基于转码策略的点对点流媒体系统研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着通信与多媒体技术的高速发展,对流媒体系统(Streaming System)的研究与应用成为近年热点。点对点流媒体系统(Peer-to-peer Streaming System)利用用户节点的上传带宽、存储能力等资源,分担服务器负载,协助服务器将多媒体数据分享到广阔的用户网络中,使系统性能和规模得到很大提升。
     但是目前的点对点流媒体系统设计主要面向传统个人电脑用户。随着终端设备、互联网结构、用户需求朝着多元化、移动化、个性化方向发展,当前设计凸显对同一多媒体节目在不同质量、不同格式要求下的数据分享缺乏有效支持和优化。针对这一问题,本文提出并研究了多种基于转码策略的点对点流媒体系统(Peer-to-peer Streaming System based on Transcoding)。文章介绍了所提系统的适用场景和设计原理,通过数学建模和相关算法对各系统的源节点负载和用户节点上传带宽利用率等性能进行了讨论和优化,并通过仿真实验和数学分析与当前设计作了对比。在此基础上,文章还对基于转码策略的点对点流媒体系统的最小源节点负载和最优流率分配算法作了讨论和设计,并对动态场景下的系统作了分析和设计,提出了一种自适应算法。
     具体来说包括以下几个方面:
     第一,简要介绍了点对点流媒体系统的研究基础:点对点文件分享系统(Peer-to-Peer File Sharing System)。综述了流媒体系统,特别是点对点流媒体系统的发展历程。归纳了点对点流媒体研究主要探讨和研究的问题。对已有设计方案以及目前的热点与前沿进行了分类和整理。
     第二,提出了一种基于转码策略的高效点对点流媒体系统(EfficientPeer-to-peer Streaming System based on Transcoding, EPSST),以应对目前点对点流媒体系统面临的一些问题和挑战。EPSST系统利用用户节点的计算能力,实现多媒体数据编码格式以及编码率的转换,以达到适应不同用户终端、不同软硬件条件以及异种网络(Heterogeneous Network)环境的目的,为系统的普适化和个性化服务提供基础。描述了EPSST系统的组成和原理。将EPSST系统和当前几种设计进行了对比,从设备和网络适应性、多媒体数据类型支持、覆盖网结构、源节点负载、用户节点上传带宽利用率等几个方面论述了所提系统的功能和优势。
     第三,针对日益壮大的移动互联网用户,以EPSST系统为基础,提出了适用于移动与固定终端混合场景的移动与固定节点协同转码点对点流媒体系统(Mobile and Fixed Node Cooperating EPSST, MFNC-EPSST),以及复合移动与固定节点协同转码点对点流媒体系统(Multiple Mobile and Fixed Node CooperatingEPSST, MMFNC-EPSST)。文章描述了MFNC-EPSST和MMFNC-EPSST系统的基本结构,建立了系统模型,并在此基础上分析和给出了路径选择与带宽分配算法以建立高效覆盖网,达到有效利用用户节点上传带宽,降低源节点负载的目的。文章还通过仿真实验,与当前几种系统设计作了对比,论证设计的有效性。
     第四,以EPSST系统为基础,提出了一套关于组播域间多媒体数据转码、路径选择以及带宽分配的流媒体系统设计和算法。文中将该系统称为组播域间桥转码点对点流媒体系统(Bridge of Multicast Domain EPSST, BMD-EPSST)。文章根据不同设计要求和复杂性提出了BMD-EPSST系统的两种具体的组织模式和相应算法。文章还通过仿真实验,将BMD-EPSST系统与当前设计进行了对比。
     第五,讨论了基于转码策略的点对点流媒体系统理论上的最小源节点负载。给出达到最小源节点负载的最优流率分配算法(Optimal Streaming Rate AllocationAlgorithm, OSRAA)。文章分析和归纳了OSRAA算法与其它各章所提算法的异同和联系,并通过仿真实验与数学模型将应用该算法实现的系统的源节点负载性能与现行几种设计作了对比,分析了基于转码策略的点对点流媒体系统性能较优的原因。
     第六,考察和分析了动态场景下本文所提系统的性能表现,通过数学分析和仿真实验探讨了应对系统动态性适合的数据源服务器上传带宽设置;针对动态场景下,上传带宽供需的动态变化特点,提出了一种平衡多媒体质量、系统规模和源节点负载的编码率选择与调整自适应算法(Encoding Rate Adaptive Algorithm,ERAA)。并通过仿真实验考察应用算法前后的系统性能对比,验证所提算法的有效性。
     最后,对研究工作做了总结,并对未来工作做了展望。
With the rapid development of communication and multimedia technology, theresearch and application of Streaming System are getting more and more popularcurrently. Peer-to-peer streaming systems utilize upload bandwidth and storage capacityof the user nodes to relieve server load and assist server sharing the multimedia datainto the network, which greatly improves the performance and scale of the system.
