数字通信信号自动调制识别技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自动调制识别是软件无线电和非合作接收的关键技术之一。近年来,随着现代通信和信号处理技术的突飞猛进,通信信号体制和调制样式日趋复杂和多样,另外,信号传输的环境也变得越来越恶劣,所有这些变化都使得对通信信号识别的要求越来越高,识别难度越来越大。
     通信信号自动调制识别,特别是非合作接收中的自动调制识别面临的主要问题是:多径信道中的单载波与多载波信号的盲识别;参数估计精度和适用范围很难同时兼顾,获得较好的参数估计性能依赖于一定的先验信息;基于瞬时参量的调制识别方法容易受到噪声和多径衰落的影响;基带信号的调制识别方法受载波频偏和初始相位的影响大等。
     论文主要研究数字调制信号自动识别技术,包括信号检测、参数估计、特征提取与选择,以及分类器设计等内容,论文工作是作者所在实验室承担的军队某重点科研项目的一个子任务。论文重点致力于较少依赖先验信息的调制类型识别、与调制类型无关的参数估计、对噪声、多径衰落和频偏不敏感的调制特征提取等关键技术的研究。论文的主要工作和创新性成果是:
     1、针对基于时域的信号存在性检测算法易受噪声影响大的不足,本文提出了自适应的基于自相关函数的信号存在性检测算法,该算法将信号的自相关函数值,重新排序、求商,确定自适应门限,实现信号检测,该算法实现简单、运算量较小,且与调制类型、载波频率和载波初始相位无关。仿真实验表明该方法在低信噪比的性能优于传统的基于能量的检测算法,利用实际信号的测试表明该方法适应非协作接收信号的多样性。
     2、已有的单载波与多载波信号(OFDM)的识别方法大都针对基带信号,为解决适合中频信号的单载波与多载波的盲识别问题,本文引入Shintaro_K特征实现了单载波和OFDM信号的识别。本文在推导单载波信号与OFDM信号两次小波变换结果方差不同的基础上,提出了基于二次小波变换VAR (|| WT ||)特征的单载波与OFDM信号识别方法。实验结果证实了上述算法的可行性。在加性高斯白噪声信道下和多径衰弱信道下,上述方法与基于高阶累积量的单载波与OFDM信号识别方法进行比较。实验结果表明基于高阶累积量的识别方法需要对信号进行载波频率估计,低信噪比下识别性能不佳,且运算量大。基于Shintaro_K特征参数的分类方法,对高斯白噪声不敏感,运算复杂度最低,但抗多径性能差。基于VAR (|| WT ||)的分类方法,抗高斯白噪声和多径衰弱的能力强。
     3、为解决非协作通信中的参数估计问题,本文首先改进了基于子空间分解技术的盲信噪比估计算法,采用MDL准则确定信号子空间维数。仿真结果表明,本文提出的基于子空间的盲信噪比估计算法性能要明显优于传统的采用归一化比值算法的基于子空间的信噪比估计算法,该算法不需要人为设定门限值,无需先验信息,受观测数据长度影响较小。本文为了改善基于最大似然频偏估计算法估计范围小的缺点,利用载波频率粗估计结果对原信号进行移频,提出了扩大频偏估计范围的基于最大似然的频偏估计算法,并利用分段FFT算法,提出了增强精度的频偏估计算法。本文为解决与调制方式无关的符号速率估计问题,针对原基于小波变换的符号估计方法不适合基带成形信号,要求信噪比条件高等不足,提出了一种基于小波变换波形整理的盲符号速率估计算法。该算法采用MAC谱线增强算法,缩小了搜索范围,减少运算量的同时,降低毛刺对MAC谱的影响。仿真实验表明本文所提出的符号速率估计算法适用范围广,估计精度高,运算量适中。
     4、针对已有文献中对谱线和谱峰特征多以描述性为主,操作性不强的问题,本文给出了Pl ( n)、N l( n)离散谱线特征和N p( n)谱峰数特征的具体定义和提取方法。该方法首先确定谱线检测与谱峰搜索的范围,然后在谱线特征提取中,采用了MAC谱线增强的谱线检测算法,该谱线增强算法削弱了色噪声和频谱起伏对谱线检测的干扰,其次在谱峰搜索中提出了基于二值削波的谱峰搜索算法,该谱峰搜索算法有效地提高了FSK阶数判别的准确性。本文提出的谱线增强算法和波峰搜索算法具有广泛的适用性。本文以上述特征为基础,提出了基于时域、频域、星座图Radon变换特征和决策树(DT)的调制识别方法,该方法采用特征少,判决流程简单。
     5、针对已有的基于Haar小波变换的调制识别方法存在尺度选择问题,且不适合于基带成形信号的不足。本文提出了基于最优尺度Haar小波变换的调制识别方法。该方法利用调制信号Haar小波变换前后信噪比增益的最大值确定最优缩放尺度。仿真实验结果表明最优尺度下调制信号的Haar小波变换幅度阶梯状和幅度跳变最明显,所提取的Haar小波变换特征识别性能最好。本文在推导FSK、PSK和QAM信号的Morlet小波变换结果的基础上,提出了基于Morlet小波变换的调制识别方法。针对Morlet小波变换运算速度慢的不足,本文采用了快速卷积计算小波变换,提高了Morlet小波变换的运算速度。仿真实验表明与Haar小波相比,Morlet小波变换尺度选择相对简单,抗噪性能较好,且对滚降系数不敏感。
     6、针对非协作接收信号,无先验知识的问题,本文分析了通信信号独立分量分析(ICA)的可实现性,提出基于ICA的调制识别方法。该方法首先对通信信号进行ICA,利用特征的分类能力γ,选择有效特征子集,采用RBF神经网络分类器,实现调制识别。仿真实验验证了该方法的可行性和特征选择的有效性。为克服ICA算法运算速度慢、难收敛的不足,本文选择将FastICA算法应用到调制特征提取中,将Aitken算法和m步牛顿迭代相结合,提出了加速的M-FastICA算法。该算法在不影响识别性能的前提下,加快了收敛速度。
     7、针对基于ICA的调制识别方法,要求信噪比条件高的不足,本文提出了在通信信号小波域进行ICA的调制识别方法。在推导通信信号小波域进行ICA可行性的基础上,该方法利用通信信号的小波系数进行ICA,所得到的分离矩阵也是原始通信信号的分离矩阵。仿真实验表明,小波系数与原始信号相比超高斯性更强,基于WTICA的调制特征提取方法具有抗噪声能力强,收敛速度快的优点。
Automatic modulation recognition is one of the key technologies, and also a hard nut to crack in the Software Radio and uncooperative receiver field. In recent years, due to rapid development of modern communication and signal processing technologies the communication systems and the corresponding modulation types are becoming more and more complicated and diverse. Besides, the channel environment is also becoming more and more deteriorated. All of above changes make modulation recognition become more and more difficult.
