Characterization of Peroxidases Correlated with Lignification in Poplar Xylem [J], Plant Physiol. 1998, 118: 125–135
    [63] Lagrimini, L.M., Gingas, V., Finger, F., et a. Characterization of Antisense Transformed Plants Deficient in the Tobacco Anionic Peroxidase [J]. Plant Physiol, 1997, 114:1187–1196
    [64] Yahong, L., Tsuji, Y., Nishikubo, N., et al. Analysis of Transgenic Poplar in which the Expression of Peroxidase Gene is Suppressed [J]. Molecular Breeding of Woody Plants, 2001, 18: 195–204
    [65] Elfstrand, M., Sitbon, F., Lapierre, C., et a.. Altered Lignin Structure and Resistance to Pathogens in spi 2-Expressing Tobacco Plants [J]. Planta. 2002, 214: 708–716
    [66] Dean, J. F. D., LaFayette, P. R., Rugh, C., et a.. Laccase Associated with Lignifying Tissues [J]. ACS Symp. Ser, 1998, 697: 96-108
    [67] Halpin C, Barakate A, Abbott J. Arabidopsis Laccases. Forest Biotechnology [M]. 1999. University of Oxford, England.
    [68] Tamagnone, L., Merida, A., Parr, A., et al. The AmMYB308 and AmMYB330 Transcription Factors from Antirrhinum Regulate Phenylpropanoid and Lignin Biosynthesis in Transgenic Tobacco [J]. Plant Cell, 1998, 10: 135-154
    [69] Silvia Fornale, Fathi-Mohamed Sonbol, Tamara Maes, et al. Down-regulation of the Maize and Arabidopsis thaliana Caffeic Acid O-Methyl-Transferase Genes by two New Maize R2R3-MYB Transcription Factors [J]. Plant Mol Biol, 2006, 62: 809–823
    [70] Nomenclature Committee of the International Union of Biochemistry and Molecular Biology (NC-IUBMB): http://www.chem.qmul.ac.uk/iubmb/enzyme/rules.html
    [71] Danièle Werck-Reichhart, RenéFeyereisen. Cytochromes P450: A Success Story[J].Genome Biology, 2000, 1(6): 3003.1-3003.9
    [72] Directory of P450-containing systems: http://www.icgeb.trieste.it/-p450srv
    [73] Cytochrome P450 Homepage: http://drnelson.utmem.edu/CytochromeP450.html
    [74] Graham SE, Peterson JA. How Similar are P450s and what Can their Differences Teach us [J]. Arch Biophys Biochem, 1999, 369: 24-29
    [75] Chapple C. Molecular Genetics Analysis of Plant Cytochrome P450-dependent Monooxygenases [J]. Ann Rev Plant Physiol Mol Biol. 1998, 49: 311-343
    [76] Gotoh O. Divergent Structures of Caenorhabditis elegans Cytochrome P450 Genes Suggest the Frequent Loss and Gain of Introns during the Evolution of Nematodes [J]. Mol Biol Evol, 1998, 15: 1447-1459
    [77] Nelson DR, Koymans L, Kamataki T et al. P450 Superfamily: Update on New Sequences, Gene Mapping, Accession Numbers and Nomenclature [J]. Pharmacogenetics, 1996, 6: 1-42
    [78] Ilia G. Denisov, Thomas M. Makris, Stephen G. Sligar et al. Structure and Chemistry of Cytochrome P450 [J]. Chem. Rev. 2005, 105: 2253-2277
    [79] http://www.ncbi.nlm.nih.gov/Structure/cdd/cddsrv.cgi
    [80] http://en.wikipedia.org/wiki/Cinnamyl-alcohol_dehydrogenase
    [81] http://en.wikipedia.org/wiki/Cinnamoyl-CoA_reductase
    [82] C. Zubieta, Parvathi Kota, Jean-Luc Ferrer, et al. Structural Basis for the Modulation of Lignin Monomer Methylation by Caffeic Acid/5-Hydroxyferulic Acid 3/5-O-Methyltransferase [J]. Plant Cell, 2002, 14: 1265-1277