     Presently, peer-to-peer streaming systems are mainly designed for traditional PC.With the diversification, mobility and personalized development of terminal equipment,networkarchitecture and user needs, current designs cannot meet the demand ofsupporting and optimization for the sharing of the same program with different qualityand format data. To solve thisproblem, this thesis proposes and studies several kinds ofpeer-to-peer streaming system based on transcoding. It describes the scenes and designsof each system, and optimizes the performance of server load and the utilization of usersupload bandwidth by mathematical modelsand algorithms, and compares with existingsystems by simulation experiments and mathematical analysis. Then, the thesisdiscusses and designs the minimum server load and optimal streaming rate allocationalgorithm of the peer-to-peer streaming system based on transcoding, as well asanalyzesthe performance under dynamic scenario, and proposes an adaptive algorithm.
     The main content of this thesisfollowing:
     First, briefly introducethe preliminarystudyofpeer-to-peer streaming system:peer-to-peer file sharing system. The thesis reviews the developing period ofpeer-to-peer streaming system, summarizes the main researches of this area, classifiesexisting designs and current frontier and hot issues.
     Second, the thesis proposes an Efficient Peer-to-peer Streaming System based onTranscoding (EPSST) in order to cope with some current problems and challenges.Using computational resource of user nodes, EPSST achieves transcoding the format orrate of multimedia data, in order to adapt different terminals, different software orhardware conditions, different network environments, and offer pervasive andpersonalized service. The thesis describes the composition and principle of EPSST.Compared with several current designs, the thesis discusses the functions and advantages of EPSST in terms of the adaptation, the supporting of multimedia datatypes, the structure of overlay network, the server load and the upload bandwidthutilization of user nodes.
     Third, the thesis proposes a system named Mobile and Fixed Node CooperatingEPSST (MFNC-EPSST) and a system named Multiple Mobile and Fixed NodeCooperating EPSST (MMFNC-EPSST)on the basis of EPSST to meet the growing ofmobile Internet. The thesis describes the basic structure of MFNC-EPSST andMMFNC-EPSST, and builds the system models. Based on system models, itproposesthe algorithms of path selection and bandwidth allocation to built overlay network,which is in order to achieve efficient upload bandwidth utilization of users, and lowerserver load. To verify the effectiveness of the design,the thesis also does samesimulation experments to compare the proposed system with current ones.
     Fourth, specific to the scenario of media distribution in multicast domain, based onEPSST system, the thesis proposes Bridge of Multicast Domain EPSST (BMD-EPSST).According to the different design requirements and complicacy, two basic organizationmodes and algorithms are proposed for BMD-EPSST.It also does some simulationexperiments to compare the proposed system with current ones.
     Fifth, the thesis discusses the minimum server load based on EPSST, and proposesOptimal Streaming Rate Allocation Algorithm (OSRAA) to achieve the minimum. Thethesissummarizes the similarities and differences of OSRAA and path selection andbandwidth allocation algorithms in proposed systems,and, based on simulationexperiment and mathematical model, compares the performance of server load in thesystem implementing OSRAA with existing designs, andanalysis the superiority.
     Sixth, the proposed systems and algorithms are analyzed in dynamic scenario.Simulation experiments give the adapted bandwidth setting of server. To balance theuploaded bandwidth and sever load in dynamic scenario, Encoding Rate AdaptiveAlgorithm (ERAA) is proposed to enable the equilibrium among multimedia quality,system scale and server load. Simulation experiments verify the effectiveness of ERAA.
     Finally, the thesis makes a conclusion of above research and presents directions forfuture research.
引文
[1] IPOQUE[OL].http://www.ipoque.com/en/news-events/media-kit.
    [2] BitTorrent[OL]. http://www.bittorrent.com/help/faq/concepts.
    [3] eMule[OL]. http://www.emule-project.net/home/perl/general.cgi?l=42.
    [4] eDonkey[OL]. http://emulefans.com/news/more-ed2k/edonkey2000/.
    [5] S. Saroiu, P. K. Gummadi, and S. D. Gribble. A measurement study of peer-to-Peer filesharing systems[C]. Multimedia Comp. and Net.(MMCN), San Jose, California, USA,2002,156-170.
    [6] Qiu D, Srikant R. Modeling and performance analysis of BitTorrent-like peer-to-peernetworks[J]. ACM SIGCOMM Computer Communication Review,2004,34(4):367-378.
