大型线性方程组求解技术及在计算电磁学中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
计算数学与科学工程计算涉及到航空航天、现代生物与医学、石油勘探、环境科学、隐身器件设计等国民经济与国防建设的各个方面,其中往往需要求解一个或一系列大型线性系统.而且,随着问题规模的增大,相应线性系统的未知数个数大大增加,动辄上百万、千万,甚至上亿.这些大型线性方程组的求解是求解整个问题的基础和关键所在,其计算量也占整个计算过程非常大的比重,有的甚至达到80%以上.超大规模线性系统求解能力的缺乏成为解决某些实际问题的瓶颈.大型线性方程组求解研究是现代科学计算的重要课题和焦点之一,高效、快速的求解方法研究既有理论意义又有实际价值.本文旨在深入研究求解大型线性系统的高性能算法,并特别针对电磁计算中产生的大型线性系统,构造有效的算法.
     构造对称正定矩阵的不完全分解预条件子.不完全分解预条件迭代法的通常做法是,先对系数矩阵进行重排,再不完全分解,然后再进行预条件迭代求解.本文将近似最小度排序嵌入不完全分解过程,提出了一类新型的高效预条件技术.给出了基于IKJ高斯消元的不完全Cholesky分解,并讨论了一些实现细节,然后分析了精确计算和近似计算分解过程中节点度的方法.结合CG方法,提出的预处理技术能很大地加快迭代法收敛速度.最后用丰富的数值实验表明与最小度排序耦合的不完全分解预条件技术的效率,要高于按照一般做法得到的预条件子的效率.
     深入研究求解非Hermitian正定线性方程组的Hermitian与Skew-Hermitian分裂(HSS)方法,提出了称为非平衡(lopsided) HSS (LHSS)与非对称(asymmetric) HSS (AHSS)方法.这类方法包含两步迭代,本文从理论上研究了其收敛性以及最优参数的选择问题.在LHSS迭代和AHSS迭代的每一步,都需要求解两个线性方程组.如果用直接法求解这两个方程组,其每个方程组的计算量与求解原方程组相当,那么这里的两步迭代就失去了意义.为了加快两步迭代的收敛速度,在求解这两个方程组时,不准确求出其解,而是用迭代法求其近似解,得到了所谓的ILHSS与IAHSS方法.给出的数值例子验证了本章提出方法的有效性.
     基于选主元策略研究对称不定矩阵的较为稳定的预条件技术.该类预条件子修正不完全Choleksy(MIC)分解来构造,在分解过程中采用RBBI选主元策略,得到的预条件子一般也具有不定性,期望与原方程组的系数矩阵更相近.通过数值例子表明,作用于SQMR方法时,该类预条件子显示出了很好的效果.
     针对非对称矩阵,研究基于Givens变换的不完全正交预处理技术.直接将得到的不完全QR分解作为原方程组的预条件子,并通过数值实验验证了提出的预条件方法的高效性.然后着重研究了排序对Givens旋转的QR分解的影响,给出了一种减少QR分解中所作Givens旋转次数的排序算法.
     针对开域电磁计算问题中出现的大型线性方程组,研究适用有效的预条件子..先讨论用FEM方法求解散射问题时遇到的线性方程组的求解,提出并实现了MIC分解预条件子,然后研究FEM/MoM混合方法求解辐射和散射问题中产生的复杂线性方程组的求解.
Computational mathematics and scientific computing are involved in many appli-cations, such as aeromechanics, modern biomedicine, oil reservoir, stealth technology. Usually, we are required to solve one or a series of systems of linear equations. With the increment of the size of the underlying problem, the size of the corresponding linear system increases dramatically. The order of the coefficient matrix often turns out to be millions or even hundreds of millions. The solution to the linear system is the key of the solution to the entire problem. Lack of efficient solutions to large-scale linear systems becomes a bottleneck in solving certain practical problems. Therefore, study of effec-tive solutions to very large linear systems turns out to be one of the focuses in modern scientific computing. This dissertation attempts to develop and construct algorithms of high performance for solutions of linear systems in depth, especially those arising from computational electromagnetics.