     The primary difficult problems the automatic modulation recognition must face, especially in the uncooperative environment, are summarized as follows: blind separation of single-carrier and multi-carrier signals in multipath channels; simultaneous high accuracy and wide scope of parameter estimation; dependency of estimation performance on some prior information of the signals that is not easy to obtain; sensitivity of instantaneous parameters to noise and multipath fading; uncertainty of Carrier frequency offset and initial phase which are critical in baseband recognition.
     This paper focuses on the key technologies of automatic digital modulation recognition including signal detection, parameter estimation, feature extraction and selection and classifier designing while laying emphasis on the following problems: recognition methods less depending on the prior information; parameter estimation independent of the modulation type; feature extraction insensitive to noise, multipath fading and frequency offset. The work finished in this paper is a part of a key engineering project of the army undertaken by the laboratory the author works with. The main work and innovative achievements obtained in this paper are summarized as follows.
     (1)Targeting at the problem that the time-domain-based signal detection algorithm is sensitive to noise, an adaptive signal detection algorithm based on the autocorrelation function is proposed. The algorithm set the adaptive threshold by reordering the autocorrelation function values and determining the quotient, thus is of less computational complexity and independent of modulation type, carrier offset and initial phase. Simulation results have proved the improved performances over the conventional energy-based detection algorithms under low SNR. Test on practical signals shows that the method can meet the needs caused by the diversity of the signals in uncooperative environment.
     (2)Targeting at the problem that the most currently available separation methods of single-carrier and multi-carrier signals (OFDM) can only be used for baseband signals, a method based on the Shintaro_K feature is proposed in this paper for IF single-carrier and OFDM signals. Besides, another method based on VAR (|| WT ||)for the same purpose is proposed by the use of the differences between the twice wavelet transform results of single-carrier and OFDM signals. Experiment results have verified the feasibility and show that the method, compared with the conventional methods in additive white Gaussian noise channel and multipath fading channel, does not need carrier offset estimation any longer and is of less computational complexity, insensitive to Gaussian white noise, however poorer anti-multipath performance.
     (3)With regard to parameter estimation, an improved blind SNR estimation algorithm based on subspace decomposition is proposed by the use of MDL criterion for determination of the subspace dimension. Simulation results show that the performance of the above algorithm is significantly better than the conventional ones, does not need threshold setting and without the need of prior information. To widen the estimation scope of the conventional maximum likelihood estimation algorithm, an improved algorithm based on the maximum likelihood estimation is proposed for expanding the estimation scope by roughly estimating the carrier frequency of the original signal in advance. A frequency offset estimation algorithm with enhanced accuracy is proposed based on segmented FFT. Targeting at the problem that the conventional wavelet-based symbol rate estimation methods are not suitable to the pulse shaping baseband signals and need too high SRN, a new blind symbol rate estimation algorithm based on sorting the waveforms of the wavelet transform is proposed. Because the algorithm uses the MAC spectrum line enhancement algorithm now only in a narrower search range, not only the computational complexity is remarkably reduced but also the influence of the noise pulse on the MAC spectrum is also reduced. Simulation results show that the new symbol rate estimation algorithm is of wide estimation range, high precision and moderate computational complexity.
     (4)As regards spectrum peak detection, an approach to define the characteristics of discrete spectral lines Pl ( n), N l( n) and peak number N p( n) along with a corresponding extraction approach are provided. Firstly, the method determines the range of spectral detection and spectral peak search, and then an enhanced spectral line detection algorithm based on MAC algorithm is employed in line feature extraction, remarkably reducing the interference of color noise and spectral fluctuation on the spectral line detection. Secondly, a spectral peak search algorithm based on binary clipping is proposed which can improve the accuracy of FSK order decision. The proposed spectral line enhancement algorithm and spectral peak search algorithm are of wider applicability and based on above algorithms a comprehensive modulation recognition scheme based on the features extracted from time domain, frequency domain and constellation Radon transform are provided. This method in fact employs less features and the decision process is also simplified.