    [7] Pouwelse J A, Garbacki P, Epema D, et al. A measurement study of the bittorrentpeer-to-peer file-sharing system[R]. Technical Report PDS-2004-003, Delft University ofTechnology, The Netherlands,2004.
    [8] Bharambe A., Herley C., PadmanabhanV.. Analyzing and improving a BitTorrent network’sperformance mechanisms[C]. INFOCOM, IEEE,2006,1-12.
    [9] Saroiu S, Gummadi P K, Gribble S D. Measurement study of peer-to-peer file sharingsystems[C]. International Society for Optics and Photonics,2001,156-170.
    [10] Guo L, Chen S, Xiao Z, et al. Measurements, analysis, and modeling of BitTorrent-likesystems[C]. ACM SIGCOMM Conference on Internet Measurement. USENIX Association,2005,4.
    [11] Hei X, Liang C, Liang J, et al. A measurement study of a large-scale P2P IPTV system[J].Multimedia, IEEE Transactions on,2007,9(8):1672-1687.
    [12] Windows Media[OL]. http://windows.microsoft.com/en-us/windows/windows-media/.
    [13] Srinivasan S, Hsu P, Holcomb T, et al. Windows Media Video9: overview andapplications[J]. Signal Processing: Image Communication,2004,19(9):851-875.
    [14] Frank, A.J., Wittie, Larry D., Bernstein, A.J..Multicast communication on networkcomputers[J]. Software, IEEE,1985,2(3):49-61.
    [15] S. Deering. Multicast routing in internetworks and extended LANs[C]. ACM SIGCOMM,August1988,55-64.
    [16] Deering S E, Cheriton D R. Multicast routing in datagram internetworks and extendedLANs[J]. ACM Transactions on Computer Systems (TOCS),1990,8(2):85-110.
    [17] Chu Y, Rao S G, Seshan S, et al. A case for end system multicast[J]. Selected Areas inCommunications, IEEE Journal on,2002,20(8):1456-1471.
    [18] S. Banerjee, B.Bhattacharjee, and S.Parthasarathy. A protocol for scalableapplication layermulticast[R]. Technical Report, University of Maryland,July2001.
    [19] Pendarakis D, Shi S, Verma D, et al. ALMI: An application level multicast infrastructure[C].USENIX Symposium on Internet Technologies and Systems.2001,3:5.
    [20] S. Ratnasamy, M. Handley, R. Karp, and S. Shenker. Application-level multicast usingcontent-addressable networks[C]. Networked Group Communication,2001,14-29.
    [21] Castro M, Druschel P, Kermarrec A M, et al. SCRIBE: A large-scale and decentralizedapplication-level multicast infrastructure[J]. Selected Areas in Communications, IEEEJournal on,2002,20(8):1489-1499.
    [22] Padmanabhan V N, Wang H J, Chou P A. Resilient peer-to-peer streaming[C]. InternationalConference on Network Protocols, IEEE,2003,16-27.
    [23] Castro M, Druschel P, Kermarrec A M, et al. SplitStream: high-bandwidth multicast incooperative environments[C]. ACM SIGOPS Operating Systems Review,2003,37(5):298-313.
    [24] LiJ., ChouP., and ZhangC. Mutualcast: an efficient mechanism forOne-to-Many contentdistribution[C]. ACM SIGCOMM,Asia Workshop,2005.
    [25] VenkataramanV., FrancisP., and CalandrinoJ.Chunkyspread:multi-tree unstructuredPeer-to-Peer multicast[C].5thInternational Workshop on Peer-to-Peer Systems,2006,2-11.
    [26] Mol J D, Epema D H P, Sips H J. The orchard algorithm: building multicast trees for p2pvideo multicasting without free-riding[J]. Multimedia, IEEE Transactions on,2007,9(8):1593-1604.
    [27] Magharei N., Rejaie R., Guo Y. Mesh or multiple-tree: A comparative study of live p2pstreaming approaches[C]. INFOCOM, IEEE,2007,1424-1432.
    [28] Liu J, Rao S G, Li B, et al. Opportunities and challenges of peer-to-peer internet videobroadcast[J]. Proceedings of the IEEE,2008,96(1):11-24.
    [29] M. Zhang, Q. Zhang, and S. Yang. Understanding the power of pull-based streamingprotocol: Can we do better[J]. IEEE Journal on Selected Areas in Communications,2007,25(8):1678-1694.
    [30] Kumar R, Liu Y, Ross K. Stochastic fluid theory for P2P streaming systems[C]. INFOCOM,IEEE,2007,919-927.