     Effective preconditioners involving incomplete factorization for symmetric positive definite matrices are developed. What we do in the common procedure of the precon-ditioned iterative methods is that we firstly reorder the original coefficient matrix, and then decompose the reordered matrix in an incomplete manner, and finally proceed with the preconditioned iterative methods. We investigate an effective preconditioning tech-nique, which interleaves the incomplete Cholesky (IC) factorization with an approximate minimum degree ordering. An IC factorization algorithm derived from the IKJ-version Gaussian elimination is proposed and some details on its implementation are presented. Then we discuss how to compute the degrees of the unnumbered nodes both exactly and approximately. When used in conjunction with the conjugate gradient algorithm, the new preconditioners usually lead to fast convergence. Numerical experiments show that the preconditioners generated by the interleaving of symbolic ordering and numerical IC fac-torization are better than those generated by the IC factorization without ordering or with purely symbolic ordering ahead of the factorization.
     A class of lopsided Hermitian/skew-Hermitian (LHSS) methods and a class of asym-metric Hermitian/skew-Hermitian (AHSS) methods to solve non-Hermitian and positive-definite systems of linear equations are established. Convergence properties and optimal parameter selections of these methods are studied. In each iteration of both LHSS and AHSS, two subsystems should be solved. If these subsystems are solved exactly with direct solvers, the HSS iterations are meaningless, because the cost for solving the sub-systems is equal to that for solving the original system by direct solvers. Consequently, we solve them inexactly by iterative solvers and develop ILHSS and IAHSS methods. The presented numerical methods illustrate the effectiveness of the proposed methods.
     Indefinite preconditioners for solving symmetric indefinite matrices are studied. These preconditioners are developed through a modified incomplete Cholesky (MIC) fac-torization with the pivoting strategy employed in the RBBK algorithm. Both the coef-ficient matrix and the preconditioner are indefinite, so the preconditioned matrix is ex-pected to have more favorable properties for iterative solution. When combined with the SQMR algorithm, this kind of preconditioners works very well according to the presented numerical examples.
     Preconditioning techniques for solving unsymmetric systems of linear equations are investigated. We study the incomplete orthogonal factorization based on the Givens ro-tations. An FQIGO preconditioning technique is developed, and its efficiency is demon-strated by the presented numerical tests. Then we have an investigation on how the order-ing affects the QR factorization and propose a reordering scheme to reduce the number of Givens rotations in the QR factorization.
     Finally, we study preconditioning techniques for the solution to the linear systems arising from electromagnetic computation. A kind of MIC preconditioners is proposed to solve the complex symmetric linear systems when FEM is used to handle scattering problems. Then block preconditioners are proposed when hybrid FEM/MoM is employed to deal with electromagnetic radiation and scattering problems.