     (5)Targeting at the problem of uncertainty in scale selection of the conventional recognition algorithms based on Haar wavelet transform which are not suitable to pulse shaping baseband signals a modulation recognition method based on optimal scale Haar wavelet transform is proposed. The method determines the optimal zoom level by using the maximum SNR gain before and after the transform. Simulation results show that the amplitude jumping and the ladder shapes become clearer if the optimal scale is used, thus the performances of the extracted features are remarkably improved. A modulation recognition method based on the Morlet wavelet transform is also proposed based on the derivation of Morlet wavelet transform of FSK, PSK and QAM signals. Fast convolution calculation of wavelet transform is used to speed up the Morlet wavelet transform. Simulation results show that, compared with the Haar wavelet, Morlet wavelet transform is of simplicity of scale selection, better noise immunity and less sensitivity on roll-off factor.
     (6)Targeting at the problem of the lack of prior knowledge in non-cooperation receiving, the feasibility of independent component analysis (ICA) towards communication signals is analyzed first, and then a modulation recognition method based on ICA is proposed. The method does ICA to signals first, then selects effective feature subset, and finally uses RBF neural network for modulation recognition. Simulation results show that the method is feasible and feature selection is effective. To speed up the algorithm and to guarantee the convergence of ICA, the FastICA algorithm, some of its key iterative steps are optimized in this paper, is applied to the modulation feature extraction and. Besides, an accelerated M-FastICA algorithm to speed up the convergence without affecting the recognition performance is also provided.
     (7)Targeting at the problem that the ICA-based modulation recognition method requires higher SNR, a method based on ICA in the wavelet domain is proposed. The method does ICA to the wavelet coefficients of communication signals, and the resulted separation matrix is also the separation matrix of the original communication signal. Simulation results show that signal wavelet coefficients are of more super-Gaussian compared with the original signal, and this modulation feature extraction method based on WTICA has the advantages of enhanced anti-noise performance and fast convergence.
引文
[1]樊昌信,曹丽娜.通信原理(第六版)[M],北京:国防工业出版社, 2006: 5-6.
    [2]栗苹,赵国庆,杨小牛等.信息对抗技术[M],北京:清华大学出版社, 2008: 100-107.
    [3]杨小牛,楼才义,徐建良.软件无线电原理与应用[M],北京:电子工业出版社, 2001: 1-2.
    [4] E. E. Azzouz, A. K. Nandi. Automatic identification of digital modulation types[J], Signal processing, 1995, 47(4), 55-69.
    [5]姚亚峰,黄载禄.通信信号调制识别技术[J].通信技术, 2003, 138(6):41-43.
    [6] C. S. Weaver, C. A. Cole, R. B. Krumland, and M. L. Miller, The Automatic Classification of Modulation Types by Pattern Recognition, Stanford Electronics Laboratories, Technical Report No. 1829-2, April 1969.
    [7]詹亚峰.通信信号自动制式识别及参数估计[D].北京:清华大学, 2004.
    [8]韩冰.短波通信中的数字调制信号识别[D].哈尔滨:哈尔滨工程大学, 2008.
    [9]王琳琳.基于支持向量机的调制识别研究[D].长沙:国防科技大学, 2009.
    [10] Kim K., Polydoros A. Digital modulation classification: the BPSK versus QPSK case [A]. In: Proc. of IEEE MILCOM '98 [C]. Boston, MA, US, 1998, 2: 431-436.
    [11] Huang C. Y., Polydoros A.. Likelihood methods for MPSK modulation classification [J]. IEEE Trans. Comm., 1995, 234(43): 1493-1504.
    [12]梁开莉,贾鑫,袁嗣杰.低信噪比弱调制AM信号的检测与识别[J].电讯技术, 1999,48(3): 66-70.
    [13] Hong L., Ho K.C.. BPSK and QPSK modulation classification with unknown signal level [A]. In: Proc. of IEEE MILCOM '00 [C]. Los Angeles, CA, US: 2000, 2: 976-980.
    [14] Hong L., Ho K.C.. Modulation classification of BPSK and QPSK signals using a two element antenna array receiver [A]. In: Proc. of IEEE MILCOM '01 [C]. Washington DC, US: 2001, 1: 118-122.
    [15] Boiteau D., Le Martret C. A general maximum likelihood framework for modulation classification [A]. In: Proc. of IEEE ICASSP '98 [C]. Seattle, US: 1998, 4: 2165-2168.
    [16] Lay N.E., Polydoros A. Modulation classification of signals in unknown ISI environments [A]. In: Proc. of IEEE MILCOM '95 [C]. San Diego, CA, US: 1995, 1: 170-174.
    [17] Yang Y., Soliman S.S. A suboptimal algorithm for modulation classification [J]. IEEE Trans. on Aerospace and Electronic Systems, 1997, 33(1): 38-45.
    [18] Yang Y. and Liu C. H. An asymptotic optimal algorithm for modulation classification [J]. IEEE Comm. Lett., 1998, 2(5): 117-119.
    [19] Schroyogg C. and Reichert J. Modulation classification of QAM schemes using the DFT of phase histogram combined with modulus information[A]. In: Proc. of IEEE MILCOM '97 [C]. Monterey, CA, US: 1997, 3: 1372-1376.
    [20] Han Y.Y., Lee W.C. ,Yoon D.W.. On the error rate evaluation and modulation classification for coherent and noncoherent PSK signals using the transformation of random variable [A]. In: Proc. of IEEE ICC '93 [C]. Geneva, Swiss: 1993, 3: 1508-1514.