    [31] Liu S, Zhang-Shen R, Jiang W, et al. Performance bounds for peer-assisted live streaming[C].ACM SIGMETRICS Performance Evaluation Review,2008,36(1):313-324.
    [32] C. Feng and B. Li. On large-scale peer-to-peer streaming systems with network coding[C].ACM International Conference on Multimedia, Vancouver, British Columbia, Canada,2008,269-278.
    [33] T. Small, B. Li and B. Liang. Outreach: peer-to-peer topologyconstruction towardsminimized server bandwidth costs[J]. SelectedAreas in Communications,IEEE Journalon,2007,25(1):35-45.
    [34] Lua E K, Crowcroft J, Pias M, et al. A survey and comparison of peer-to-peer overlaynetwork schemes[J]. IEEE Communications Surveys and Tutorials,2005,7(2):72-93.
    [35] Rowstron A, Druschel P. Pastry: scalable, decentralized object location, and routing forlarge-scale peer-to-peer systems[C]. Middleware, Springer Berlin Heidelberg,2001,329-350.
    [36] S. Ratnasamy et al.A scalable content addressable network[C]. ACM SIGCOMM,2001,161-172.
    [37] Zhao B Y, Huang L, Stribling J, et al. Tapestry: A resilient global-scale overlay for servicedeployment[J]. Selected Areas in Communications, IEEE Journal on,2004,22(1):41-53.
    [38] P. Maymounkov and D. Mazieres. Kademlia: A Peer-to-Peer information system based onthe XOR metric[C]. IPTPS, Cambridge, MA, USA, Feb.2002,53-65.
    [39] D. Malkhi, M. Naor, and D. Ratajczak. Viceroy: ascalable and dynamic emulation of thebutterfly[C]. ACM PODC,2002,183-92.
    [40] Gnutella Development Forum.The Gnutella v0.6protocol [OL].http://groups.yahoo.com/group/the gdf/files/,2001.
    [41] I. Clarke et al. Freenet: adistributed anonymous information storage and retrieval system,
    [OL]. http://freenetproject.org/freenet.pdf,1999.
    [42] Wiegand T, Sullivan G J, Bjontegaard G, et al. Overview of the H.264/AVC video codingstandard[J]. Circuits and Systems for Video Technology, IEEE Transactions on,2003,13(7):560-576.
    [43] H. Schwarz, D. Marpe and T. Wiegand. Overview of the scalable video coding extension ofthe H.264/AVC standard[J]. IEEE Trans. Circuits and Systems for Video Technology,2007,17(9):1103-1120.
    [44] Video codec for audiovisual services at p×64kbit/s, ITU-T Rec. H.261, ITU-T, Version1[S].Nov.1990, Version2: Mar.1993.
    [45] Coding of moving pictures and associated audio for digital storage media at up to about1.5Mbit/s part2: video, ISO/IEC11172-2(MPEG-1Video)[S]. ISO/IEC JTC1, Mar.1993.
    [46] Generic coding of moving pictures and associated audio information part2: video[S]. ITU-TRec. H.262and ISO/IEC13818-2(MPEG-2Video), ITU-T and ISO/IEC JTC1, Nov.1994.
    [47] Video coding for low bit rate communication[S]. ITU-T Rec. H.263, ITU-T, Version1. Nov.1995, Version2: Jan.1998, Version3: Nov.2000.
    [48] Coding of audio-visual objects—part2: visual[S]. ISO/IEC14492-2(MPEG-4Visual),ISO/IEC JTC1, Version1: Apr.1999, Version2: Feb.2000, Version3: May2004.
    [49] Advanced video coding for generic audiovisual services[S]. ITU-T Rec. H.264and ISO/IEC14496-10(MPEG-4AVC), ITU-T and ISO/IEC JTC1, Version1: May2003, Version2: May2004, Version3: Mar.2005, Version4: Sept.2005, Version5and Version6: June2006,Version7: Apr.2007, Version8(including SVC extension): Consented in July2007.
    [50] C. Gkantsidis and P. Rodriguez. Network coding for large scale content distribution[C].INFOCOM, IEEE,2005,2235-2245.
    [51] C. Gkantsidis, J. Miller, and P. Rodriguez. Anatomy of a P2P content distribution systemwith network coding[C].5th International Workshop on Peer-to-Peer Systems,2006.
    [52] P. Maymounkov, N. J. A. Harvey, and D. S. Lun. Methods for efficient network coding[C].Annual Allerton Conference on Communication, Control, and Computing,2006.
    [53] G. Ma, Y. Xu, M. Lin, et al.A content distribution system based on sparse linear networkcoding[C].3rd Workshop on Network Coding,2007.