引文
[1]胡家赣.线性代数方程组迭代解法.科学出版社,北京,1997
    [2]徐树方.矩阵计算的理论与方法.北京大学出版社,北京,1995
    [3]Y. Saad. Iterative methods for sparse linear systems. second ed., SIAM, Philadelphia, PA,2003
    [4]G. Meurant. Computer solution of large linear systems. Elsevier, Amsterdam,1999
    [5]D.M. Young. Iterative Solution of Large Linear Systems. Academic Press, New York,1971
    [6]J. M. Jin. The Finite Element Method in Electromagnetics. John Wiley & Sons, New York,1993
    [7]O. Axelsson. Iterative Solution Methods, Cambridge University Press, New York,1994
    [8]G. H. Golub and C. F. Van Loan. Matrix Computations.3rd ed., Johns Hopkins University Press, Baltimore, MD,1996
    [9]Y. Saad and H. A. van der Vorst. Iterative solution of linear systems in the 20th century. J. Comput. Appl. Math.,2000,123:1-33
    [10]J.W. Demmel. Applied numerical linear algebra. SIAM, Philadelphia,1997
    [11]J. A. Meijerink and H. A. Van der Vorst. An iterative solution method for linear systems of which the coefficient matrix is a symmetric M-matrices. Math. Comp.,1977,31:148-162
    [12]M. Benzi and M. Tuma. A comparative study of sparse approximate inverse preconditioners. Appl. Numer. Math.,1999,30:305-340
    [13]M. Benzi. Preconditioning Techniques for Large Linear Systems:A Survey. J. Comput. Phys., 2002,182:418-477
    [14]Y. Saad. ILUT:A dual threshold incomplete LU factorization. Numer. Linear Algebra Appl., 1994,1:387-402
    [15]A. Neumaier, R.S. Varga. Exact convergence and divergence domains for the symmetric succes-sive overrelaxation iterative SSOR method applied to H-matrices. Linear Algebra Appl.,1984, 58:261-272
    [16]M. Neumann. On bounds for the convergence of the SSOR method for H-matrices. Linear and Multilinear Algebra.,1984,15:13-21
    [17]Y. Saad and J. Zhang. BILUM:Block versions of multielimination and multilevel preconditioner for general sparse linear systems. SIAM J. Sci. Comput.,1999,20:2103-2121
    [18]Y. Saad. Preconditioning techniques for nonsymmetric and indefinite linear systems. J. Comput. Appl. Math.,1988,24:89-105
    [19]X.-C. Cai, W.D. Gropp and D.E. Keyes. A comparison of some domain decomposition and ILU preconditioned iterative methods for nonsymmetric elliptic problems. Numer. Linear Algebra Appl.,1994,1:477-504
    [20]C. Shen and J. Zhang. Parallel two level block ILU preconditioning techniques for solving large sparse linear systems. Parallel Computing,2002,28:1451-1475
    [21]M. Benzi, C. D. Meyer, AND M. Tuma. A sparse approximate inverse preconditioner for the conjugate gradient method. SIAM J. Sci. Comput.,1996,17:1135-1149
    [22]M. Bollhofer and Y. Saad. On the relations between ILUs and factored approximate inverses. SIAM J. Matrix Anal. Appl.,2002,24:219-237
    [23]M. Benzi, J. K. Cullum, AND M. Tuma. Robust approximate inverse preconditioning for the conjugate gradient method. SIAM J. Sci. Comput.,2000,22:1318-1332
    [24]M. Benzi and M. Tuma. A sparse approximate inverse preconditioner for nonsymmetric linear systems. SIAM J. Sci. Comput.,1998,19:968-994
    [25]M. Benzi, D. B. Szyld, and A. van Duin. Orderings for incomplete factorization preconditioning of nonsymmetric problems. SIAM J. Sci. Comput.,1999,20:1652-1670
    [26]M. Benzi, R. Kouhia, AND M. Tuma. Stabilized and Block Approximate Inverse Preconditioners for Problems in Solid and Structural Mechanics. Computer Methods in Applied Mechanics and Engineering,2001,190:6533-6554
    [27]M. Bollhofer and Y. Saad. A factored approximate inverse preconditioner with pivoting. SIAM J. Matrix Anal. Appl.,2002,23:692-705
    [28]K. Stuben. A review of algebraic multigrid.J. Comput. Appl. Math.,2001,124:281-309
    [29]J.W. Ruge, K. Stiiben. Algebraic multigrid (AMG). SIAM, Philadelphia,1986
    [30]A. Brandt. Algebraic multigrid theory:The symmetric case. Appl. Math. Comput.,1986,19: 23-56
    [31]J. K. Kraus. Computing interpolation weights in AMG based on multilevel Schur complements. Computing,2005,74:319-335
    [32]M. Brezina, A. J. Cleary, R. D. Falgout, V. E. Henson, J. E. Jones, T. A. Manteuffel, S. F. McCormick, and J. W. Ruge. Algebraic multigrid based on element interpolation (AMGe). SIAM J. Sci. Comput.,2000,22:1570-1592
    [33]M. Brezina, R. Falgout, S. MacLachlan, T. Manteuffel, S. McCormick, and J. Ruge. Adaptive smoothed aggregation (aSA). SIAM J. Sci. Comput.,2004,25:1896-1920
    [34]P. Vanek, J. Mandel, and M. Brezina, Algebraic multigrid by smoothed aggregation for second and fourth order elliptic problems, Computing,56 (1996), pp.179-196.