    [21] Sills J.A.. Maximum-likelihood modulation classification for PSK/QAM [A]. In: Proc. of IEEEMILCOM '99 [C]. New Jersey, US: 1999, 1: 217-220.
    [22] Panagiotou P., Anastasopoulos A.. Likelihood ratio tests for modulation classification [A]. In: Proc. of IEEE MILCOM '00 [C]. Los Angeles, CA, US: 2000, 2: 670-674.
    [23] Wei W., Mendel J. M.. Maximum-likelihood classification for digital Amplitude-Phase modulation [J]. IEEE Trans. Comm., 2000, 48(2): 189-193.
    [24] Chugg K.M., Long C. S., Polydoros A.. Combined likelihood power estimation and multiple hypothesis modulation classification [A]. In: Proc. of Twenty-Ninth Asilomar Conference on Signals, Systems and Computers [C]. Pacific Grove, CA, USA: 1995, 2: 1137-1141.
    [25]吕铁军.通信信号调制识别研究[D].成都:电子科技大学, 2000.
    [26]任婧婧基于径向基函数(RBF)神经网络的软件无线电信号自动调制识别研究[D].太原:太原理工大学, 2006.
    [27] Tommy ?berg(何英姿等译).Modulation,Detection and Coding[M].调制、检测与编码[M].北京:电子工业出版社, 2004: 167-169.
    [28] Nandi A. K., Azzouz E. E.. Algorithms for automatic modulation recognition of communication signals [J]. IEEE Trans. Comm., 1998, 46(4): 431-436.
    [29]胡建伟.小波在电子侦察中的应用[D],西安:西安电子科技大学, 2005.
    [30] A. K. Nandi, E. E. Azzouz, Modulation recognition using artificial neural networks, Signal processing, 56, 165-175, 1997.
    [31] Swami A., Sadler B.. Hierarchical digital modulation classification using cumulants [J]. IEEE Trans on Communications, 2000, 48(3): 416-429.
    [32] Marchand P., Le Martret C., Lacoume J. L.. Classification of linear modulations by a combination of different orders cyclic cumulants[A]. In: Proc. of IEEE Signal Processing Workshop on Higher-Order Statistics[C]. Banff: 1997: 47-51.
    [33] Wood S. L., Ready M. J., Treichler J. R.. Performance of the Radon transform method for constellation identification [A]. In: Proceeding of the Twenty-second Asilomar Conference on Circuits Systems and Computers[C]. NewYork: 1988: 119-122.
    [34] Barbarossa S., Swami A., Sadler B.M., Spadafora G.. Classification of digital constellations under unknown multipath propagation conditions [A]. In: Proceedings of SPIE, Digital Wireless Comm II[C]. Orlando, FL: 2000: 175-186.
    [35] Rahim Leyman A, Ranjot Singh Kohli, Sudeep Divakaran. A new algorithm for automatic constellation classification of PSK and QAM signals and a RBF-based identification [A]. In: Proceedings of the Fifth International Symposium on Signal Processing and its Applications[C]. Brisbane, Australia: 1999: 777-780.
    [36] D. Kavalov. Improved Noise Characteristics of a Saw Artificial Neural Network RF Signal Processor for Modulation Recognition [J].IEEE Ultrasonics Symposium, 2001(1): 19-22.
    [37] M. L. D. Wong; A. K. Nandi. Antomatic Digital Modulation Recognition Using Spectral and Statistical Features with Mtllti-Layer Perceptrons[J], ISSPA, 2001, 2: 390-393.
    [38] Kavalov D., Kalinin V.. Neural network processor based on saw device for digital modulationrecognition[A]. In: Eighth International Conference on HF Radio System and Techniques Conference[C]. Guildford: 2000: 95-99.
    [39] Zhao Yaqin, Ren Guanghui, Wang Xuexia, Wu Zhilu, Gu Xuemai. Automatic Digital Modulation Recognition Using Artificial Neural Networks[J], IEEE Int. Conf. Neural Networks & Signal Processing, 2003, 1: 257-260.
    [40] Jiang Yuan, Zhang Zhaoyang, Qiu Peiliang. Modulation Classification of Communication Signals [J].IEEE MILCOM.2004,3: 1470-1476.
    [41] Chen J. , Kuo Y. H., Li J. D., Fu F. L., Ma Y. C.. Digital Modulation Identification by wavelet analysis[J]. ICCIMA, 2005: 16-18.
    [42]吕铁军,魏平,肖先赐.基于分形和测度理论的信号调制识别[J].电波科学学报, 2001, 16(1): 123-127.
    [43]陈卫东,杨绍全.基于循环累量不变量的MPSK信号调制识别算法[J].电子与信息学报,2003, 25(3): 320-325.
    [44]范海波,杨志俊,曹志刚.卫星通信常用调制方式的自动识别[J].通信学报,2004, 25(1): 141-149.
    [45]韩国栋,蔡斌,邬江兴.调制分析与识别的谱相关方法[J].系统工程与电子技术, 2001, 23(3): 34-46.
    [46]吕杰,张胜付,张克等.移动通信信号自动识别的谱相关方法[J].电讯技术, 1999, 39(2): 9-14.
    [47]吕杰,张胜付,邵伟华等.数字通信信号自动调制识别的谱相关方法[J].南京理工大学学报,1999,23(4): 297-299.