    [54] Padmanabhan V N, Wang H J, Chou P A, et al. Distributing streaming media content usingcooperative networking[C].12th International Workshop on Network and Operating SystemsSupport for Digital Audio and Video. ACM,2002,177-186.
    [55] Pouwelse J A, Taal J R, Lagendijk R L, et al. Real-time video delivery using peer-to-peerbartering networks and multiple description coding[C]. Systems, Man and Cybernetics,International Conference on, IEEE,2004,5:4599-4605.
    [56] Kosti D, Rodriguez A, Albrecht J, et al. Bullet: High bandwidth data dissemination using anoverlay mesh[C]. ACM SIGOPS Operating Systems Review,2003,37(5):282-297.
    [57] Hefeeda M, Habib A, Botev B, et al. PROMISE: peer-to-peer media streaming usingCollectCast[C]. ACM International Conference on Multimedia,2003,45-54.
    [58] Zhang, Xinyan, et al. CoolStreaming/DONet: a data-driven overlay network for peer-to-peerlive media streaming[C]. INFOCOM, IEEE,2005,2102-2111.
    [59] Zhang X, Liu J, Li B. On large-scale peer-to-peer live video distribution: coolstreaming andits preliminary experimental results[C]. MMSP,2005.
    [60] Xie S, Li B, Keung G Y, et al. Coolstreaming: Design, theory, and practice[J]. Multimedia,IEEE Transactions on,2007,9(8):1661-1671.
    [61] Li B, Xie S, Keung G Y, et al. An empirical study of the Coolstreaming+system[J]. SelectedAreas in Communications, IEEE Journal on,2007,25(9):1627-1639.
    [62] Xie S, Keung G Y, Li B. A measurement of a large-scale peer-to-peer live video streamingsystem[C]. Packet Video, IEEE,2007,153-162.
    [63] Li B, Xie S, Qu Y, et al. Inside the new coolstreaming: Principles, measurements andperformance implications[C]. INFOCOM, IEEE,2008,1031-1039.
    [64] Magharei N, Rejaie R. Prime: Peer-to-peer receiver-driven mesh-based streaming[J].IEEE/ACM Transactions on Networking (TON),2009,17(4):1052-1065.
    [65] Wang M, Li B. Lava: A reality check of network coding in peer-to-peer live streaming[C].INFOCOM, IEEE,2007,1082-1090.
    [66] Wang M, Li B. R2: Random push with random network coding in live peer-to-peerstreaming[J]. Selected Areas in Communications, IEEE Journal on,2007,25(9):1655-1666.
    [67] W. Dong, Y. Liu, C. Chen, J. Bu, and C. Huang. R2: incremental reprogramming usingrelocatable code in networked embedded systems[C].INFOCOM, IEEE,2011,376-380.
    [68] Wu D, Liang C, Liu Y, et al. View-upload decoupling: A redesign of multi-channel p2p videosystems[C]. INFOCOM, IEEE,2009,2726-2730.
    [69] Wu D, Liu Y, Ross K W. Queuing network models for multi-channel p2p live streamingsystems[C]. INFOCOM, IEEE,2009,73-81.
    [70] Wu D, Liang C, Liu Y, et al. Redesigning multi-channel P2P live video systems withView-Upload Decoupling[J]. Computer Networks,2010,54(12):2007-2018.
    [71] Wang M, Xu L, Ramamurthy B. Linear programming models for multi-channel P2Pstreaming systems[C]. INFOCOM, IEEE,2010,1-5.
    [72] Wu D, Liu Y, Ross K W. Modeling and analysis of multichannel P2P live video systems[J].Networking, IEEE/ACM Transactions on,2010,18(4):1248-1260.
    [73] Liang C, Liu Y. ViVUD: virtual server cluster based View-Upload decoupling forMulti-Channel P2P video streaming systems[C]. Global Telecommunications ConferenceGLOBECOM, IEEE,2010,1-5.
    [74] PPLive[OL]. http://app.pptv.com/windows/.
    [75] L. Vu, I. Gupta, J. Liang, et al. Mapping the pplive network: Studying the impacts of mediastreaming on p2p overlays[R]. Technical Report, UIUC,2006.
    [76] Hei X, Liang C, Liang J, et al. A measurement study of a large-scale P2P IPTV system[J].Multimedia, IEEE Transactions on,2007,9(8):1672-1687.
    [77] Vu L, Gupta I, Liang J, et al. Measurement of a large-scale overlay for multimediastreaming[C]. International Symposium on High Performance Distributed Computing, ACM,2007,241-242.
    [78] LI B, YUAN R. Mining clusters in densely connected P2P networks[J]. Journal ofComputational Information Systems,2013,9(10):3849-3856.