    [35]K. Stuben. Algebraic multigrid (AMG):an introduction with applications. Academic Press, New York,2000
    [36]L. Zaslavsky. An adaptive algebraic multigrid for reactor critically calculations. SIAM J. Sci. Comput.1995,16:840-847
    [37]J. Gopalakrishnan, J.E.Pasciak, L.F.Demkowicz. Analysis of a multigrid algorithm for time har-monic Maxwell equations. SIAM J. Numer. Anal.,2004,42:90-108
    [38]W. L.Briggs, V. E.Henson, and S. F. McCormick. A Multigrid Tutorial.2nd ed., SIAM, Philadel-phia, 2000
    [39]M. J. Antonelli and T. Chartier. Improving algebraic multigrid efficiency for immersed interface problems.Int.J. Pure Appl.Math.,2004,10:365-385
    [40]A. J. Cleary, R. D. Falgout, V. E. Henson, J. E. Jones, T. A. Manteuffel, S. F. Mc-Cormick, G. N. Miranda, and J. W. Ruge. Robustness and scalability of algebraic multigrid. SIAM J. Sci. Comput.,2000,21:1886-1908
    [41]W.F. Tinney and J. W. Walker. Direct solution of sparse network equations by optimally ordered triangular factorization. Proc. of IEEE,1967,55:1801-1809
    [42]D.J. Evans. Direct methods of solution of partial differential equations with periodic boundary conditions. Math. Comput. Simulation,1979, ⅩⅪ:270-275
    [43]George, A., and J. W-H. Liu. Computer solution of large sparse positive definite systems. Prentic-Hall,1981
    [44]P. R. Amestoy, T. A. Davis and I. S. Duff, An Approximate Minimum Degree Ordering Algo-rithm. SIAM J. Matrix Analysis & Appl.,1996,17:886-905
    [45]I. S. Duff, A. M. Erisman, and J. K. Reid. Direct Methods for Sparse Matrices. Oxford University Press, Oxford,1986
    [46]I. S. Duff and J. K. Reid. The multifrontal solution of indeffinite sparse symmetric linear equa-tions. ACM Trans. Math. Software,1983,9:302-325
    [47]J. W-H. Liu. Modification of the minimum degree algorithm by multiple elimination. ACM Trans. Math. Soft.,1985,11:141-153
    [48]J. W-H. Liu. The multifrontal method for sparse matrix solution:theory and practice. SIAM Review,1992,34:82-109
    [49]R. S. Varga. Matrix iterative analysis. Springer Verlag,2000
    [50]Hestenes, M. R. and E. Stiefel. Methods of conjugate gradients for solving linear systems. J. Res. Nat. Bur. Standards,1952,49:409-436
    [51]C. C. Paige and M. A. Saunders. Solution of sparse indefinite systems of linear equations. SIAM J. Numer. Anal.,1975,12:617-629
    [52]Saad, Y. and M.H. Schultz. GMRES:A generalized minimal residual algorithm for solving non-symmetric linear systems. SIAM J. Sci. Stat. Comput.,1986,7:856-869