    [48]黄春琳,邱玲,沈振康.数字调制信号的神经网络识别方法[J].国防科技大学学报,1999, 21(2): 58-61.
    [49]詹亚锋,曹志刚,马新正.M-MQAM信号的调制制式识别[J].通信学报, 2004,25(2):68-74.
    [50]奚家熹,王宗欣.基于Hilbert变换的MQAM信号调制体制识别[J].通信学报2007, 28(6): 1-6.
    [51] Wong M. L. D., Nandi A. K.. Automatic digital modulation recognition using artificial neural network and genetic algorithm[J]. Signal Processing, 2004, 1(84): 351-365.
    [52] Lopatka J., Pedzisz M.. Automatic modulation classification using statistical moments and a fuzzy classifier[A]. In:Proc. of WCCC-ICSP '00 [C]. Beijing, China, 2000, 3: 1500-1506.
    [53] Taira S., Murakami E.. Automatic classification of analogue modulation signals by statistical parameters [A]. In: Proc. of IEEE MILCOM '99 [C]. New Jersey, US, 1999, 1: 202-207.
    [54] Dubuc C., Boudreau D., Patenaude F.. An automatic modulation recognition algorithm for spectrum monitoring application [A]. In: Proc. of IEEE ICC '99 [C]. Vancouver, Canada, 1999, 1: 570-574.
    [55]汤素华,尹华锐,徐佩霞.一种多参数联合判决的调制识别方法[J].数据采集与处理, 2003, 18(1): 27-31.
    [56] Zhao Y. Q., Ren G. H., Wang X. X., et al. Automatic digital modulation recognition using artificial neural networks [A]. In: Proc. of IEEE Int. Conf. Neural Networks & Signal Processing [C]. Nanjing, China, 2003: 257-260.
    [57] Chan Y. T. , Gadbois L.G.. Identification of the modulation type of a signal [J]. Signal Processing, 1985: 833-841.
    [58]胡延平,李广森,李纲等.利用参数统计方法自动识别数字调制信号[J].通信学报, 2002, 23(2): 58-65.
    [59] Kremer S. C., Shiels J.. A testbed for automatic modulation recognition using artificial neural network [A].In: Proc. of IEEE 1997 Canadian Conference on Electrical and Computer Engineering [C]. St. Johns, Nfld., Canada,1997, 1: 67-70.
    [60]黄鹤,陈怀新.基于参量直方分布的数字调制信号识别[J].电讯技术, 2003, 2: 51-54.
    [61] Ghani N., Lamontagne R.. Neural networks applied to the classification of spectral features for automatic modulation recognition[A]. In: Proc. of IEEE MILCOM '93 [C]. Boston MA, US,1993, 1: 111-115.
    [62]王磊,陈鹏举,程乾.修正平均周期图法在通信信号分选识别中的应用[J].电讯技术, 2002, 4: 30-31.
    [63] Lu M. Q., Xiao X. C., Li L. M.. AR modeling based features extraction of multiple signals for modulation recognition [A]. In: Proc. of WCCC-ICSP '98 [C]. Philadelphia, PA, US, 1998, 2: 1385-1388.
    [64] Dubuc C., Boudreau D., Patenaude F.. A fast automatic modulation recognition algorithm and its implementation in a spectrum monitoring application [A]. In: Proc. of IEEE MILCOM '00 [C]. Los Angeles, CA, US, 2000, 2: 732-736.
    [65] Gardner W. A.. Spectral correlation of modulated signals: part I- analogue modulation [J]. IEEE Trans. Comm., 1987, 35(6): 584-594.
    [66] Gardner W. A.. Spectral correlation of modulated signals: partⅡ- digital modulation [J]. IEEE Trans. Comm., 1987, 35(6): 595-601.
    [67] Gardner W. A.. Exploitation of spectral redundancy in cyclostationary signals[J]. IEEE Signal Process. Mag., 1991, 8(2): 14-36.
    [68] Gardner W. A., Spooner C. M.. Cyclic spectral analysis for signal detection and modulation recognition [A]. In: Proc. of IEEE MILCOM '88 [C]. San Diego, CA, US, 1988, 2: 419-424.
    [69] Kim Y. K., Weber C. L.. Generalized signal cycle classifier with applications to SQPSK v.s. 2kPSK [A]. In: Proc. of IEEE MILCOM '89 [C]. Boston, MA, US,1989, 3: 754-758.
    [70] Vucic D., Obradovic M.. Matrix-based stochastic method for the spectral correlation characterization of digital modulation [J]. Facta Universities Series: Electronics and Energetics, 1998, 11(3): 271-284.
    [71] Gao Y. L., Zhang Z. Z.. Modulation recognition based on combined feature parameter and modified probabilistic neural network [A]. In: Proc. of Sixth World Congress on Intelligence Control and Automation [C]. Dalian, China, 2006: 2954-2958.
    [72] Ketterer H., Jondral F., Costa A. H. Classification of modulation modes using time-frequency methods [A]. In: Proc. of IEEE ICASSP '99 [C]. Civic Plaza, Hyatt Regency, 1999, 5: 2471-2474.
    [73] Ho K. C., Prokopiw W., Chan Y. T.. Modulation identification by the wavelet transform [A]. In: Proc. of IEEE MILCOM '95 [C]. San Diego, CA, US, 1995, 2: 886-890.