    [79] PPStream[OL]. http://dl.pps.tv/download.html.
    [80] Jia J, Li C, Chen C. Characterizing PPStream across internet[C]. IFIP InternationalConference onNetwork and Parallel Computing Workshops, IEEE,2007:413-418.
    [81] Su X, Chang L. A measurement study of PPStream[C]. Third International Conference onCommunications and Networking, ChinaCom,2008,1162-1166.
    [82] Wei T, Chen C. Study of PPStream based on measurement[C]. Second InternationalSymposium on Intelligent Information Technology Application, IITA'08, IEEE,2008,2:900-905.
    [83] Liang W, Bi J, Wu R, et al. On characterizing ppstream: measurement and analysis of p2piptv under large-scale broadcasting[C]. Global Telecommunications Conference,GLOBECOM,2009, IEEE,2009,1-6.
    [84] Li C, Chen C. Measurement based PPStream client behavior analysis[C]. Computing,Communication, Control, and Management, ISECS International Colloquium on, IEEE,2009,1:341-345.
    [85] Li C, Chen C. PPStream measurement and data analysis in mobile IP environment[C].Scalable Computing and Communications, Eighth International Conference on EmbeddedComputing,2009, IEEE,2009:263-268.
    [86] UUSee[OL]. http://download.uusee.com/help_syhj/.
    [87] Liu Z, Wu C, Li B, et al. UUSee: large-scale operational on-demand streaming with randomnetwork coding[C]. INFOCOM, IEEE,2010,1-9.
    [88] Li B, Jin Z, Ma M. Traffic analysis of P2P IPTV and comparison with BT-like applicationbased on live measurement[C]. Wireless Communications, Networking and MobileComputing, WiCom'09,5th International Conference on, IEEE,2009,1-4.
    [89] SopCast[OL].http://www.sopcast.cn/cn/docs/.
    [90] Fallica B, Lu Y, Kuipers F, et al. On the quality of experience of sopcast[C]. The SecondInternational Conference on Next Generation Mobile Applications, Services andTechnologies, IEEE,2008,501-506.
    [91] Lu, Y., Fallica, B., Kuipers, F. A., et al. Assessing the quality of experience of sopcast[J].International Journal of Internet Protocol Technology,4(1),11-23.
    [92] Bermudez I, Mellia M, Meo M. Investigating overlay topologies and dynamics of P2P-TVsystems: the case of sopcast[J]. Selected Areas in Communications, IEEE Journal on,2011,29(9):1863-1871.
    [93] R. Ahlswede, N. Cai, S. R. Li, et al.Network Information Flow[J].Information Theory,IEEETransactions on,2000,46(4):1204–1216.
    [94] S. Y. R. Li, R. W. Yeung, and N. Cai. Linear network coding[J].Information Theory,IEEETransactions on,2003,49:371.
    [95] Koetter R, Médard M. An algebraic approach to network coding[J]. Networking, IEEE/ACMTransactions on,2003,11(5):782-795.
    [96] P. A. Chou, Y. Wu, and K. Jain. Practical network coding[C]. Annual Allerton Conference onCommunication, Control and Computing, October2003,40-49.
    [97] M. Wang and B. Li. How practical is network coding[C].International Workshop on Qualityof Service (IWQoS2006), IEEE,2006,274–278.
    [98] Gkantsidis C, Rodriguez P R. Network coding for large scale content distribution[C].24thAnnual Joint Conference of the IEEE Computer and Communications Societies, IEEE,2005,4:2235-2245.
    [99] HoT., MedardM., ShiJ., et al.On randomized network coding[C].Allerton Conference onCommunication, Control, and Computing, October2003,11-20.
    [100] T. Ho, R. Koetter, M. M′edard, et al. A random linear network coding approach tomulticast[J]. Information Theory, IEEE Transactions on,2006,52(10):4413–4430.
    [101] Bioglio V, Grangetto M, Gaeta R, et al. A practical random network coding scheme for datadistribution on peer-to-peer networks using rateless codes[J]. Performance Evaluation,2013,70(1):1-13.
    [102] Zhenyu Yang, Ming Li, Wenjing Lou. CodePlay: live multimedia streaming in VANETsusing symbol-level network coding[C].International Conference on Network Protocols,IEEE,2010,223-232.
    [103] F. Chen, T. Repantis, and V. Kalogeraki. Coordinated media streaming and transcoding inpeer-to-peer systems[C].International Parallel Distributed Process, Symp., IEEE, Apr.2005,56b.
    [104] D. Liu, E. Setton, B. Shen, et al.PAT: peer-assisted transcoding for overlay streaming toheterogeneous devices[C].International Workshop Netw. Oper. Syst. Support Dig. AudioVideo,2007.