    [53]van der Vorst, H. A. and J. B. M. Melissen. A Petrov-Galerkin type method for solving Ax=b, where A is symmetric complex. IEEE Trans. Mag.,1990,26(2):706-708
    [54]Freund, R. and N. Nachtigal. QMR:A quasi-minimal residual method for non-Hermitian linear systems. Numer. Math.,1991,60:315-339
    [55]R. W. Freund. Conjugate gradient-type methods for linear systems with complex symmetric coefficient matrices. SIAM J. Sci. Statist. Comput.,1992,13:425-448
    [56]Bunse-Gerstner, A., and R. Stover. On a conjugate gradient-type method for solving complex symmetric linear systems. Lin. Alg. Appl.,1999,287:105-123
    [57]Z. Z. Bai, G. H. Golub, and M. K. Ng. Hermitian and skew-Hermitian splitting methods for non-Hermitian positive definite linear systems. SIAM J. Matrix Anal. Appl.,2003,24:603-626
    [58]Z. Z. Bai and D. J. Evans. Matrix multisplitting relaxation methods for linear complementarity problems. Int. J. Comput. Math.,1997,63:309-326
    [59]H. A. van der Vorst. Bi-CGSTAB:A fast and smoothy converging variant of Bi-CG for the soution of nonsymmetric linear systems. SIAM J. Sci. Statist. Comput.,1992,13:631-644
    [60]E. Chow and Y. Saad. Approximate inverse preconditioners via sparse-sparse iterations. SIAM J. Sci. Comput.,1998,19:995-1023
    [61]盛新庆.计算电磁学要论.科学出版社,北京,2004
    [62]王秉中.计算电磁学.科学出版社,北京,2002
    [63]R. F. Harrington. Field Computation by Moment Method.2nd edition, IEEE Press, New York, 1993
    [64]J. M. Song, C. C. Lu, W. C. Chew. Multilevel fast multipole algorithm for electromagnetic scat-tering by large complex object, IEEE Trans. Antennas Propagat.,1997,45(10):1488-1493
    [65]I. Lee, P. Raghavan and E. G. NG. Effective preconditioning through ordering interleaved with incomplete factorization. SIAM J. Matrix Analysis & Appl.,2006,27:1069-1088
    [66]I. Gustafsson. A class of first order factorization methods. BIT,1978,18:142-156
    [67]P. Concus, G. H. Golub and G. Meurant. Block preconditioning for the conjugate gradient method. SIAM J. Sci. and Stat. Comp.,1985,6:220-252
    [68]M. A. Ajiz and A. Jennings. A robust incomplete Choleski-conjugate gradient algorithm. Int. J. Numer. Methods Eng.,1984,20:949-966
    [69]A. George and J. W-H. Liu. The evolution of the minimum degree ordering algorithm. SIAM Rev.,1989,31:1-19
    [70]T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to Algorithms. MIT Press, Cam-bridge, Massachusets, and McGraw-Hill, New York,1990
    [71]Matrix Market page, http://math.nist.gov/MatrixMarket [03 June.2009]
    [72]University of Florida Sparse Matrix Collection web page, http://www.cise.ufl. edu/researeh/sparse/matrices/[03 June.2009].