    [74] Ho K.C., Prokopiw W. and Chan Y. T. Modulation identification of digital signals by the wavelet transform [J]. IEE Proc. Radar Sonar Navig., 2000, 147(4): 169-176.
    [75]周琳,杨绍全.时-频分析算法在通信信号调制识别中的应用[J].航天电子对抗, 2002, 5: 40-45.
    [76]魏小薇,曹志刚.基于优化缩放尺度小波变换的QAM调制识别[A].见: 2005年通信理论与信号处理年会论文集[C].广西桂林, 2005: 7-11.
    [77]吕铁军,郭双冰,肖先赐.调制信号的分形特征研究[J].中国科学, 2001(6): 508-513.
    [78]郭双冰.混沌时间序列预测及其混沌理论在通信信号调制识别中的应用[J].电子科技大学学报,2002,23(3): 34-39.
    [79] Soliman S. S., Hsue S. Z.. Signal classification using statistical moments [J]. IEEE Trans. Comm., 1992, 40(5): 908-916.
    [80]陈卫东,杨绍全,董春曦等.多径信道中MPSK信号的调制识别算法[J].通信学报, 2002, 23(6): 14-21.
    [81] Ven?l?inen J., Terho L., Koivuen V. Modulation classification in fading multipath channel [A]. In: Proc. of Thirty-Sixth Asilomar Conference on Signal System and Computers [C]. Pacific Grove, CA, US,2002, 2: 1890-1894.
    [82] Akmouche W. Detection of multicarrier modulation using 4th-order cumulants [A]. In: Proc. of IEEE MILCOM '99 [C]. New Jersey, US,1999, 1: 432-436.
    [83] Spooner C.M. Classification of co-channel communication signals using cyclic cumulants [A]. In: Proc. of Twenty-Ninth Asilomar Conference on Signals, Systems and Computers [C]. Pacific Grove, CA, US,1995, 1: 531-536.
    [84]韩钢等.一种改进的基于累积量的MDPSK信号分类算法[J].电子学报, 2004, 23(10): 1613-1616.
    [85] Mobasseri B.G.. Constellation shape as a robust signature for digital modulation recognition [A]. In: Proc. of IEEE MILCOM '99 [C]. New Jersey, US, 1999, 1: 442-446.
    [86]詹亚峰,曹志刚,马正新. M-QAM信号的调制制式识别[J].通信学报, 2004, 25(2): 68-74.
    [87]李兴生,杜蔚轩,李德毅.一种基于云模型的PSK/QAM信号调制识别方法[J].测控技术, 2003, 22(3): 15-19.
    [88] Swami A., Sadler B.. Modulation classification via hierarchical agglomerative cluster analysis [A]. In: Proc. of 1997 First IEEE Signal Processing Workshop on Signal Processing Advances in Wireless Communications (SPAWC '97) [C]. Paris, France,1997: 141-144.
    [89]陈晓毅,姚庆栋.软件无线电中的调制方式识别[J].无线通信技术, 2001, (4): 9-12.
    [90] Shahmohammadi M., Nikoofar H. R.. Modulation classification for QAM/PSK using a soft clustering algorithm[A]. In: Proc. of ISIT 2002 [C]. Lausanne, Switzerland,2002: 19.
    [91] Huo X. M., Donoho D.L.. A simple and robust modulation classification method via counting [A]. In: Proc. of IEEE ICASSP '98 [C]. Seattle, US, 1998, 6: 3289-3292.
    [92] Umebayashi K., Morelos-Zaragoza R. H.. A method of non-data-aided carrier recovery with modulation identification [A]. In: Proc. of IEEE GLOBECOM '01 [C]. San Antanio, TX, US, 2001, vol.6: 3375-3379.
    [93] Wood S. L., Ready M. J., Treichler J. R.. Constellation identification using the Radon transform [A]. In: Proc. of IEEE ICASSP’88 [C]. New York City, US, 1988, 3: 1878-1881.
    [94] Wood S. L., Ready M. J., Treichler J. R.. Modem constellation identification: a performance comparison of two methods [A]. In: Proc. of IEEE ICASSP’90 [C]. Albuquerque, MI, US, 1990, 3: 1651-1654.
    [95] Wood S. L., Treichler J. R.. Computational and performance analysis of Radon transform based constellation identification [A]. In: Proc. of IEEE ICASSP’94 [C]. Adelaide, Australia, 1994, vol.3: 241-244.
    [96] Lamontagne R. Modulation Recognition [M]. An Overview. Defence Research Establishment,Ontario:1991: 156-161.
    [97]戴威,王有政,王京.基于AR模型的调制盲识别方法[J].电子学报, 2001,12A: 1890-1892.
    [98]孙建成,张太镒,刘海员.基于SVM的多类模拟调制方式识别算法[J].电子科技大学学报, 2006, 35(2): 149-152.
    [99]罗明,杨绍全,魏青.利用概率估计和支持向量机的信号调制分类[J].系统工程与电子技术, 2005, 27(11): 1870-1872.
    [100]吕铁军,郭双冰,肖先赐.基于模糊积分的通信信号调制识别方法研究[J].电子学报, 2001, 29(6): 808-810.
    [101] Louis C., Sehier P.. Automatic modulation recognition with a hierarchical neural network [A]. In: Proc. of IEEE MILCOM '94 [C]. Fort Monmouth, US,1994, 3: 713-717.
    [102]某部“基于软件无线电的××××××××平台”鉴定结论[R].北京:某部, 2009年12月.