    [105] S. R. Narayanan, D. Braun, J. Buford, et al.Peer-to-peer streaming for networked consumerelectronics[J]. IEEE Commun. Mag.,2007,45(6):124–131.
    [106] Guntur Ravindra, Sumit Kumar, Suresh Chintada. Distributed media transcoding using a P2Pnetwork of set top boxes[C].6th IEEE Conference on Consumer Communications andNetworking Conference,2009,1014-1015.
    [107] J. Noh, M. Makar, and B. Girod. Streaming to mobile users in a peer-to-peer network[C].International Mobile Multimedia Communications Conference, London, England,2009,24.
    [108] Shuai Zeng, Lemin Li, Dan Liao. Path selection andbandwidth allocation for fixed andmobile peers in P2Pstreaming system[J]. Journal of Computational InformationSystems,2012,8(17):7163-7170.
    [109] Haroon Raja, Saad Bin Qaisar. Rate-Distortion optimizedtranscoder selection for multimediatransmission inheterogeneous networks[C]. Computational Science andItsApplications,Springer Berlin Heidelberg,2012,407-418.
    [110] Can Yang, Yuanqiong Chen, Yilong Shen. The research on a P2P transcoding system basedon distributed farming computing architecture[C]. Pacific-Asia Conference on KnowledgeEngineering and Software Engineering,2009,55-58.
    [111] Atenas M, Canovas A, Garcia M, et al. IPTV transcoding to avoid network congestion[C].Networking and Services (ICNS), International Conference on, IEEE,2010,36-41.
    [112] Zixia Huang, Chao Mei, Li Erran Li,et al. CloudStream: delivering high-quality streamingvideo through a cloud-based H.264/SVC proxy[C].INFOCOM, IEEE,2011,201-205.
    [113] Wu J C, Huang P, Yao J J, et al. A collaborative transcoding strategy for live broadcastingover peer-to-peer IPTV networks[J]. Circuits and Systems for Video Technology, IEEETransactions on,2011,21(2):220-224.
    [114] R. Rejaie and A. Ortega. PALS: peer-to-peer adaptive layered streaming[C]. ACMInternational Workshop on Network and Operating System Support for Digital Audio andVideo (NOSSDAV’03),2003,153-161.
    [115] Y. Cui and K. Nahrstedt. Layered peer-to-peer streaming[C]. ACM Workshop on Networkand Operating System Support for Digital Audio and Video,2003,162-171.
    [116] M. Hefeeda and C. Hsu. Rate-distortion optimized streaming of fine-grained scalable videosequences[J]. ACM Transactions on Multimedia Computing, Communications andApplications,2008,4(1):1–28.
    [117] X. Lan, N. Zheng, J. Xue, et al. A peer-to-peer architecture for efficient live scalable mediastreaming on Internet[C]. ACM Multimedia, Augsburg, Germany,2007,783-786.
    [118] K. Mokhtarian and M. Hefeeda. Efficient allocation of seed servers in peer-to-peer streamingsystems with scalable videos[C]. International Workshop on Quality of Service (IWQoS’09),IEEE,2009,1-9.
    [119] Mirshokraie S, Hefeeda M. Live peer-to-peer streaming with scalable video coding andnetworking coding[C]. SIGMM Conference on Multimedia systems, ACM,2010,123-132.
    [120] Liu Z, Wu C, Li B, et al. Distilling superior peers in large-scale P2P streamingsystems[C].INFOCOM, IEEE,2009,82-90.
    [121] Wang, F., Liu, J., Xiong, Y.. Stable peers: existence, importance, and application inpeer-to-peerlive video streaming[C]. INFOCOM,IEEE,2008,1364-1372.
    [122]第31次中国互联网络发展状况统计报告[OL].中国互联网络信息中心.2013,http://www.cnnic.cn/hlwfzyj/hlwxzbg/hlwtjbg/201301/P020130122600399530412.pdf.
    [123] Tilman Wolf. In-network services for customization in next-generation networks[J]. IEEENetwork: The Magazine of Global Internetworking,2010,24(4):6-12.
    [124]张宏科,苏伟.新网络体系基础研究——一体化网络与普适服务[J].电子学报,2007,35(4):593-598.
    [125]廖建新.普适服务综述[J].中兴通讯技术,2008,1:32-35.
    [126] Zhao C, Lin X, Wu C. The streaming capacity of sparsely-connected P2P systems withdistributed control[C]. INFOCOM, IEEE,2011,1449-1457.