    [73]M Benzi and G. H. Golub. A preconditioner for generalized saddle point problems. SIAM J. Matrix Anal. Appl.,2004,26:20-41
    [74]Z. Z. Bai, G. H. Golub, and J. Y. Pan. Preconditioned Hermitian and Skew-Hermitian Splitting Methods for Non-Hermitian Positive Semidefinite Linear Systems. Technical Report SCCM-02-12, Scientific Computing and Computational Mathematics Program, Department of Computer Science, Stanford University, Stanford, CA,2002
    [75]Z. Z. Bai, G.H. Golub, and M.K. Ng. On Successive-Overrelaxation Accelera-tion of the Hermitian and Skew-Hermitian Splitting Iteration. available online at http://www.sccm.stanford.edu/wrap/pub-tech.html,2004
    [76]Z. Z. Bai, G. H. Golub, L. Z. Lu and J. F. Yin. Block Triangular and Skew-Hermitian Splitting Methods for Positive-Definite Linear systems. SIAM J. Sci. Comput.,2005,26:844-863
    [77]C. Greif and J. Varah. Iterative solution of cyclically reduced systems arising from discretization of the three-dimensional convection-diffusion equation. SIAM J. Sci. Comput.,1998,19:1918-1940
    [78]C. Greif and J. Varah. Block stationay methods for nonsymmetric cyclically reduced systems arising from discretization of the three-dimensional elliptic equation. SIAM J. Matrix Anal. Appl.,1999,20:1038-1059
    [79]W. Cheung and M. Ng. Block-circulant preconditioners for systems arsing from discretization of the three-dimensional convection-diffusion equation. J. Comp. Appl. Math.,2002,140:143-158
    [80]J. O. Aasen. On the reduction of a symmetric matrix to tridiagonal form. BIT,1971,11:233-242
    [81]J. R. Bunch and L. Kaufman. Some stable methods for calculating inertia and solving symmetric linear systems. Math. Comp.,1977,31:163-179
    [82]J. R. Bunch and B. N. Parlett. Direct methods for solving symmetric indefinite systems of linear equations. SIAM J. Numer. Anal.,1971,8:639-655
    [83]C. Ashcraft, R. G. Grimes, and J. G. Lewis. Accurate symmetric indefinite linear equation solvers. SIAM J. Matrix Anal. Appl.,1998,20:513-561
    [84]R. W. Freund and N. M. Nachtigal. A new Krylov-subspace method for symmetric indefinite linear systems. Proceedings of the 14th MACS World Congress on Computational and Applied Mathematics,1996,1253-1256
    [85]E. Chow and Y. Saad. Experimental study of ILU preconditioners for indefinite matrices. J. Comp. Appl. Math.,1997,86:387-414
    [86]S. H. Cheng and N.J. Higham. A modified Cholesky algorithm based on a symmetric indefinite factorization. SIAM J. Matrix Anal. Appl.,1998,19:1097-1110.
    [87]M. J. Grote and T. Huckle. Parallel preconditioning with sparse approximate inverse. SIAM. J. Sci. Comput.,1997,18:838-853
    [88]M. I. M. Gould and J. A. Scott. Sparse approximate-inverse preconditioners using norm-minimization techniques. SIAM J. Sci. Comput.,1998,19:605-625
    [89]F. Alvarado and H. Dag. sparsified and incomplete sparse factored inverse preconditioners. Pro-ceedings of the 1992 Copper Mountain Conference on Iterative Mehtods,1992,1:9-14
    [90]R. Suda. New iterative linear solvers for parallel circuit simulation. Ph.D. Thesis, Department of Information Sciences, University of Tokyo,1996
    [91]R. Barrett, M. Berry, J. Chan, et al. Templates for the Solution of Linear Systems:Building Blocks for Iterative Methods. SIAM, Philadelphia,1994
    [92]S. W. Kim and J. H. Yun. Block ILU factorization preconditioners for a block-tridiagonal H-matrix. Linear Algebra and its Applications,2000,317:103-125
    [93]X. Wang, K. A. Gallivan and R. Bramley. CMGS:An incomplete orthogonal factorizaion pre-conditioner. SIAM J. Sci. Comput.,1997,18:516-536