    [103]陆明泉.多信号的调制识别技术研究(D).成都:电子科技大学,2008:
    [104] Schonhoff T., Ciordano A. A.. Detection and Estimation: Theory and Its Applications[M].北京:电子工业出版社, 2007: 86-95.
    [105] Urkowitz H. Energy detection of unknown deterministic signals [J]. Proceedings of the IEEE, 1967, 55(4): 523-531.
    [106] Van Trees H. L.. Detection, Estimation and Modulation Theory[M]. Part I. New York: Wiley, 2001: 23-46.
    [107] Colonnese S., Sxarano G.. Transient signal detection using higher order moments[J]. IEEE Transactions on Signal Processing, 1999, 47(2): 515-520.
    [108] Chichereau C., Lacoume J.L., Blanpain R., Dassot G.. Short delay detection of a transient in additive Gaussian noise via higher order statistic test[A]. In: Proc. of IEEE Digital Signal Workshop[C]. New York, USA,1996: 299-302.
    [109]吴晓东,路友荣,黄渊凌等. TDMA突发信号的检测[J].电信技术研究, 2005, 1-2: 28-34.
    [110] Hardwicke K. R., Wilson G. R., and Baugh K. W.. Characterization of spectral correlation detector statistics useful in transient detection[J]. Circuits, Systems and Signal Processing, 1994, 13(4): 497-511.
    [111] Baugh K. W., Hardwicke K. R.. On the detection of transient signals using spectral correlation[J]. Circuits, Systems and Signal Processing, 1994, 13(4): 467-479.
    [112] Lee N., Schwartz S.C. Robust transient signal detection using the oversampled Gabor representation[J]. IEEE Transactions on Signal Processing, 1995, 43(6): 1498-1502.
    [113] Bovik A. C., Maragos P., and Quatieri F.. AM-FM energy detection and separation in noise using multiband energy operators[J]. IEEE Transactions on Signal Processing, 1993, 41(12): 3245-3265.
    [114]孙永军,杨绍全.利用子带提取改善信号检测能力[J].系统工程与电子技术, 2003, 25(12): 1457-1459.
    [115] Liedtke F. F.. Computer simulation of an automatic classification procedure for digitally modulated communication signals with unknown parameters [J]. Signal Processing. 1984,6(4):311-323.
    [116]王文博,郑侃.宽带无线通信OFDM技术(第二版)[M].北京:人民邮电出版社, 2007: 67-72.
    [117]周恩,张兴等.下一代宽带无线通信OFDM与MIMO技术[M].北京:人民邮电出版社,2008: 23-26.
    [118] Akmouche W.. Detection of multicarrier modulations using 4th-order cumulants [C].In: Proc of IEEE MILCOM’99. Atlantic City, NJ, USA: IEEE, 1999: 432-436.
    [119] Giannakis G. B., Tsatsanis M. K.. Time-domain tests for gaussianity and time reversibility [J]. IEEE Trans on Signal Processing, 1994, 42(11): 3460-3472.
    [120] Grimaldi D., Rapuano S., Truglia G.. An automatic digital modulation classifier for measurement on telecommunication networks[C]. In: Proc of IMTC2002. Anchrage, AK, USA: IEEE, 2002: 957-962.
    [121]刘鹏.OFDM调制识别和解调关键技术研究[D].西安:西安电子科技大学,2006.
    [122]吕挺岑,李兵兵.一种多径信道下的OFDM信号盲识别算法[J].现代电子技术, 2007, 11: 13-16.
    [123] TAIRA S., MURAKAMI E.. Automatic Classification of Analogue Modulation Signals by Statistical Parameters [J]. IEEE 1999, 1:202-207.
    [124]张贤达.现代信号处理(第2版)[M].北京:清华大学出版社,2002:85-90.
    [125] Y. T. Chan. Wavelet Basics[M]. the Netherlands, Kluwer Academic Publishers, 1995: 53-60.
    [126] Mallet S. A.. wavelet tour of signal processing (Second edition) [M]. Beijing: China Machine Press, 2002: 50-77.
    [127]胡建伟,杨绍全等.多径信道下MPSK信号的调制分类算法[J].电波科学学报, 2005, 20(4): 505-509.
    [128] Pauluzzi D. R., Beaulieu N. C.. A comparison of SNR estimation techniques for the AWGN channel [J]. IEEE Transactions on Communications, 2000, 48(10): 1681-1691
    [129] Andersin M., Mandayani N. B., Yates R. D.. Subspace based estimation of the Signal to Interference Ratio for TDMA cellular systems[A]. In: Proc. of IEEE VTC’96[C]. Atlanta, USA, 1996: 1155-1159.
    [130]张贤达.矩阵分析与应用[M].北京:清华大学出版社, 2004: 344-348.
    [131] Ramakrishna D., Mandayam N. B., Yates R. D. Subspace-based SIR estimation for CDMA cellular systems[J]. IEEE Transactions on Vehicular Technology, 2000, 49(5): 1732-1742
    [132] Wax M., Kailath T.. Detection of signals by information theoretic criteria[J]. IEEE Transactions on ASSP, 1985, ASSP-33(2): 387-392
    [133] Luise M., Reggiannini R.. Carrier recovery in all-digital modems for burst-mode transmissions [J]. IEEE Trans. Comm., 1995, 43(2/3/4): 1169-1178.
    [134]李静.低信噪比无线通信信号非合作接收技术研究[D].郑州:解放军信息工程大学, 2005.