    [83] J. L. Ferrer, C. Zubieta, R. A. Dixon, et al. Crystal Structures of Alfalfa Caffeoyl Coenzyme A 3-O-Methyltransferase [J]. Plant Physiol. 2005, 137: 1009-1017
    [84] http://en.wikipedia.org/wiki/Caffeoyl-CoA_O-methyltransferase
    [85] http://en.wikipedia.org/wiki/Caffeate_O-methyltransferase
    [86] http://en.wikipedia.org/wiki/4-coumarate-CoA_ligase
    [87] Ronald Hatfield, Romualdo S. Fukushima. Can Lignin Be Accurately Measured? [J] Crop Sci. 2005, 45: 832–839
    [88] Bolker, H., and N. Somerville. Ultraviolet Spectroscopic Studies of Lignin in Solid State. I. Isolated Lignin Preparations[J]. Tappi J. 1962, 72: 826–829
    [89] Boutelje, J., and U. Jonsson. Ultraviolet Microscope Photometry Pulp Fibers. UV-absorbance and its Relationship to Chlorine number, kappa number and Lignin Content[J]. Cell. Chem. Technol. 1980, 14: 53–67
    [90] Fergus, B.J., and D.A.I. Goring. The Distribution of Lignin in Birchwood as Determined by Ultraviolet Microscopy[J]. Holzforschung. 1970, 24: 118–124
    [91] Schultz, T., M. Templeteon, and G. McGinnis. Rapid Determination of Lignocellulose by Diffuse Reflectance Fourier Transform Infrared Spectrometry[J]. Anal. Chem. 1985, 57: 2867-2869
    [92] Casler, M. D., and H.-J.G. Jung. Selection and Evaluation of Smooth Bromegrass Cloneswith Divergent Lignin or Etherified Ferulic Acid Concentration[J]. Crop Sci. 1999, 39: 1866-1873
    [93] http://teaching.shu.ac.uk/hwb/chemistry/tutorials/molspec/nmr1.htm
    [94] Yoshihara, K., T. Kobayashi, T. Fujii, et al. A Novel Modification of Klason Lignin Quantitative Method[J]. J. Japan Tappi. 1984, 38: 86–95
    [95] Hatfield, R.D., and P.J. Weimer. Degradation Characteristics of Isolated and in-situ Cell-wall Lucerne Pectic Polysaccharides by Mixed Ruminal Microbes[J]. J. Sci. Food Agric. 1995, 69: 185-196
    [96] Ellis, G.H. Report on Lignin and Cellulose in Plants[J]. J. Assoc. Off. Agric. Chem. 1949, 32: 287-291
    [97] Theander, O., and E.A. Westerlund. Studies on Dietary Fiber. 3. Improved Procedures for Analysis of Dietary Fiber[J]. J. Agric. Food Chem. 1986. 34: 330-336
    [98] William V. Dashek. Methods in Plant Biochemistry and Molecular Biology[M]. Publisher: Boca Raton, FL: CRC Press, 1997. ISBN: 0849394805; DDC: 581.192; LCC: QK861; Edition: 1
    [99] Colombo, P., D. Corbetta, A. Pirotta, and G. Ruffini. Chlorine Number as a Method for Evaluation of Lignin Content of a Pulp[J]. Pulp Pap. Mag. Can. 1962, 63: T126–T140
    [100]Tasman, J., and V. Berzins. The Permanganate Consumption of Pulp Materials. I. Development of a Basic Procedure[J]. Tappi 1957, 40: 691–694
    [101]Johnson, D.B., W. E. Moore, and L. C. Zank. The Spectrophotometric Determination of Lignin in Small Wood Samples[J]. Tappi 1961, 44: 793-798
    [102]Morrison, I.M. Improvements in the Acetyl Bromide Technique to Determine Lignin and Digestibility and its Application to Legumes[J]. J. Sci. Food Agric. 1972, 23: 1463–1469
    [103]Iiyama, K., and A. F. A. Wallis. An Improved Acetyl Bromide Procedure for Determining Lignin in Woods and Wood pulps[J]. Wood Sci. Technol. 1988, 22: 271–280