    [94]A. T. Papadopoulos, I. S. Duff and A. J. Wathen. A class of incomplete orthogonal factorization methods. Ⅱ:Implementation and results. BIT,2005,45:159-179
    [95]Z. Z. Bai, I. S. Duff and A. J. Wathen. A class of incomplete orthogonal factorization methods. I:methods and therorems. BIT,2001,41:053-070
    [96]Z. Z. Bai, Iain S. Duff and J. F. Yin. Numerical study on incomplete orthogonal factorization preconditioners. J. Comput. Appl. Math.,2009,226:22-41
    [97]J. F. Yin and K. Hayami. Preconditioned GMRES Methods with Incomplete Givens Orthogonal-ization Method for Large Sparse Least-Squares Problems. J. Comput. Appl. Math.,2009,226: 277-286
    [98]Z. Z. Bai and J. F. Yin. Modified incomplete orthogonal factorization methods using Givens rotations. Computing, Published online:4 August 2009
    [99]J. C. Nedelec. Mixed finite elements in R3. Numer. Meth.,1980,35:315-341
    [100]J. L. Volakis, A. Chatterjee, and L. C. Kempel. Finite Element Method for Electromagnetics: Antennas,Microwave Circuits and Scattering Applications. IEEE Press, New York,1998
    [101]R. S. Chen, E. K. N. Yung, C. H. Chan, D. X. Wang and D. G. Fang. Application of the SSOR preconditioned CG algorithm to the vector FEM for 3-D full-wave analysis of electromagnetic-field boundary-value problems.IEEE Trans. on Microwave Theory and Techniques,2002,50(4): 1165-1172
    [102]M. M. Botha and D. B. Davidson. Rigorous, Auxiliary Variable-Based Implementation of a Second-Order ABC for the Vector FEM. IEEE Trans. Antennas Propagat.,2006,54(11):3499-3504
    [103]J. M. Jin and J. L. Volakis. Electromagnetic scattering by and transmission through a three-dimensional slot in a thick conducting plane. IEEE Trans. Antennas Propagat.,1991,39:543-550
    [104]J. Huang and A. Wood. Numerical Simulation of Electromagnetic Scattering Induced by an Overfilled Cavity in the Ground Plane. IEEE Antennas and Wireless Propag. Letters,2005,4: 224-228
    [105]A. Chatterjee, J. M.Jin and J. L. Volakis. Edge-based fnite elements and vector ABCs applied to 3D scattering. IEEE Trans. Antennas Propagat.,1993,41:221-226
    [106]L. Zhao and A.C. Cangellaris. GT-PML:Generalized Theory of Perfectly Matched Layers and Its Application to the Reflectionless Truncation of Finite-Difference Time-Domain Grids. IEEE Trans. on Microwave Theory and Techniques,1996,44:2555-2563
    [107]O. Axelsson, and L. Yu. Kolotilina. Diagonally compensated reduction and related precondi-tioning methods. Numer. Linear Algebra Appl.,1994,1:155-177
    [108]R. S. Chen, X. W. Ping, E. K. N. Yung, C. H. Chan, Z. P. Nie and J. Hu. Application of Diagonally Perturbed Incomplete Factorization Preconditioned Conjugate Gradient Algorithms for Edge Finite-Element Analysis of Helmholtz Equations. IEEE Trans. Antennas Propag.,2006, 54(5):1604-1607
    [109]I. S. Duff, R. G. Grimes, J. G. Lewis. Users' Guide for the Harwell-Boeing Sparse Matrix Collection. Tech. Rep., CERFACS,1992, TR/PA/92/86
    [110]T. A. Manteuffel. An incomplete factorization technique for positive definite linear systems. Math. Comput.,1980,34:473-497
    [111]D. A. H. Jacobs. A generalization of the conjugate-gradient method to solve complex systems. IMA J. Number. Anal.,1986,6:447-452
    [112]Y. Saad. The Lanczos biorthonalization algorithm and other oblique projection methods for solving large unsymmetric systems. SIAM J. Numer. Anal.,1982,19:485-506
    [113]B.H. Jung and T. K. Sarkar. Analysis of transient electromagnetic scattering with plane wave incidence using MOD-FDM. Progress In Electromagnetics Research, PIER,2007,77:111-120