    [135]杨小女.同步参数高精度估计研究[D].郑州:解放军信息工程大学, 2007.
    [136]齐国清,贾欣乐.基于DFT相位的正弦波频率和初相的高精度估计方法[J].电子学报, 2001, 29(9):1164-1167.
    [137] Kay S.. A fast and accurate signal frequency estimator[J]. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1989, 37(12): 1987-1990.
    [138] Wegener A.W.. Practical techniques for baud-rate estimation [A]. In: Proc. of IEEE ICASSP '92 [C]. San Francisco, CA, US, 1992, vol.4: 681-684.
    [139] Reed D. E., Wickert M. A.. Minimization of detection of symbol-rate spectral lines by delay and multiply receivers [J]. IEEE Trans. Comm., 1988, 36(1): 118-120.
    [140] Reed D. E., Wickert M. A.. Symbol-rate detection by a power-series-nonlinear envelope detector receiver[A]. In: Phoenix Conf. Comput. Commun. Proc. [C]. Phoenix, US,1988: 179-1831.
    [141] Mazet L., Loubaton P.. Cyclic correlation based symbol rate estimation [A]. In: Proc. of Thirty-Third Asilomar Conference on Signal System and Computers [C]. Pacific Grove, CA, US,1999, vol.2: 1008- 1012.
    [142] Chan Y. T., Plews J. W., Ho K. C.. Symbol rate estimation by the wavelet transform [A]. In: Proc. of IEEE ISCAS '97 [C]. Hong Kong,1997: 177-180.
    [143]罗明,杨绍全,郑文秀等.一种用于信号侦测的码元速率估计方法[J].电子对抗技术, 2005, 20(5): 3-6.
    [144]刁文静,张建立.一种小波变换与FFT相结合的波特率估计算法[J].通信对抗, 2006, (2): 18-21.
    [145] Reed D. E., Wickert M. A.. Performance of a fourth-power envelope detector for symbol-rate tone generation [A]. In: Proc. of IEEE ICC'88 [C]. Philadelphia, PA, US,1988, 2: 946-950.
    [146]罗明,郑文秀,杨绍全.带限MPSK信号码元宽度的盲估计[J].信号处理, 2004, 20(16): 646-619.
    [147]吴月娴.调制自动识别技术研究[D].郑州:解放军信息工程大学, 2007.
    [148]刘双平.基于谐波检测与估计的线性调制分析方法研究.郑州:解放军信息工程大学, 2007.
    [149]隋丹.通信信号盲检测技术研究.郑州:解放军信息工程大学, 2007.
    [150] Koh B. S., Lee H. S.. Detection of symbol rate of unknown digital communication signals[J]. IEE Electronics Letters, 1993, 29(3): 278-279.
    [151]王炳锡.语音编码[M].西安:西安电子科技大学出版社, 2002: 56-58.
    [152] Delprat N., EscudiéB., Guilemain P., et al. Asymptotic wavelet and Gabor analysis: extraction of instantaneous frequencies [J]. IEEE Trans. on Information Theory, 1992, 38(2): 644-664.
    [153]陈建文.基于小波脊的数字信号的调制识别.郑州:解放军信息工程大学, 2007
    [154]叶健.基于星座聚类与神经网络的调制识别研究.郑州:解放军信息工程大学, 2007.
    [155] J.F. Cardoso. Blind Signal Separation Statistical Principle[J]. In Proc. of the IEEE. special issue on blind identification and estimation. 1998, 9(10): 2009-2025
    [156] Karhuren J., Hyvariene A., Vigario R., et al. Application of neural blind separation to signal and image processing[J].Signal processing, 1999(3): 423-431
    [157] Cardoso J. F., Labeld B. H.. Equivariant adaptive source separation. IEEE Trans. On Signal Processing, 1996, 44(12): 3017-3030
    [158] Torkkola K. Blind separation for audio signals are we there get? In: Proc. International workshop on independent component analysis and signal separation (ICA’99), 1999, 239-244.
    [159] Bell A.J. Seijnowski. The independent component of natural scenes are edge filters[J]. Vision Research, 1997, 37(23): 3327-3338
    [160] Yuen P., Lar J. H.. Face representation using independent component analysis[J]. Pattern Recognition 2001, 34(3): 545-553
    [161] A. Hyv?rinen, J.Karhunen, E. Oja.. Independent Component Analysis[M]. New York :Wiley, 2001: 93-97.
    [162] Common P. Independent Component Analysis-A New Concept? [J]. Signal Processing, 1994, 36(3): 287-314.
    [163] A.J. Bell, T.J. Sejnowski. An information-maxization approach to blind separation and blinddeconvolution[J]. Neural computation, 1995, 7(6): 1129-1159
    [164] A. Hyv?rinen. Fast and robust fixed-point algorithms for independent component analysis[J]. IEEE Trans. Neural Networks, 1999, 10(3): 626-634
    [165]蒋长锦.科学计算和C程序集[M].安徽:中国科技大学出版社, 1998: 96-102.
    [166]王小平,刘峰.一种改进的aitken算法, 2009, 9(22): 6859-6862.
    [167]曾生根,朱宁波,包晔等.一种改进的快速独立分量分析算法及其在图象分离中的应用[J].中国图象图形学报, 2003,8(10):1159-1165.
    [168]杨福生,洪波.独立分量分析的原理与应用.北京:清华大学出版社, 2006: 184-188.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700