    [104]Hatfield, R.D., J. Grabber, J. Ralph, et al. Using the Acetyl Bromide Assay to Determine Lignin Concentration in Herbaceous Plants: Some Cautionary Notes[J]. J. Agric. Food Chem. 1999, 47: 628–632
    [105]Determina Fukushima, R.S., and R.D. Hatfield. Comparison of the Acetyl Bromide Spectrophotometeric Method with Other Analytical Lignin Methods for Determining LigninConcentration in Forage Samples[J]. Agric. Food Chem. 2004, 52: 3713–3720
    [106]Franke R, McMichael CM, Meyer K, et al. Modified Lignin Tobacco and Poplar Plants Over-expressing the Arabidopsis Gene Encoding Ferulate 5-Hydroxylase[J]. Plant Journal, 2000, 22(3): 223-234
    [107]Fachuang Lu and John Ralph. Derivatization Followed by Reductive Cleavage (DFRC Method), a New Method for Lignin Analysis: Protocol for Analysis of DFRC Monomers[J]. J. Agric. Food Chem. 1997, 45: 2590-2592
    [108]Fachuang Lu and John Ralph. DFRC Method for Lignin Analysis. 1. New Method forβ-Aryl Ether Cleavage: Lignin Model Studies[J]. J. Agric. Food Chem. 1997, 45: 4655-4660
    [109]马灵飞,韩红,徐真旺等.部分竹材灰分和木质素含量的分析[J]浙江林学院学报1996,13(3):276~279
    [110]王久文,辉朝茂,刘翠等.云南14种主要材用竹化学成分研究[J]竹子研究汇刊,1999,18(2):74-78
    [111]曾荣,罗学刚,谭向荣等.竹木质素研究进展[J]四川农业大学学报,2004,22(3):274-277
    [112]林金国,董建文,方夏峰等.麻竹材化学成分的变异[J]植物资源与环境学报,2000,9(1):55-56
    [113]Lin J X,He X Q,Hu Y X,et a1. Lignification and Lignin Heterogeneity for Various Age Classes of Bamboo (Phyllostachys pubescens) Sterns [J]. Physiologia Plantarum, 2002, 114(2): 296-302
    [114]李雪平,高志民,彭镇华等.绿竹咖啡酰辅酶A-O-甲基转移酶基因的克隆与分析[J]分子植物育种,2008,6(3):587-592
    [115]李雪平,高志民,彭镇华等.绿竹咖啡酸-O-甲基转移酶基因(COMT)的克隆及相关分析[J]林业科学研究2007,20(5):722-725
    [116]刘晓辉籼稻广陆矮4全长cDNA文库构建和序列分析及水稻单条染色体DNA文库构建[D]中国科学院研究生院博士学位论文2007
    [117]Henrik Nielsen, Jacob Engelbrecht and Sren Brunak. A Neural Network Method for Identification of Prokaryotic and Eukaryotic Signal Peptides and Prediction of their Cleavage Sites[J]. International Journal of Neural Systems, 1997,8 (5-6): 581-599
    [118]Nielsen, H., Engelbrecht, J., Brunak, S., et al. Identification of Prokaryotic and Eukaryotic Signal Peptides and Prediction of their Cleavage Sites[J]. Protein Eng. 1997, 10: 1-6
    [119]Tsutomu Kawasaki, Hisako Koita, Tomoyuki Nakatsubo, et al. Cinnamoyl-CoA Reductase, a Key Enzyme in Lignin Biosynthesis, is an Effector of small GTPase Rac in Defense Signaling in Rice[J], PNAS, 2006, 103(1): 230-235
    [120]王雪霞,薛永长,赵文超.木质素生物合成中C3H/HCT的研究进展[J].生命的化学, 2008, 28(5): 650-653
    [121]唐文莉毛竹Lhca基因的克隆和光照在转录水平对其表达的调控[D]中国林业科学研究院博士学位论文,2008,60-68
    [122] Max Ruegger, Knut Meyer, Joanne C. Cusumano, et al. Regulation of Ferulate-5-Hydroxylase Expression in Arabidopsis in the Context of Sinapate Ester Biosynthesis[J]. Plant Physiology. 1999,119: 101–110
    [123]孟丽,戴思兰. F3’5’H基因与蓝色花的形成[J]分子植物育种,2004, 2(3): 413-420
    [124] Jing-Ke Weng, Xu Li, Jake Stout, and Clint Chapple. Independent Origins of Syringyl Lignin in Vascular Plants[J]. PNAS, 2008, 105(22): 7887–7892
    [125] http://bioweb2.pasteur.fr/docs/psort/
    [126] Michael W. Pfaffl. A New Mathematical Model for Relative Quantification in Real-time RT-PCR[J]. Nucleic Acids Research, 2001, 29: 2002-2007

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700