    [127] Chuan Wu, Baochun Li, Shuqiao Zhao. On dynamicserver provisioning in multichannel P2Plive streaming[J].Networking, IEEE/ACM Transactions on,2011,19(5):1317-1330.
    [128] Chen M., Ponec M., Sengupta S.,et al. Utility maximization in peer-to-peer systems withapplications to video conferencing[J]. Networking, IEEE/ACM Transactions on, Dec.2012,20(6):1681-1694.
    [129] Sugano M, Nakajima Y, Yanagihara H, et al. An efficient transcoding from MPEG-2toMPEG-1[C]. Image Processing, International Conference on, IEEE,2001,417-420.
    [130] Bialkowski J, Kaup A, Illgner K. Fast transcoding of intra frames between H.263and H.264[C]. International Conference on Image Processing, IEEE,2004,4:2785-2788.
    [131] Kim D, Jeong J. Fast transcoding algorithm from MPEG2to h.264[J]. Advances in Imageand Video Technology,2006:1067-1074.
    [132] De Cock J, Notebaert S, Lambert P, et al. Architectures for fast transcoding of H.264/AVCto quality-scalable SVC streams[J]. Multimedia, IEEE Transactions on,2009,11(7):1209-1224.
    [133] XunLei[OL]. http://vod.lixian.xunlei.com/.
    [134] E. W. Zegura, K. L. Calvert, and S. Bhattacharjee. How to model an internetwork[C].INFOCOM, IEEE,1996,594-602.
    [135] Riley, George F. The Georgia tech network simulator[C]. ACM SIGCOMM Workshop onModels, Methods and Tools for Reproducible Network Research,2003,5-12.
    [136] X. Jin, W. Tu, S. Gary Chan. Challenges and advances in using IP multicast for overlay datadelivery[J]. Communications Magazine, IEEE,2009,47(6):157-163.
    [137] X. Jin, K.-L. Cheng, and S.-H. G. Chan. Island multicast: combining IP multicast withoverlay data distribution[J]. Multimedia,IEEE Transactions on,2009,11(5):1024-1036.
    [138] Bradai A, Ahmed T. An efficient algorithm for selection and management of Islandmulticast[C]. Consumer Communications and Networking Conference (CCNC),IEEE,2011,1077-1082.
    [139] Jin X, Tu W, Chan S H G. Challenges and advances in using IP multicast for overlay datadelivery[J]. Communications Magazine, IEEE,2009,47(6):157-163.
    [140] K. Kar, S. Sarkar, and L. Tassiulas. Optimization based rate control for multirate multicastsessions[C]. INFOCOM, IEEE,2001,1:123-132.
    [141] S. Deb and R. Srikant. Congestion control for fair resource allocation in networks withmulticast flows[J].Networking, IEEE/ACM Transactions on,2004,12(2):274-285.
    [142] Massoulie, L., Twigg, A., Gkantsidis, C.,et al. Randomized decentralized broadcastingalgorithms[C]. INFOCOM,IEEE,2007,1073-1081.
    [143] Liu S, Chiang M, Sengupta S, et al. P2P streaming capacity for heterogeneous users withdegree bounds[C]. Communication, Control, and Computing,200846th Annual AllertonConference on, IEEE,2008,968-976.
    [144] Liu S, Chen M, Sengupta S, et al. P2P streaming capacity under node degree bound[C].Distributed Computing Systems (ICDCS),30th International Conference on, IEEE,2010,587-598.
    [145] Ki-Dong Lee, Leung V. C M. Utility-Based Rate-Controlledparallel wireless transmission ofmultimedia streams withmultiple importance levels[J]. Mobile Computing,IEEETransactions on,2009,8(1):81-92.
    [146] Xiaoqing Zhu, Agrawal P., Singh J.P. A, et al. Distributedrate allocation policies formultihomed video streamingover heterogeneous access networks[J]. Multimedia,IEEETransactions on,2009,11(4):752-764.
    [147] Sengupta S, Liu S, Chen M, et al. Streaming capacity in peer-to-peer networks with topologyconstraints[R]. Microsoft Research Technical Report,2008.
    [148] Chen M, Chiang M, Chou P, et al. P2P streaming capacity: Survey and recent results[C].47th Annual Allerton Conference onCommunication, Control, and Computing, IEEE,2009,378-387.
    [149] Sengupta S., Shao Liu, Minghua Chen, et al. Peer-to-Peerstreaming capacity[J], InformationTheory, IEEE Transactionson,2011,57(8):5072-5087.
    [150] Miao Wang, Lisong Xu, Ramamurthy, B..Exploring the design space of multichannelPeer-to-Peer live video streaming systems[J]. Networking, IEEE/ACM Transactions on,2013,21(1):162-175.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700