    [114]A. R. Mallahzadeh and M. Soleimani. RCS computation of airplane using parabolic equation. Progress In Electromagnetics Research, PIER,2006,57:265-276
    [115]K. C.Lee, C. W. Huang and M. C. Fang. Radar target recognition by projected features of frequency-diversity RCS. Progress In Electromagnetics Research, PIER,2008,81:121-133
    [116]H. Oraizi and A. Abdolali. Combination of Mls, Ga & Cg for the Reduction of Rcs of Multi-layered Cylindrical Structures Composed of Dispersive Metamaterials. Progress In Electromag-netics Research B,2008,3:227-253
    [117]H.W. Yuan, S. X. Gong, X. Wang, and W. T. Wang. Scattering Analysis of a Printed Dipole Antenna Using Pbg Structures. Progress In Electromagnetics Research B,2008,1:189-195
    [118]C. J. Reddy, M. D. Deshpande, C. R. Cockrell and F.B. Beck. Radiation characteristics of cavity backed aperture antennas in finite ground plane using the hybrid FEM/MoM technique and geometrical theory of diffraction. IEEE Trans. Antennas Propagat.,1996,44(10):1327-1333
    [119]J. Yun and T. H. Hubing. On the interior resonance problem when applying a hybrid FEM/MoM approach to model printed circuit boards Electromagnetic. IEEE Trans. on Compatibility,2002, 44(2):318-323
    [120]M. M. Botha and J.M. Jin. On the variational formulation of hybrid finite element-boundary integral techniques for electromagnetic analysis. IEEE Trans. Antennas Propagat.,2004,52(11): 3037-3047
    [121]B. M. Kolundzija and V. V. Petrovic. Power Conservation in Method of Moments and Finite-Element Method for Radiation Problems. IEEE Trans. Antennas Propagat.,2005,53(8):2728-2737
    [122]Y. Ji, H. Wang and T. H. Hubing. A Numerical Investigation of Interior Resonances in the Hybrid FEM/MoM Method. IEEE Trans. Antennas Propagat.,2003,51(2):347-349
    [123]D. Z. Ding, R. S. Chen and Z. H. Fan. SSOR preconditioned inner-outer flexible GMRES method for MLFMM analysis of scattering of open objects. Progress In Electromagnetics Re-search,PIER,2009,89:339-357
    [124]Y. Ji and T. Hubing. EMAP5:A 3D HYBRID FEM/MOM CODE, ACES JOURNAL,2000, 15:1-12
    [125]H. T. Yu, S.L. Ho, M. Q. Hu and H.C. Wong. Edge-Based FEM-BEM for Wide-Band Electro-magnetic Computation. IEEE Trans. on Magnetics,2006,42(4):771-774
    [126]A. F. Peterson, S. L. Ray, and R. Mittra. Computational Methods for Electromagnetics. IEEE Press and Oxford University Press, New York,1997
    [127]H. F. Meng and W. B. Dou. A hybrid method for the analysis of radome-enclosed horn antenna. Progress In Electromagnetics Research, PIER,2009,90:219-233
    [128]A. Eroglu and J. K. Lee. Far field radiation from an arbitrarily oriented hertzian dipole in an unbounded electrically gyrotropic medium. Progress In Electromagnetics Research, PIER,2009, 89:291-310
    [129]S. Ebadi and K. Forooraghi. Green's function derivation of an annular waveguide for application in method of moment analysis of annular waveguide slot antennas. Progress In Electromagnetics Research, PIER,2009,89:101-119
    [130]Z. H. Fan, R. S. Chen, H. Chen and D. Z. Ding. Weak form nonuniform fast fourier transform method for solving volume integral equations. Progress In Electromagnetics Research, PIER, 2009,89:275-289
    [131]M. Benzi, G. H. Golub and J. Liesen. Numerical solution of saddle point problems. Acta. Nu-merica,2005:1-137
    [132]B. J. Rubin and S. Daijavad. Radiation and Scattering from Structures Involving Finite-Size Dielectric Regions. IEEE Trans. Antennas Propagat.,1990,38:1863-1873

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700